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Abstract This paper characterizes a class of regular para-Hermitian transfer
matrices and then studies the J-spectral factorization of this class using similarity
transformations. A transfer matrix A in this class admits a J-spectral factorization
if and only if there exists a common nonsingular matrix to similarly transform the
A-matrices of A and A™!, resp., into 2 x 2 lower (upper, resp.) triangular block
matrices with the (1,1)-block including all the stable modes of A (A~!, resp.).
For a transfer matrix in a smaller subset, this nonsingular matrix is formulated
in terms of the stabilizing solutions of two algebraic Riccati equations. The J-
spectral factor is formulated in terms of the original realization of the transfer

matrix. Copyright© 2005 IFAC.
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1. INTRODUCTION

A J-spectral factorization is a factorization of a
para-Hermitian matrix into the form of W~ JW,
where W is bistable and J is a signature matrix.
It plays an important role in H,, control of finite-
dimensional systems [Francis, 1987, Green et al.,
1990, Green, 1992, Green and Limebeer, 1995] as
well as infinite-dimensional systems [Meinsma and
Zwart, 2000, Oostveen and Curtain, 1998, Iftime
and Zwart, 2002]. The necessary and sufficient
condition of the J-spectral factorization has been
well understood [Bart et al., 1979, Francis, 1987,
Green et al., 1990, Meinsma, 1995, Ran, 2003].
The J-spectral factorizations involved in the lit-
erature are done for matrices in the form G~ JG,
mostly with a stable G. For the case with an
unstable G, the following three steps can be used
to find the J-spectral factor of G~ JG, by applying
the results in [Meinsma, 1995, Corollary 3.1]:

J-spectral factorization, para-Hermitian transfer matrix, H..
control, algebraic Riccati equation (ARE)

(i) to find the modal factorization of A =
G~ JG;

(ii) to construct a stable G_ such that A =
G~ JG

(iii) to derive the J-spectral factor of GZJG_,
i.e., of GVJG.

For example, if A = G~JG (with G unstable) is
factorized as A = T + T~ with T stable, then

T
G = ﬁ* 7 | is stable! and A = G~JG_. Tt

)

can then be factorized by applying Theorem 2.4 in
[Meinsma, 1995]. However, at some cases, a para-
Hermitian transfer matrix A is given in the form of
a state-space realization and cannot be explicitly

written in the form G~ JG, e.g., in the context of

L For Z = T + T~ with a stable T, a stable G_ such that
Z = G~ JG- is as given above but not G_ = % ﬁt;
If the latter is the case, then Z should be factorized as
Z=3T+1T).




H, control of time-delay systems [Zhong, 2003a,
Meinsma et al., 2002]. In order to use the above-
mentioned results, one would have to find a G such
that A = G~ JG. It would be advantageous if this
step could be avoided.

A very recent parallel work in [Ran, 2003] has
dealt with this problem. A two-step procedure is
proposed to find the J-spectral factor in [Ran,
2003]: (i) to transform A into an ordered Schur
form; and then (ii) to solve an algebraic Riccati
equation (ARE) when there is a stabilizing solu-
tion. There is no need to find a stable G such
that A = G~ JG any more. The advantage of this
result is that the realization of A need not be
minimal or in the Hamiltonian structure (because
of the first step). This paper proposes a different
approach to deal with the problem. It only in-
volves very elementary mathematical tools, such
as similarity transformations, so that it is easy
to understand. The approach developed here has
been found crucial to solve the delay-type Nehari
problem [Zhong, 2003a,b].

A better literature review about this topic can
be found in [Ran, 2003, Green et al., 1990] and
the references therein. For a wider topic, the
symmetric factorization, see [Ran and Rodman,
1991] and the references therein.

Notation

Given a matrix A, A* denote the complex conju-
gate transpose and A™* stands for (A=1)* when
the inverse A~! exists. A transfer matrix G(s) =
D + C(sI — A)7'B is denoted as [é ZB;} and
its conjugate is defined as G~ (s) = [G(—s*)]* =

—A*|-C* I, 0 . .

[ o [ D } Ipg = {0 —Iq} is a signature
matrix and is reduced to J when p and ¢ are
obvious or irrelevant.

2. REGULAR PARA-HERMITIAN
TRANSFER MATRICES

Definition 1. [Kwakernaak, 2000] A transfer ma-
trix A(s) is called a pare-Hermitian matriz if

A~ (s) = A(s).

Definition 2. A transfer matrix W(s) is a J-
spectral factor of A(s) if W(s) is bistable and
A(s) = W™ (s)JW(s). Such a factorization of A(s)
is referred to as a J-spectral factorization.

Definition 3. A matrix W(s) is a J-spectral co-
factor of a matrix A(s) if W(s) is bistable and
A(s) = W(s)JW™(s). Such a factorization of A(s)
is referred to as a J-spectral cofactorization.

Theorem 4. A given square, minimal, rational
matrix A(s), having no poles or zeros on the jw-
axis including oo, is a para-Hermitian matrix if
and only if a minimal realization can be repre-

sented as
A R |—B
A=|—-E —A*|C* 1)

C B*|D
where D = D*, E = E* and R = R*.

PROOF. Sufficiency. It is obvious according to
Definition 1.

Necessity. Since A is a para-Hermitian matrix,
there must be D = D*. By assumption D is
invertible, then using similar arguments as in
[Francis, 1987, pp.90-91], A~! exists and can be
minimally realized as

A1 0 | By
ATl=] 0 —Ar|-Cy
C1 B} |D71

where (47, By, C1) is a stable minimal realiza-
tion. Hence,

A1 — B1DC, —-B1 DB} —B;
A= CTDC1 7(141 — B1DCl)* Cik (2)
Cy Bj | D

This matrix is in the form of (1) where E =
E* = —-CYDC; and R = R* = —B1DB}. This
completes the proof.

Remark 5. For the realization of A in (2), R = R*
is equal to —B1 D B}. However, this is not true for
the realization of A in (1), where R = R* is in
general not equal to —BDB*. Similar argument
applies to £ = E*.

A By
Denote T = [FJ}F}’ then the result pro-

posed in [Meinsma, 1995, Corollary 3.1] can be di-
rectly used. However, as explained before, this will
result in a J-spectral factor in terms of A, By, C
and D but not in terms of the original realization
in A, R, E, B, C and D. This is good enough
for numerical computation, but not enough for
further analysis, as in the case of [Zhong, 2003a].

In order to simplify later expositions, denote

A R
Hp = [E A*}’

KN A, R,
H: =1 g, _ar
|4 R -B| .
ol T I P B2 [CB}




3. J-SPECTRAL FACTORIZATION

Assume that a para-Hermitian matrix A as given
in (1) is minimal and has no poles or zeros
on the jw-axis including oo. There always exist
nonsingular matrices A, and A, (e.g. via Schur
decomposition) such that 2

_1 70
Ap HPAP = |9 Ay (3)
and
_ A_ 7
ATHA, = { 0 ?}, (4)

where A, is antistable and A_ is stable (A4 and
A_ have the same dimension as A).

Lemma 6. The A as described above has a Jj 4
spectral factorization for some unique J, , (where
p is the number of the positive eigenvalues of D
and ¢ is the number of the negative eigenvalues of
D) if and only if

s=laflaly] @

is nonsingular. If this condition is satisfied, then
a J—spectral factor is formulated as

[10] A 1H,A M [10]a {Cﬂ

Dy [ € B*]A“H Dw

W =

where Dy is nonsingular and D3y, Jp ,Dw = D.
PROOF. Formulae (3) and (4) mean that
0 0
g -5 1]

and

Hence, A, [(I)} and A, [(I)} span the antistable

eigenspace M of H, and the stable eigenspace
M* of H,, respectively. As is well known [Bart
et al., 1979, Francis, 1987, Green et al., 1990,
Meinsma, 1995, Ran, 2003], there exists a J-
spectral factorization iff M N M* = {0}, which is
equivalent to that the A given in (5) is nonsingu-
lar.

2 The elements denoted by “?” are irrelevant.

+(6)

When this condition holds, there exists a projec-
tion P onto M* along M. The projection matrix
P is given by (see Appendix for more details)

PAH?JAR (7)

So a J-spectral factor is (see e.g. [Ran, 2003])
PH,P ‘P hfﬂ
W =

(8)
JpqDy' [ C B* | P‘ Dyw

This realization is not minimal since the A-matrix
has the same dimension as Hj. Substitute (7) into
(8) and apply a similarity transformation with A,
then

W:

A-1PH,A H 8} ‘A—lP hfﬂ
P DA
JpaDi [C B ALY Dy

After removing the unobservable states by delet-
ing the second row and the second column, W
becomes

[T0]a-tPH,A {ﬂ ‘[1 o]Alp{_Cﬂ

W =
I ‘

JpaDy [C B* ] A Dw

0

Since [I 0] A™'P = [I 0] A~ W can be fur-
ther simplified as given in (6). This completes the
proof.

In general, A, # A,. However, these two can be
the same.

Theorem 7. Assume that a para-Hermitian ma-
trix A as given in (1) is minimal and has no
poles or zeros on the jw-axis including co. Then
A admits a J-spectral factorization if and only if
there exists a nonsingular matrix A such that

_ AP 0
A 1HpA: { 2 A?J (9)
and
1 A2 7
A

where A* and A” are stable, and A% and A% are
antistable. In this case, a J-spectral factor W is
given in (6).

PROOF. Sufficiency. It is obvious according to
Lemma 6. In this case, A, = A, = A. Necessity.
According to Lemma 6, if there exists a J-spectral



factorization then there does exist a nonsingular
A, as given in (5), which satisfies (9) and (10).

Since the A is the same as that in Lemma 6,
the J-spectral factor is the same as in (6). This
completes the proof.

Remark 8. The A-matrix of W is

[10]AT H,A [H = A”
and that of W1 is
I

(1 O]AlHZA{O

}:AZ_.

Remark 9. This theorem says that a J-spectral
factorization exists if and only if there exists a
common similarity transformation to transform
H, (H., resp.) into a 2 x 2 lower (upper, resp.)
triangular block matrix with the (1,1)-block in-
cluding all the stable modes of H, (H,, resp.).
Once the similarity transformation is done, a J-
spectral factor can be formulated according to (6).
If there is no such a similarity transformation,
then there is no J-spectral factorization.

Remark 10. The necessary and sufficient condi-
tions in this section do not depend on the real-
ization of A, which does not have to be in the
form (1). If A is not realized in this form, only
minor changes in formula (6) are needed.

4. THE CASE WITH A SMALLER SUBSET

In this section, a subset of the class of para-
Hermitian matrices characterized in Theorem 4
is considered.

Theorem 11. For a para-Hermitian matrix A char-
acterized in Theorem 4, assume that: (i) (E, A) is
detectable and FE is sign definite; (i) (4., R.) is
stabilizable and R, is sign definite. Then the two
ARE

[I —L, | H, LI =0 (11)
and
[fLCI]HZIf =0 (12)

always have unique symmetric solutions L, and

L., respectively, such that [I _Lo] H, [(I)} and

[I O] H, are stable. In this case, A(s) has

1
L.
a Jp q-spectral factorization for some unique J, 4
(where p is the number of the positive eigenvalues

of D and ¢ is the number of the negative eigenval-
ues of D) if and only if det(I — L,L.) # 0. If this
condition is satisfied, then one J—spectral factor
is formulated as

W= A+ LoE | B+ LoC*
| =Jp,gDy  (B*Le + C)I — LoLe)™'|  Dw ’

where Dy is nonsingular and D3y, Jp ,Dw = D.

PROOF. In this case, A, = ! 0} A, =

L.1|"7F
IL, | I L,
[0 I}andA—[Lc I

6, there exists a J-spectral factorization iff A is
nonsingular, i.e., det(I — L,L.) # 0. Substitute
A into (6) and apply a similarity transformation

with —(I — L,L.)~!, then

} . According to Lemma

[ —Lo | Hy LI w (I — LoLe)™t | B4 LoC*

L pr,qD;V*(C + B*Le)(I — LoLe) ™t Dw

[I—Lo}Hp{éw B+ LoC*

| —Jp,qDy/ (C+ B*Le) (I — LoLc)™ ! Dw

where the ARE (11) is used. This completes the
proof.

A different approach involving two similarity
transformations to derive the realization of W is
shown below.

Similarity Transformation 1: Stabilization
Since L, is the stabilizing solution of (11), after
applying a similarity transformation [(I) LIO }, A

is equal to
A+ L,E 0 —(B+ L,C*)
A= -F —-A*-FIL, Cc* .(13)
C B*+CL, | D

Similarity Transformation 2: Factorization

Since L. is the stabilizing solution of (12) and
det(I — L.L,) # 0, the following self-adjoint
matrix is well defined:

Leo=Lo(I — LoLo)™ = (I — LeLo) 'L = L, .(14)

Moreover,

I+ LoLeo= (I —LoLe)™' and I+ LeoLo= (I — LeLo) ™t

are nonsingular. As a result, L. can be represented
as

Lc == (I + LcoLo)icho = LCO(I + LoLco)ila

and the ARE (12) is equivalent to



I'+ LoLeo

[_Lco I+ LCOL()] H, |: Leo :| = 03 (15)

which can be expanded as the following equality
using (11):

Lco(A + LoE) + (A* + ELO)LCO +E=-

[LeoB 4+ (I 4+ LeoLo)C*] DY [B* Leo + C(I 4 LoLeo)](16)

According to the assumptions, A does not have
any eigenvalue on the jw axis including oco. As-
sume p is the number of the positive eigenvalues of
D and q is the number of the negative eigenvalues
of D, then the equation Dy, J, ,Dw = D has an
invertible solution Dyy.

Carrying on another similarity transformation

[LI (}} with respect to (13), then

A+ L,E 0 B+ L,C*
A= |Lo(A+ LoE)+ (A*+ ELy)Leo + E —A* — EL,|C* + Leo(B + L,C*) |
—C — (B* +CLy)Leo B*+CL, | Dy, JpDw

where an additional similarity transformation [ B

can be factorized as A =W~ - J, , - W with

A+ LE

0 (I)} is applied. Due to the equality (16), the above A

we|

|B+LOC*}

JpaDy [B*Leo + C(I + LoLeo)]|  Dw

Using (14), W can be simplified as given in Theorem 11. W is bistable because the A-matrix of W is

[I —L,| H, [é} = A+ L,E and the A-matrix of W' is
A+ LoE + (B+ LoC*)Dy} J, d Dy (B*Le + C) (I — LoLe) ™
_ I —1
=[I-L,|H. [L} (I — LoL,)

~(I—LoL)™ " [I —L,| H. [

= (I - LoL.)™ ! ([I —Lo | H.

:[zo]HZ[H,

C

77

where the “~” means “similar to” and the ARE
(12) has been used. W is indeed a J-spectral factor
of A.

Dually to Theorem 11, the following theorem
holds (with proof omitted):

Theorem 12. For a para-Hermitian matrix A char-
acterized in Theorem 4, assume that: (i) (A, R) is
stabilizable and R is sign definite; (ii) (E,, A,) is
detectable and F, is sign definite. Then the two
ARE

and

always have unique symmetric solutions L. and

L,, respectively, such that [I 0] H, {I{ } and

[I fLo] H, are stable. In this case, A(s) has

I

0
a Jp q-spectral factorization for some unique J, 4
(where p is the number of the positive eigenvalues
of D and ¢ is the number of the negative eigen-
values of D) if and only if det(I — L,L.) # 0.
If this condition is satisfied, then one J—spectral
co-factor is formulated as

A+ RL. |=(I = LoLe)™ (B + LoC*) Dy Jp.q
B*L.+C| Dy

W(s) =

where Dy is nonsingular and Dw J, Dy = D.

5. CONCLUSIONS

A class of regular invertible para-Hermitian trans-
fer matrices is characterized and then the J-
spectral factorization of transfer matrices is stud-



ied. A transfer matrix A in this class admits a
J-spectral factorization if and only if there exists
a common nonsingular matrix to similarly trans-
form the A-matrices of A and A~!, resp., into
2x 2 lower (upper, resp.) triangular block matrices
with the (1 1)-block including all the stable modes
of A (A=!, resp.). The resulting J-spectral factor
is formulated in terms of the original realization
of A. When a transfer matrix meets additional
conditions, there exists a J-spectral factorization
if and only if a coupling condition related to the
stabilizing solutions of two ARE holds.
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APPENDIX: PROPERTIES OF
PROJECTIONS

For a given nonsingular matrix partitioned as
[M N], the projection P onto the subspace
Im M along the subspace Im N is

P=[MO][MN]"

and the projection ) onto the subspace Im N
along the subspace Im M is

-1 -1

Q=[0ON][MN] =[NO|[N M]

The following important properties hold:

) P+Q=1I

(H)PQ—O

(iii) P2 = P and Q? = Q;

(iv) Im P = Im M;

(v) [Mo}[MN}‘l[Mo} = [M0] and
[0 N][M N]T [0 N]=[o0N];

(v

) (0] [ N] 7 [oN] =0,
When MTN =0,

-1 (MTM “IpT
[MN] :|:(NTN))1NT:|~

The projections reduce to

P=MM"M)"tMT

and

Q=N(NTN)"INT,

These two formulae can be easily found in the
literature.
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