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Abstract This paper characterizes a class of regular para-Hermitian transfer
matrices and then studies the J-spectral factorization of this class using similarity
transformations. A transfer matrix Λ in this class admits a J-spectral factorization
if and only if there exists a common nonsingular matrix to similarly transform the
A-matrices of Λ and Λ−1, resp., into 2 × 2 lower (upper, resp.) triangular block
matrices with the (1, 1)-block including all the stable modes of Λ (Λ−1, resp.).
For a transfer matrix in a smaller subset, this nonsingular matrix is formulated
in terms of the stabilizing solutions of two algebraic Riccati equations. The J-
spectral factor is formulated in terms of the original realization of the transfer
matrix. Copyright c©2005 IFAC.
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1. INTRODUCTION

A J-spectral factorization is a factorization of a
para-Hermitian matrix into the form of W∼JW ,
where W is bistable and J is a signature matrix.
It plays an important role in H∞ control of finite-
dimensional systems [Francis, 1987, Green et al.,
1990, Green, 1992, Green and Limebeer, 1995] as
well as infinite-dimensional systems [Meinsma and
Zwart, 2000, Oostveen and Curtain, 1998, Iftime
and Zwart, 2002]. The necessary and sufficient
condition of the J-spectral factorization has been
well understood [Bart et al., 1979, Francis, 1987,
Green et al., 1990, Meinsma, 1995, Ran, 2003].
The J-spectral factorizations involved in the lit-
erature are done for matrices in the form G∼JG,
mostly with a stable G. For the case with an
unstable G, the following three steps can be used
to find the J-spectral factor of G∼JG, by applying
the results in [Meinsma, 1995, Corollary 3.1]:

(i) to find the modal factorization of Λ =
G∼JG;
(ii) to construct a stable G− such that Λ =
G∼

−
JG−;

(iii) to derive the J-spectral factor of G∼

−
JG−,

i.e., of G∼JG.

For example, if Λ = G∼JG (with G unstable) is
factorized as Λ = T + T∼ with T stable, then

G− =

[

I + T
2

I − T
2

]

is stable 1 and Λ = G∼

−
JG−. It

can then be factorized by applying Theorem 2.4 in
[Meinsma, 1995]. However, at some cases, a para-
Hermitian transfer matrix Λ is given in the form of
a state-space realization and cannot be explicitly
written in the form G∼JG, e.g., in the context of

1 For Z = T + T∼ with a stable T , a stable G− such that

Z = G∼

−
JG− is as given above but not G− = 1

2

[

I + T

I − T

]

.

If the latter is the case, then Z should be factorized as
Z = 1

2
(T + T∼).



H∞ control of time-delay systems [Zhong, 2003a,
Meinsma et al., 2002]. In order to use the above-
mentioned results, one would have to find a G such
that Λ = G∼JG. It would be advantageous if this
step could be avoided.

A very recent parallel work in [Ran, 2003] has
dealt with this problem. A two-step procedure is
proposed to find the J-spectral factor in [Ran,
2003]: (i) to transform Λ into an ordered Schur
form; and then (ii) to solve an algebraic Riccati
equation (ARE) when there is a stabilizing solu-
tion. There is no need to find a stable G such
that Λ = G∼JG any more. The advantage of this
result is that the realization of Λ need not be
minimal or in the Hamiltonian structure (because
of the first step). This paper proposes a different
approach to deal with the problem. It only in-
volves very elementary mathematical tools, such
as similarity transformations, so that it is easy
to understand. The approach developed here has
been found crucial to solve the delay-type Nehari
problem [Zhong, 2003a,b].

A better literature review about this topic can
be found in [Ran, 2003, Green et al., 1990] and
the references therein. For a wider topic, the
symmetric factorization, see [Ran and Rodman,
1991] and the references therein.

Notation

Given a matrix A, A∗ denote the complex conju-
gate transpose and A−∗ stands for (A−1)∗ when
the inverse A−1 exists. A transfer matrix G(s) =

D + C(sI − A)−1B is denoted as

[

A B

C D

]

and

its conjugate is defined as G∼(s) = [G(−s∗)]∗ =
[

−A∗ −C∗

B∗ D∗

]

. Jp,q =

[

Ip 0
0 −Iq

]

is a signature

matrix and is reduced to J when p and q are
obvious or irrelevant.

2. REGULAR PARA-HERMITIAN
TRANSFER MATRICES

Definition 1. [Kwakernaak, 2000] A transfer ma-
trix Λ(s) is called a para-Hermitian matrix if
Λ∼(s) = Λ(s).

Definition 2. A transfer matrix W (s) is a J-
spectral factor of Λ(s) if W (s) is bistable and
Λ(s) = W∼(s)JW (s). Such a factorization of Λ(s)
is referred to as a J-spectral factorization.

Definition 3. A matrix W (s) is a J-spectral co-
factor of a matrix Λ(s) if W (s) is bistable and
Λ(s) = W (s)JW∼(s). Such a factorization of Λ(s)
is referred to as a J-spectral cofactorization.

Theorem 4. A given square, minimal, rational
matrix Λ(s), having no poles or zeros on the jω-
axis including ∞, is a para-Hermitian matrix if
and only if a minimal realization can be repre-
sented as

Λ =

[

A R −B

−E −A∗ C∗

C B∗ D

]

(1)

where D = D∗, E = E∗ and R = R∗.

PROOF. Sufficiency. It is obvious according to
Definition 1.

Necessity. Since Λ is a para-Hermitian matrix,
there must be D = D∗. By assumption D is
invertible, then using similar arguments as in
[Francis, 1987, pp.90-91], Λ−1 exists and can be
minimally realized as

Λ−1 =

[

A1 0 B1

0 −A∗

1
−C∗

1

C1 B∗

1
D−1

]

where (A1, B1, C1) is a stable minimal realiza-
tion. Hence,

Λ =

[

A1 − B1DC1 −B1DB∗

1
−B1

C∗

1
DC1 −(A1 − B1DC1)∗ C∗

1

C1 B∗

1
D

]

. (2)

This matrix is in the form of (1) where E =
E∗ = −C∗

1DC1 and R = R∗ = −B1DB∗

1 . This
completes the proof.

Remark 5. For the realization of Λ in (2), R = R∗

is equal to −B1DB∗

1 . However, this is not true for
the realization of Λ in (1), where R = R∗ is in
general not equal to −BDB∗. Similar argument
applies to E = E∗.

Denote T =

[

A1 B1

C1
1

2
D−1

]

, then the result pro-

posed in [Meinsma, 1995, Corollary 3.1] can be di-
rectly used. However, as explained before, this will
result in a J-spectral factor in terms of A1, B1, C1

and D but not in terms of the original realization
in A, R, E, B, C and D. This is good enough
for numerical computation, but not enough for
further analysis, as in the case of [Zhong, 2003a].

In order to simplify later expositions, denote

Hp =

[

A R

−E −A∗

]

,

Hz
.
=

[

Az Rz

−Ez −A∗

z

]

=

[

A R

−E −A∗

]

−

[

−B

C∗

]

D−1
[

C B∗

]



3. J-SPECTRAL FACTORIZATION

Assume that a para-Hermitian matrix Λ as given
in (1) is minimal and has no poles or zeros
on the jω-axis including ∞. There always exist
nonsingular matrices ∆p and ∆z (e.g. via Schur
decomposition) such that 2

∆−1
p Hp∆p =

[

? 0
? A+

]

(3)

and

∆−1
z Hz∆z =

[

A− ?
0 ?

]

, (4)

where A+ is antistable and A− is stable (A+ and
A− have the same dimension as A).

Lemma 6. The Λ as described above has a Jp,q-
spectral factorization for some unique Jp,q (where
p is the number of the positive eigenvalues of D

and q is the number of the negative eigenvalues of
D) if and only if

∆ =

[

∆z

[

I

0

]

∆p

[

0

I

]

]

(5)

is nonsingular. If this condition is satisfied, then
a J−spectral factor is formulated as

W =









[

I 0
]

∆−1Hp∆

[

I

0

]

[

I 0
]

∆−1

[

−B

C∗

]

Jp,qD−∗

W

[

C B∗

]

∆

[

I

0

]

DW









,(6)

where DW is nonsingular and D∗

W Jp,qDW = D.

PROOF. Formulae (3) and (4) mean that

Hp∆p

[

0
I

]

= ∆p

[

0
I

]

A+

and

Hz∆z

[

I

0

]

= ∆z

[

I

0

]

A−.

Hence, ∆p

[

0
I

]

and ∆z

[

I

0

]

span the antistable

eigenspace M of Hp and the stable eigenspace
M× of Hz , respectively. As is well known [Bart
et al., 1979, Francis, 1987, Green et al., 1990,
Meinsma, 1995, Ran, 2003], there exists a J-
spectral factorization iff M∩M× = {0}, which is
equivalent to that the ∆ given in (5) is nonsingu-
lar.

2 The elements denoted by “?” are irrelevant.

When this condition holds, there exists a projec-
tion P onto M× along M. The projection matrix
P is given by (see Appendix for more details)

P = ∆

[

I 0
0 0

]

∆−1. (7)

So a J-spectral factor is (see e.g. [Ran, 2003])

W =







PHpP P

[

−B

C∗

]

Jp,qD
−∗

W

[

C B∗
]

P DW






. (8)

This realization is not minimal since the A-matrix
has the same dimension as Hp. Substitute (7) into
(8) and apply a similarity transformation with ∆,
then

W =









∆−1PHp∆

[

I 0
0 0

]

∆−1P

[

−B

C∗

]

Jp,qD
−∗

W

[

C B∗
]

∆

[

I 0
0 0

]

DW









.

After removing the unobservable states by delet-
ing the second row and the second column, W
becomes

W =









[

I 0
]

∆−1PHp∆

[

I

0

]

[

I 0
]

∆−1P

[

−B

C∗

]

Jp,qD−∗

W

[

C B∗

]

∆

[

I

0

]

DW









.

Since
[

I 0
]

∆−1P =
[

I 0
]

∆−1, W can be fur-
ther simplified as given in (6). This completes the
proof.

In general, ∆z 6= ∆p. However, these two can be
the same.

Theorem 7. Assume that a para-Hermitian ma-
trix Λ as given in (1) is minimal and has no
poles or zeros on the jω-axis including ∞. Then
Λ admits a J-spectral factorization if and only if
there exists a nonsingular matrix ∆ such that

∆−1Hp∆ =

[

A
p
−

0
? A

p
+

]

(9)

and

∆−1Hz∆ =

[

Az
−

?
0 Az

+

]

, (10)

where Az
−

and A
p
−

are stable, and Az
+ and A

p
+ are

antistable. In this case, a J-spectral factor W is
given in (6).

PROOF. Sufficiency. It is obvious according to
Lemma 6. In this case, ∆z = ∆p = ∆. Necessity.
According to Lemma 6, if there exists a J-spectral



factorization then there does exist a nonsingular
∆, as given in (5), which satisfies (9) and (10).

Since the ∆ is the same as that in Lemma 6,
the J-spectral factor is the same as in (6). This
completes the proof.

Remark 8. The A-matrix of W is

[

I 0
]

∆−1Hp∆

[

I

0

]

= A
p
−

and that of W−1 is

[

I 0
]

∆−1Hz∆

[

I

0

]

= Az
−

.

Remark 9. This theorem says that a J-spectral
factorization exists if and only if there exists a
common similarity transformation to transform
Hp (Hz , resp.) into a 2 × 2 lower (upper, resp.)
triangular block matrix with the (1, 1)-block in-
cluding all the stable modes of Hp (Hz , resp.).
Once the similarity transformation is done, a J-
spectral factor can be formulated according to (6).
If there is no such a similarity transformation,
then there is no J-spectral factorization.

Remark 10. The necessary and sufficient condi-
tions in this section do not depend on the real-
ization of Λ, which does not have to be in the
form (1). If Λ is not realized in this form, only
minor changes in formula (6) are needed.

4. THE CASE WITH A SMALLER SUBSET

In this section, a subset of the class of para-
Hermitian matrices characterized in Theorem 4
is considered.

Theorem 11. For a para-Hermitian matrix Λ char-
acterized in Theorem 4, assume that: (i) (E, A) is
detectable and E is sign definite; (ii) (Az , Rz) is
stabilizable and Rz is sign definite. Then the two
ARE

[

I −Lo

]

Hp

[

Lo

I

]

= 0 (11)

and

[

−Lc I
]

Hz

[

I

Lc

]

= 0 (12)

always have unique symmetric solutions Lo and

Lc, respectively, such that
[

I −Lo

]

Hp

[

I

0

]

and

[

I 0
]

Hz

[

I

Lc

]

are stable. In this case, Λ(s) has

a Jp,q-spectral factorization for some unique Jp,q

(where p is the number of the positive eigenvalues

of D and q is the number of the negative eigenval-
ues of D) if and only if det(I − LoLc) 6= 0. If this
condition is satisfied, then one J−spectral factor
is formulated as

W =

[

A + LoE B + LoC∗

−Jp,qD−∗

W
(B∗Lc + C)(I − LoLc)−1 DW

]

,

where DW is nonsingular and D∗

W Jp,qDW = D.

PROOF. In this case, ∆z =

[

I 0
Lc I

]

, ∆p =
[

I Lo

0 I

]

and ∆ =

[

I Lo

Lc I

]

. According to Lemma

6, there exists a J-spectral factorization iff ∆ is
nonsingular, i.e., det(I − LoLc) 6= 0. Substitute
∆ into (6) and apply a similarity transformation
with −(I − LoLc)

−1, then

W =





[

I −Lo

]

Hp

[

I

Lc

]

(I − LoLc)−1 B + LoC∗

−Jp,qD−∗

W
(C + B∗Lc)(I − LoLc)−1 DW





=







[

I −Lo

]

Hp

[

I

0

]

B + LoC∗

−Jp,qD−∗

W
(C + B∗Lc)(I − LoLc)−1 DW







,

where the ARE (11) is used. This completes the
proof.

A different approach involving two similarity
transformations to derive the realization of W is
shown below.

Similarity Transformation 1: Stabilization

Since Lo is the stabilizing solution of (11), after

applying a similarity transformation

[

I Lo

0 I

]

, Λ

is equal to

Λ =





A + LoE 0 −(B + LoC
∗)

−E −A∗ − ELo C∗

C B∗ + CLo D



 .(13)

Similarity Transformation 2: Factorization

Since Lc is the stabilizing solution of (12) and
det(I − LcLo) 6= 0, the following self-adjoint
matrix is well defined:

Lco = Lc(I − LoLc)
−1 = (I − LcLo)

−1Lc = L∗

co.(14)

Moreover,

I + LoLco = (I − LoLc)
−1 and I + LcoLo = (I − LcLo)−1

are nonsingular. As a result, Lc can be represented
as

Lc = (I + LcoLo)
−1Lco = Lco(I + LoLco)

−1,

and the ARE (12) is equivalent to



[

−Lco I + LcoLo

]

Hz

[

I + LoLco

Lco

]

= 0, (15)

which can be expanded as the following equality
using (11):

Lco(A + LoE) + (A∗ + ELo)Lco + E = −

[LcoB + (I + LcoLo)C∗]D−1 [B∗Lco + C(I + LoLco)] .(16)

According to the assumptions, Λ does not have
any eigenvalue on the jω axis including ∞. As-
sume p is the number of the positive eigenvalues of
D and q is the number of the negative eigenvalues
of D, then the equation D∗

W Jp,qDW = D has an
invertible solution DW .

Carrying on another similarity transformation
[

I 0
Lco I

]

with respect to (13), then

————————

Λ =





A + LoE 0 B + LoC
∗

Lco(A + LoE) + (A∗ + ELo)Lco + E −A∗ − ELo C∗ + Lco(B + LoC
∗)

−C − (B∗ + CLo)Lco B∗ + CLo D∗

W Jp,qDW



 ,

where an additional similarity transformation

[

−I 0
0 I

]

is applied. Due to the equality (16), the above Λ

can be factorized as Λ = W∼ · Jp,q · W with

W
.
=

[

A + LoE B + LoC
∗

−J−1
p,q D−∗

W [B∗Lco + C(I + LoLco)] DW

]

.

Using (14), W can be simplified as given in Theorem 11. W is bistable because the A-matrix of W is
[

I −Lo

]

Hp

[

I

0

]

= A + LoE and the A-matrix of W−1 is

A + LoE + (B + LoC
∗)D−1

W J−1
p,q D−∗

W (B∗Lc + C)(I − LoLc)
−1

=
[

I −Lo

]

Hz

[

I

Lc

]

(I − LoLc)
−1

∼ (I − LoLc)
−1

[

I −Lo

]

Hz

[

I

Lc

]

= (I − LoLc)
−1

(

[

I −Lo

]

Hz

[

I

Lc

]

+ Lo

[

−Lc I
]

Hz

[

I

Lc

])

=
[

I 0
]

Hz

[

I

Lc

]

,

———————–

where the “∼” means “similar to” and the ARE
(12) has been used. W is indeed a J-spectral factor
of Λ.

Dually to Theorem 11, the following theorem
holds (with proof omitted):

Theorem 12. For a para-Hermitian matrix Λ char-
acterized in Theorem 4, assume that: (i) (A, R) is
stabilizable and R is sign definite; (ii) (Ez , Az) is
detectable and Ez is sign definite. Then the two
ARE

[

−Lc I
]

Hp

[

I

Lc

]

= 0

and

[

I −Lo

]

Hz

[

Lo

I

]

= 0

always have unique symmetric solutions Lc and

Lo, respectively, such that
[

I 0
]

Hp

[

I

Lc

]

and

[

I −Lo

]

Hz

[

I

0

]

are stable. In this case, Λ(s) has

a Jp,q-spectral factorization for some unique Jp,q

(where p is the number of the positive eigenvalues
of D and q is the number of the negative eigen-
values of D) if and only if det(I − LoLc) 6= 0.
If this condition is satisfied, then one J−spectral
co-factor is formulated as

W (s) =

[

A + RLc −(I − LoLc)−1(B + LoC∗)D−∗

W
Jp,q

B∗Lc + C DW

]

,

where DW is nonsingular and DW Jp,qD
∗

W = D.

5. CONCLUSIONS

A class of regular invertible para-Hermitian trans-
fer matrices is characterized and then the J-
spectral factorization of transfer matrices is stud-



ied. A transfer matrix Λ in this class admits a
J-spectral factorization if and only if there exists
a common nonsingular matrix to similarly trans-
form the A-matrices of Λ and Λ−1, resp., into
2×2 lower (upper, resp.) triangular block matrices
with the (1, 1)-block including all the stable modes
of Λ (Λ−1, resp.). The resulting J-spectral factor
is formulated in terms of the original realization
of Λ. When a transfer matrix meets additional
conditions, there exists a J-spectral factorization
if and only if a coupling condition related to the
stabilizing solutions of two ARE holds.
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APPENDIX: PROPERTIES OF
PROJECTIONS

For a given nonsingular matrix partitioned as
[

M N
]

, the projection P onto the subspace
Im M along the subspace Im N is

P =
[

M 0
] [

M N
]

−1

and the projection Q onto the subspace Im N

along the subspace Im M is

Q =
[

0 N
] [

M N
]

−1
=

[

N 0
] [

N M
]

−1
.

The following important properties hold:

(i) P + Q = I;

(ii) PQ = 0;

(iii) P 2 = P and Q2 = Q;

(iv) ImP = Im M ;

(v)
[

M 0
] [

M N
]

−1 [

M 0
]

=
[

M 0
]

and
[

0 N
] [

M N
]

−1 [

0 N
]

=
[

0 N
]

;

(vi)
[

M 0
] [

M N
]

−1 [

0 N
]

= 0.

When MT N = 0,

[

M N
]

−1
=

[

(MT M)−1MT

(NT N)−1NT

]

.

The projections reduce to

P = M(MT M)−1MT

and

Q = N(NT N)−1NT .

These two formulae can be easily found in the
literature.
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