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Abstract: An approach to control of passing through resonance zone based on speed-
gradient energy control of two subsystems (rotor and support) is presented. Two typical 
problems of passing through resonance for one- and two-dimensional motion of support 
are posed and analyzed by computer simulation. The control algorithms based on speed-
gradient method and averaging allow to significantly reduce the required level of the 
controlling torque. The algorithms have small number of design parameters. Compared 
with the known algorithms the proposed ones are more simple for design and exhibit 
stronger robustness properties. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 

Vibrational units with unbalanced (eccentric) rotors 
are widely used in the industry. An important 
problem for their design is to reduce the maximum 
power of the driving motor achieved during the 
spin-up mode (Blekhman, 2000). The decrease of 
the spin-up power leads to decrease of nominal 
power and, therefore to decrease of the weight and 
the size of the motor. Another problem is in that in 
order to obtain the desired mode of vibration it is 
necessary to control the rotor speed in a broad 
range including both pre-resonance and post-
resonance regions. The problem of passage through 
resonance becomes more difficult when the power 
of the motor decreases. Therefore solution of both 
problems is important for developing vibrational 
equipment with improved technological 
characteristics. 
 
The key idea to reduce the spin-up power of the 
unbalanced rotor is to swing the rotor during the 
spin-up period by feedback control. Different 
approaches to solve the problem were proposed 
(Malinin and Pervozvansky, 1993; Kel�zon and 
Malinin, 1992; Rand, et. al., 1992; Kinsey, et. al., 
1992). In (Malinin and Pervozvansky, 1993; 
Kel�zon and Malinin, 1992) the control law for 

oscillating eccentric rotor was proposed based on 
optimal design using Pontryagin maximum 
principle.  However the practical implementation of 
this law is difficult because of complex calculations 
required for solving non-linear optimal control 
problem. In (Rand, et. al., 1992; Kinsey, et. al., 
1992) the phenomenon of resonant capture arising 
in the dynamics of dual-spin spacecraft was 
considered. However the control design proposed 
in those papers is based on the averaged equations 
depending on coordinates which represent 
composite functions of initial variables. The design 
procedure requires calculation of the averaged 
angle coordinate of transformed model which is a 
very labor-consuming process. 
 
A new approach to feedback control of passage 
through resonance was proposed in (Tomchina, 
1997; Tomchina and Nechaev, 1999) for one-
dimensional motion of support based on the speed-
gradient method with energy-based goal functions 
(Fradkov, 1996). As it was shown in (Fradkov, 
1996) the speed-gradient algorithms for energy 
control of conservative systems allow to achieve an 
arbitrary energy level by means of arbitrarily small 
level of control power. Using this approach for 
systems with losses allows to spend energy only to 
compensate the losses, and to reduce the power of 



     

driving motor significantly.  However, reduction of 
the motor power for systems with several degrees 
of freedom may increase the influence of resonance 
and lead to appearance and amplification of 
Sommerfeld phenomenon and capture (Blekhman, 
2000). The case of plane motion was studied in 
(Malinin and Pervozvansky, 1993), where the 
controller was designed using optimal control 
technique, see also (Kel�zon and Malinin, 1992). 
 
In this paper an approach to the problem of 
controlled passage through resonance zone for 
multidimensional systems is presented. The control 
algorithms based on speed-gradient method and 
averaging are proposed. Applications to one-
dimensional system (TORA example) and to a two-
dimensional system (plane motion of one-rotor 
vibrational unit) demonstrate efficiency of the 
approach. The proposed algorithms allow to 
significantly reduce the required level of the 
controlling torque. The efficiency of the algorithms 
is studied by means of computer simulation. 
 

2. PROBLEM STATEMENT 
 
We use the standard Euler - Lagrange form of 
mechanical systems description 

( ) ( ) ( ) uqGqqCqqM =++ &&& ,       (1) 
where u  is 1×n  vector of control torques; qqq &&&,,  
are 1×n  vectors of generalized coordinates, 
velocities and accelerations correspondingly; ( )qM  
is  nn×  inertia matrix; ( )qqC &,  is 1×n  vector of 
Coriolis and centrifugal forces; ( )qG  is 1×n  
vector of gravity forces; n  is the number of the 
plant degrees of freedom. The losses (Rayleigh 
dissipation function) are not taken into account. 
 
We will also use the Hamiltonian form which is 
convenient for the purpose of controller design. 
The controlled plant equations in Hamiltonian form 
are as follows: 
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where nqp ℜ∈,  - are generalized coordinates and 
momenta; ( )qpHH ,=  - Hamiltonian function 
(total energy of the system); ( )tuu = - m -
dimensional input vector (generalized forces), B  is 

nm×  matrix, nm ≤ . 
Formalize the main control objective as 
approaching the given energy level of the unforced 
system 

( ) ( )( ) .,, * ∞→→ twhenHtqtpH     (3) 
 
Introduce the objective function as follows 

( ) ( )[ ] .,2/1, 2*HqpHqpQ −=  (4) 
 
Then the objective (3) can be reformulated as 

( ) ( )( ) .,0, ∞→→ twhentptqQ      (5) 

Let the additional inequality constraint be given: 
( ) ( )( ) ,,1 ∆≤tqtpH        (6) 

where 1H  is kinetic energy of first subsystem: 

( ) ( )( ) ( ) ,
2
1, 111111 qqMqtqtpH T &&=   (7) 

where 1q  is 1n -vector of generalized coordinates 
of the first subsystem; ( )111 qM  is the 
corresponding 11 nn ×  - inertia submatrix. The 
problem is to design the control algorithm for the 
system (1) or (2), ensuring the objective (3) under 
constraint (6). 
 

3. DESIGN OF CONTROL ALGORITHMS 
 
The idea of solution is based on separation of 
motions near the resonance (Rand, et. al., 1992; 
Pechenev, 1986). Using the averaging method 
allows to detect two components with different rate 
in the system motions near resonance. In 
(Pechenev, 1986) the more slow oscillatory 
component was called the slow motion (in contrast 
to the "superslow" change of the averaged velocity 
before and after the resonance. It was shown in 
(Pechenev, 1986) by means of vibrational 
mechanics approach based on the averaging 
method that the oscillations of the slow component 
may be described by the 1-DOF pendulum-like 
equation. For passing through the resonance it was 
suggested in (Tomchina, 1997) to swing the slow 
motions up until the total energy H  achieves the 
prescribed level and the energy of the subsystem 

1H  becomes sufficiently small. Also it was 
suggested to apply the speed-gradient (SG) 
algorithm for swinging the system 

( ),Qu u
&∇Ψγ−=       (8) 

where Q&  is derivative of Q  with respect  to the 
equations (2), u∇  stands for the gradient in u , 

0>γ  is gain coefficient and value of the vector-
function ( )zΨ  forms an acute angle with the vector 

z , i.e. ( ) 0>Ψ zz T  for 0≠z . For pendulum-like 
1-DOF systems SG algorithms  look as follows:  

( ) ,* ψ−γ−= &HHu           (9) 

( )[ ],* ψ−γ−= &HHsignu            (10) 

( )[ ],sgn * ψ−γ−= &HHu            (11) 
where ψ  is the oscillating generalized coordinate, 

1=xsign , if 0≥x , 1−=xsign , if 0<x ; 
1sgn =x , if 0≥x , 1sgn −=x  if 0<x . For our 

purposes the above algorithms or their 
modifications can be used where ψ  is chosen as 
the slow variable near the resonance. To implement 
the algorithms (9) - (11) it is necessary to measure 
the velocity ψ&  of the slow variable ψ .  
In this paper it is suggested to obtain ψ  as the 

averaged value of the fast variable velocity θ=ω & , 
i.e. ψ&  as the averaged value of θ&& . The averaging 



     

is performed by the first order low-pass filter 
("dirty differentiator")  

( ) ( ) ( )tttT θ+ψ−=ψ &&              (12) 
Time constant T  should allow to suppress fast 
motion, i.e. its value should lie in the interval 
between the periods of fast and slow oscillation. 
 
It is also proposed to switch on the speed-gradient 
algorithms (9) - (11) with filter (12) when the first 
subsystem energy is large (inequality (6) violates) 
and to switch to the conventional control 

( ) 0>γ≡tu  when (6) holds. Additionally, to 
achieve better performance, the current value of the 
energy 1H  is subject to filtering. 
 

4. EXAMPLE 1. TRANSLATIONAL 
OSCILLATOR - ROTATIONAL ACTUATOR  

 
Consider the problem of controlling translational 
oscillator - rotational actuator (TORA), consisting 
of a support (cart) attached to a wall by a spring 
(Fig.1). A rotating eccentric mass (debalanced 
rotor) connected to the cart is actuated by a DC 
motor. Initially this system has been used as a 
simplified model to study the resonance capture 
(Sommerfeld) phenomenon (Rand, et. al., 1992; 
Ewan-Ivanovski, 1976). Recall that the capture 
phenomenon represents the failure of a rotating 
mechanical system to be spun up by a torque-
limited rotor to a desired rotational velocity due to 
its resonant interaction with another part of the 
system (Ewan-Ivanovski, 1976), see also Fig.2. 
Similar system (RTAC � Rotational/Translational 
ACtuator) was proposed by D.Bernstein with 
coworkers (Wan, et. al., 1994; Bupp, et al., 1998) 
as a benchmark example for nonlinear control and 
later was called TORA, see (Jankovic, et. al., 
1996). However, in the existing control related 
results only stabilization problem was addressed. 

 
Fig. 1. TORA schematics (horizontal plane). 
 
We pose the problem as spinning the system up to 
the desired energy level under restriction on the 
energy of its specified subsystem. The goal is to 
achieve the desired average angular velocity of the 
motor under constraint imposed on the translational 
oscillations of the cart. The motor torque is 
assumed to be a control variable. The model of the 
system is as follows 

 

 
Fig. 2 Conventional control ( ) 0γ≡tu . 1) 

49.00 =γ  - capture, 2) 50.00 =γ  - passage. 
 
( ) ( ) ,0sincos 2

1 =+θθ−θθ+++ kzmlzkzmM &&&&&& (13) 

,cos uzmlkJ =θ+θ+θ θ &&&&&           (14) 
where z  is the displacement of the cart from its 
equilibrium position, θ  is rotational angle of the 
rotor, ( )tNu =  is motor torque (control variable). 
The system has the state vector 

( ) 4,,, ℜ∈θθ=
T

zzx && . The total energy of the 
system is as follows 

( ) .
2
1

2
1cos

2
1 2222 kzmlzmlzmMH +θ+θθ++= &&&&  

(15) 
The model (13) and the energy (15) can be 
expressed also in the Hamiltonian form. We want 
to achieve the control goal 

( )( ) ,0→txQ   (16) 

where ( ) 2/
2*HHQ −=  and *H  is the desired 

energy level under the constraint ( )( ) ∆≤txH1 , 
where 0>∆  and 1H  is the kinetic energy of the 

cart ( ) 22
1 zMxH &= . For control the modification 

of SG algorithm (11), (12) was chosen: 
( )





 <ψ−γ=

,,0
,0, *

else
HHifu

&
 (17) 

where ψ  is the slow variable. Note that the filter 
(12) allows to obtain the sign of  ( )tψ&  just 

comparing the values of ( )tθ&  and ( )tψ . 
 
The numerical investigation of the system 
performance for different values of controller 
parameters γ  and T  was carried out by means of 
MATLAB software. The system parameters were 
taken as in (Blekhman, et. al., 1999): J = 0.014 
[kg·m2], M = 10.5 [kg], m = 1.5 [kg], l = 0.04 [m], 

θk  = 0.005 [J·sec], 5300=k  [N/m], 51 =k  
[kg/sec]. For comparison the time history of  
angular velocity of the rotor driven by  constant 
torque ( ) 0γ=tu  is presented in Fig.2. The capture 
(for 49.00 =γ ) and pass-through (for 50.00 =γ ) 
phenomena can be observed. 



     

In the first series of experiments with the algorithm 
(17), (12) the value of the controlled torque was 
chosen as 2.00 =γ , which is significantly less than 
the capture threshold 5.00 =γ . The values of time 
constant T  were tested in the interval from 

1.0=T s to 2=T s. The value of T  corresponding 
to the fastest passage through resonance frequency 
were close to the period of slow motions: 

7.0* ≈T s. In the second series of experiments we 
chose 7.0=T s and decreased γ . The results are 

shown in Fig.3,4 (for 26.00 =γ  and 11* =H ). 
 
The simulation results confirm that the algorithm 
(17), (12) achieves significant reduction of the 
torque required for passage through resonance  

Fig. 3. Controlled passage through resonance, 
26.00 =γ . 

 
5. EXAMPLE 2. VIBRATIONAL UNIT WITH 

PLANE MOTION OF SUPPORT 
A. Problem statement 
Consider the following system of differential 
equations describing the plane motion of one-rotor 
vibrational unit (see Fig. 5) (Blekhman, 2000): 

( )
( )
( ) ,)cossin(

0)sincos(

)sinsincos(

2

2

MgmcyykymM

mxcxkxmM

tugyxmkJ

y

xx

=ϕϕ+ϕϕε++++

=ϕϕ−ϕϕε++++

=ϕ+ϕ+ϕε+ϕ+ϕ ϕ

&&&&&&

&&&&&&

&&&&&&&

(18) 
where φ � rotor angle, x,y � coordinates of the 

 
Fig. 4. Energy plot for proposed control: 

11,26.0 *
0 ==γ H . 

platform, ( )tu  � control action (rotating torque of a 
motor), J - moment of inertia of an unbalanced 
rotor (disk), m - mass of a rotor, M � mass of a 
platform, ε - eccentricity of the rotor center of 
mass, xcc,  - shaft torsional stiffness, yx kkk ,,ϕ - 
damping factors. 

 
Fig. 5. One-rotor vibrational unit. 
 
It is well-known (Kononenko, 1964), that the 
�capture� of angular velocity of a rotor 
(Sommerfeld phenomenon) sometimes takes place 
in the near-resonance zone. The capture 
phenomenon happens when the level of constant 
control action ( ) 0Mtu ≡  is small. If the level of 
constant control action ( ) 0Mtu ≡  is higher, the 
system passes the resonance zone (see Fig. 6) for 
the nominal values of system parameters: J = 0.014 
[kg·m2], M = 10.5 [kg], m = 1.5 [kg], ε = 0.04 [m], 

ϕk  = 0.01 [J·sec], 5300=c  [N/m], 530=xc  

[N/m], 5== yx kk  [kg/sec]. 

 
Fig. 6. Angular velocity for conventional control 

( ) 0Mtu ≡ . 1) 80.00 =M  - capture, 2) 81.00 =M  
- passage.  
 
The problem is to design the control algorithm 

( )ϕϕ= &&& ,,,,, yyxxu U , providing the spin-up of 
unbalanced rotor until the speed exceeds critical 
resonant value. The level of control signal is 
restricted and does not allow the passage through 



     

resonance when the control signal is constant. The 
existing optimal control algorithms (Malinin and 
Pervozvansky, 1993) are hard for implementation 
and are not sufficiently robust. 
 
B. Design of control algorithms 
 
To describe the proposed control algorithm first 
describe the way to define the time of passing 
through resonance zone. It is proposed to measure 
the depth of the resonance by the average energy of 
the rotor center of mass motion, which is 
proportional to ( )22 yx && + . A related measure for 
oscillatory motion is the average sum of coordinate 
squares 22 yx +  which is decreasing when system 
is passing through the resonance zone. This fact is 
confirmed by simulation: the sum 22 yx +  
increases when the level of constant control action 
is small and does not allow system to pass through 
the resonance zone. In case of higher control 
torque, the average sum of coordinate squares 

22 yx +  increase in the pre-resonance zone and 
decrease in the post-resonance zone. 
 
In order to smooth the variable 22 yx +  we 
introduce the additional low pass filter:  

( ) ( ) ( ) ,000,,, 22 =θ=θ++θ−=θθ
&& yxtyxT   (19) 

where => θθ TT ,0 const � algorithm parameter. 
The filtered variable ( )tyx ,,θ  increases when the 
system is in the pre-resonance or resonance zone. 
In the post-resonance zone the value of  ( )tyx ,,θ  
decreases significantly in comparison with the 
maximum value. Thus measuring the variable 

( )tyx ,,θ  of the filter (19) allows estimate the time 
of the passage through resonance. This fact is 
confirmed by computer simulation, see Fig. 7. 

 
Fig. 7. Plot of )(tθ  for ( ) 0Mtu ≡ . 1) 80.00 =M  - 
capture, 2) 81.00 =M  - passage. 
 
To synthesize the control algorithm we use the 
speed-gradient method. At this stage we suppose 
that the control plant is conservative, i.e. the 
friction equals to zero. The control goal is to find 
controlling function ( )tu  providing the goal 

equality ( ) *,,,,, HyyxxH =ϕϕ &&& , where ( )⋅H  is a 

current energy, *H  is the given energy level 
corresponding to the desired average rotation 
speed. Choose the goal functional 

( )( )2*21)( HzHzQ −= , where 

[ ]Τϕϕ= &&& ,,,,, yyxxz . The �relay� form of speed-
gradient algorithm designed according to the 
proposed approach is as follows: 

( )( )










ϕ+ψ−=ψ





 >ψ−ϕ−=

ψ .
,,0

,0, *
0

&&

&

T
else

HHifMu
 

where ( )tψ  - filtered variable, => ψψ TT ,0 const.  
 
However the efficiency of this algorithm is rather 
low because of high amplitude of rotor oscillations. 
So the value *H  may be achieved in the resonance 
zone. Also this algorithm requires choosing the 
value *H  for every set of plant parameters, and 
this task has no evident solution.  
 
Thus we propose to exclude the factor *HH −  
having the negative sign in the post-resonance 
zone, from the algorithm. We also propose to 
switch off the control in the post-resonance zone, 
keeping only constant control torque. The 
algorithm is modified as follows. 
 
The variable )(1 tγ : 

[ ]
,)()(supsgnmax)(

],0[,0
1












θ−θ=γ ttKt

tt
 

is introduced, where 0>K  is the algorithm 
parameter. The properties of the variable ( )tθ  
allows to say that  0)(1 =γ t  means that the system 
is in the pre-resonance or resonance zone (there 
was no significant decrease of )(tθ ). Also 

1)(1 =γ t  means that the system is in the post-
resonance zone. Thus, )(1 tγ  characterizes the 
current behavior of the system if K is properly 
chosen. The value of K should be sufficiently small 
to guarantee that the system is already in the post-
resonance zone. At the same time the unjustified 
decrease of K may reduce the efficiency and 
transient time of the proposed algorithm. 
Finally, the algorithm takes the form:  

( )
( )
( )

[ ]

( ) ( ) ( ) ( )

















=θ=θ++θ−=θ












θ−θ=γ

ϕ+ψ−=ψ








<ψ−ϕ=γ

=γ
=

θ

ψ

.000,

,)()(supsgnmax)(

,
,,0

,0)(&0,
,1,

22

],0[,0
1

10

10

&&

&&

&

yxttT

ttKt

T
else

tifM
tifM

tu

tt

(20) 



     

The value of ψT  (time constant of the angular 
velocity filter) should be more then the period of 
the resonant oscillations. At the same time, if the 
value of ψT  is too high, the algorithm works too 
slowly.  
 
C. Simulation Results 
 
The designed control algorithm was numerically 
investigated to analyze the efficiency of the 
proposed algorithm. Numerical integration was 
made in MATLAB environment by means of 
Runge-Kutta method of second order. The value of 
the fixed step equal to 0.00025 [sec] was chosen so 
as the relative simulation error does not exceed 5%. 
The nominal values of system parameters were 
chosen as in (Blekhman, et. al., 1999): J = 0.014 
[kg·m2], M = 10.5 [kg], m = 1.5 [kg], ε = 0.04 [m], 

ϕk  = 0.01 [J·sec], 5300=c  [N/m], 530=xc  

[N/m], 5== yx kk  [kg/sec].  
It is seen that the value of the rotating torque of a 
motor, allowing system to pass the resonance zone 
for ( ) 0Mtu ≡ , is reduced in almost two times by 
means of the proposed algorithm.  

 
Fig. 8 Angular velocity of controlled system, 

46.00 =M .  
CONCLUSIONS 

 
New algorithms of passing through resonance zone 
for mechanical systems are proposed and analyzed 
by computer simulation. The algorithms are based 
on speed-gradient method and allow to 
significantly reduce the required level of the 
controlling torque. The algorithms have small 
number of design parameters and, compared with 
the known algorithms are more simple for design. 
It is planned to test the proposed algorithm on the 
two-rotor vibrational set-up (Blekhman, et. al., 
1999). 
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