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Abstract: The property of losslessness, embraced by systems characterized by
paraunitary matrices is crucial in robust design and numerical analysis of such
systems. Here the paraunitary constraint is imposed on the bivariate polynomial
matrix factorization algorithm of Guiver and Bose (1982), and an atomic factor-
ization problem is formulated to relate the existing results and get new results.
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1. INTRODUCTION

Passivity and losslessness properties of systems
are central to state-space and transform domain
realizations of control and signal processing sys-
tems. When endowed with such properties, the
relevant system does not amplify noise introduced
at any point in the system. Such systems (loss-
less, passive) can be made robust to parameter
variations as well. The most elementary expres-
sion for losslessness is the rotation matrix, which
is the building block for more general classes of
matrices or operators called isometric, unitary
and inner. In electrical circuit theory, Kirchhoff
circuits consist of a variety of basic elements,
which need not be linear or constant. If an element
such as an inductance is nonlinear and explicitly
time-dependent and is to be characterized as be-
ing lossless, its defining relationship must have
a specific form. Representational forms occur in
generalizations to multiport coupled inductances
and the the conditions for equivalence of such
representations have been recently investigated
(Bose and Fettweis, 2004). Kirchhoff circuits can

serve as reference circuits for wave digital filters,
numerical integration of ordinary as well as partial
differential equations (imposition of passivity and,
specifically, losslessness constraints are important
here) that characterize a wide spectrum of physi-
cal phenomena (Bilbao, 2004).

2. PARAUNITARINESS

The term paraunitary (and the associated term
para-Hermitian) occurred first in the realizabil-
ity theory of continuous time electrical networks
(Koga, 1968). The restrictions of passivity and/or
losslessness on linear, lumped, time-invariant,
solvable multiports are known to yield useful
properties of the characterizing matrices whose
elements are real rational functions in the complex
variable p. Denoting the Hurwitz conjugate of the
(m x m) matrix H(p) by H(—p), H(p) is parau-
nitary provided its inverse is the Hurwitz conju-
gate transpose i.e. H(p)HT (—p) = I,,. Clearly,
a paraunitary matrix is unitary for p = jw, i.e.
when p has a zero real-valued component. The



result extends to multivariate networks when the
vector variable p £ (p1,pa,...,pn) replaces p.
Further, if a real rational matrix W (p) satisfies
W(p) + WT(—=p) = O, then W(p) is called a
reactance matrix. Therefore, if W (p) is a reac-
tance matrix, then its Cayley transform (Bose and
Fettweis, 2004),

H(p) = (Im = W(@))Im + W (p)) ™"
= (Im + W(P)) ™" (Im — W (p))

is a paraunitary matrix i.e.
H(p)H"(—p) = H' (-p)H(p) = In

which characterizes a lossless multidimensional
multiport. It is noted that a nonrational matrix
can be paraunitary e.g. a matrix whose diagonal
entries are e~ !/P. Note that the inverse of (I, +
W (p)) exists for the hypothesized networks.

The discrete-time counterparts of a (m x m) real
rational paraunitary matrix A(z) and a lossless
matrix B(z) are, respectively,

A(R)AT (271 = AT(zHAR) = I,
B(z™Y = —BT(2)

When the coefficients are complex-valued, the
transpose superscript is replaced by the hermitian
conjugate or complex conjugate transpose. The
multidimensional generalizations for the preced-
ing two expressions are, respectively,

A@)AT(z7Y) = AT (27 V) A(z) = I,,,,
B(z™') = —B”(2)
where the complex vector variable

z2(21,2,...,2,) and

—1é(

-1 -1 -1
z 21325 seenZn )

Again, the Cayley transform of such a discrete
domain reactance matrix B(z) is a discrete do-
main paraunitary matrix. Here, only polynomial
matrices are of interest. Such a matrix whose
highest degree in indeterminate z; (or z; in ring
Klz; bzt .27 ) is di, i = 1,2,...,n has a

McMillan degree (di,da, - - -, dy,).

3. MULTIDIMENSIONAL FILTER BANK
REALIZATION

Any univariate (m x m) FIR paraunitary matrix
can be factored into a product of (McMillan) de-
gree one (m x m) paraunitary building blocks and
an additional unitary matrix (Gao et al., 2001).
The situation is different in the multivariate case.
A bivariate (2 x 2) FIR paraunitary matrix , of
degree (2,2), for example may not be factorable
as a product of lower degree paraunitary matrices
(Park, 2001). These and higher order paraunitary
matrix results are viewed in the setting of general
linear group GL,,(R) over the ring R.

The basic structure used in the realization of
biorthogonal and the more restricted orthonormal
filter banks are, respectively, the ladder and the
lattice structures. The biorthogonal filter bank re-
alization problem involves the study of GE,,(R),
the group generated by (m x m) elementary ma-
trices. Cohn (Cohn, 1966) studied, in particular,
rings R for which GE;(R) = GLy(R) and called
such a ring GE, for which every (2 x 2) invertible
matrix is a product of elementary (2 x 2) matrices.
He further showed that the ring of polynomials
K|[z1,22,...,2,] in the indeterminates z1,..., 2,
with coefficients in a field K is not a GE; ring for
n > 2 (Cohn, 1966).

The basic building blocks in the two-channel filter
bank ladder topology are

] L]

where ri12,791 € R, and diagonal matrices con-
taining units of R. In the case of ladder structure
of an n-channel filter bank, the factorization of
an analysis polyphase matrix as a finite product
of elementary matrices H;;(r) € GLy,(R) (where
entries of H;;(r) are identical to those in the
identity matrix I, except for the off-diagonal
entry 7 € R in the i** row and j** column) is
needed. By Cohn’s counterexample, this is not
possible in general, for the two-channel case, but
by Suslin’s later result (Bose, 2003)[p. 177] is
always possible in the m-channel (m > 2) case
when R = K[z1,22,...,2n]

Orthonormal filter banks, characterized by parau-
nitary matrices, are special cases of biorthogonal
filter banks. In the 2-channel case, they are real-
izable as a cascade of basic building blocks. When
R = K|z, 4], atomic factorizations of lowest
order may not be possible (Park, 2001). Note that
a filter bank that is realizable with the ladder
topology is realizable with the lattice topology,
when m = 2, but not vice-versa. Orthonormal, like
biorthogonal filter banks, are realizable and im-
plementable when R = K{z1, 22, ..., 2], though
a canonic configuration may not be feasible for
the m-channel case, m > 2.

4. PROBLEM

Only for the sake of brevity, attention is restricted
to the field R of reals. A square matrix A(z1,22) €
R™*M[2y, 25] is paraunitary provided

A(zlaz2)AT(’zl—1>Z2—1) =1I,

where I, is the identity matrix of order m.
Therefore,

det A(zy,22) = +2; M2y 2

where [1,l2 are integers. The problems are:



P1 to decompose A(z1,22) as a product of lower
degree “atomic” paraunitary matrices, where
an atomic paraunitary matrix cannot be decom-
posed any further and

P2 parameterize, if possible, the atomic matrices
in such a way that filter bank realization is
facilitated (when m = 2, for example, it is well
known that a univariate paraunitary matrix can
be factored as a cascade of degree one lattices).

According to the procedure of Guiver and Bose
(Guiver and Bose, 1982), a nonsingular matrix
F(z1,22) € Q™*™[21, 23], where @ is an arbitrary
but fixed field, whose determinant has the irre-
ducible factorization

det.F'zl,zQ

Hfz 21722

can constructively be factored as

F(z1,22) HF 21, 22),

det Fi(z1,22) = fi(zl,zz),

through, importantly, computations only in the
base field @Q,where Fj(z1,22) € Q™*™|[z1,22] is
an atomic factor of F(z1,z22). This factorization
is unique upto unimodular orthogonal matrices.
With the imposition of the paraunitary constraint
on F(z,22), the application of the Guiver-Bose
algorithm may not yield all paraunitary factors
F;(z1,22), for ¢ = 1,2,...,k. The question then
becomes if an atomic factorization involving only
paraunitary factors is obtainable from the initial
factorization.

It is well known that in the univariate case, the
parametrization,

I—I(I—v1

[

F1=-z71)

for the unit norm vectors v; is complete. The
parameterized family of counterexample in (Park,
2001) implies that the set of products of non-
commutative degree 1 atomic factors in [[,(I —
vivi(1— z:1 1) and [T,(I —wiuf (1-2,1)) (Where
v;’s and u;’s are unit norm vectors) is not com-
plete.

5. NEW RESULTS

Lannes and Bose (Lannes and Bose, 2005) have
arrived at a constructive factorization procedure
for a polynomial paraunitary matrix as a product
of atomic paraunitary matrices, each of lowest
degree. The generic form of these paraunitary
factors results from the use of projection matrices.
In the univariate case each factor is of degree
1. In the multivariate case the generic factor
is constructed based on the assumption of its
existence .

5.1 Projection operator on the image of a singular
matrizc

M, (K) denotes the space of square matrices of
size m taking its coeflicients over a field K. Like-
wise, My, (K) is the space of n x m rectangular
matrices. Here the fileld K will denote either R
or C. Let M be a singular matrix of M, (K)(or
not of full rank in M,,,,(K)) of rank r < n. The
image of M forms a subspace W of K™. There
is a bounded linear map P satisfying P? = P
from K™ onto W and P is called a projection
operator (Goldberg, 1966).The columns of P are
the projections of the standard basis vectors and
W is the image of P. Form T' = M M™*, where
M* is the hermitian conjugate of M. Note that
T is a self-adjoint operator and Im(T) = Im(M).
Now, define the characteristic polynomial associ-
ated with T, as xr(z). M, and hence T, being
of rank r implies hat yz(z) = ("7 Q(z), where

Q(0) # 0. Then % is the projection operator

on T’s kernel and P = I — % is the projection
operator on T’s image. A square matrix P is an
orthogonal projection matrix iff P2 = P = P*,
where P* denotes the adjoint of the matrix P.
In particular, for all matrices A and B such that

Im(A) C Im(M) and Im(B) C Im(M)*
PA=A , PB=0

5.2 Complete solution in the multichannel univariate

case

Theorem 1. If P is the projection matrix associ-
ated with Ag, then P+ (I—P)z lisa paraunltary
left factor of the paraunitary matrix A(z~1).

The proof of this theorem can be found in
(Lannes, 2004), (Lannes and Bose, 2005). A simi-
lar type of projection operator has been indepen-
dently used about the same time in (Hardin et
al., 2004)[p. 379] . This leads to a very simple
and powerful factorization procedure for all 1D
paraunitary matrices, by iteratively repeating this
factor extraction step, until the remaining matrix
is a polynomial paraunitary matrix of degree one.

5.8 Extension to the multivariate case

The factorization algorithm presented in the pre-
vious section can be extended to the factoriza-
tion of non-separable multivariate matrices when
such a factorization exists. Indeed, as shown
by Park (Park, 2001) the complete factorization
into paraunitary matrices is not always possible,
even if a general factorization exist (Guiver and
Bose, 1982), (Bose, 2003) . If the paraunitary fac-
torization exists, it can be obtained from Guiver



and Bose’s factorization algorithm (Guiver and
Bose, 1982), (Bose, 2003) by the introduction of
well-chosen unitary matrices in between the fac-
tors. But one can also again directly apply the pro-
jection operator factorization. The condition for
which the factorization is possible emerges rather
quickly from the algorithm and it is interesting
to notice that it comes back to the same condi-
tion necessary to convert the Guiver and Bose’s
factorization into a paraunitary factorization.For
details and examples, see (Lannes, 2004).

6. CONCLUSIONS

A projection operator provides a mechanism for
extracting atomic paraunitary polynomial matrix
factors from a polynomial paraunitary matirix.
In the univariate case, this procedure is sim-
pler than existing procedures (P.P.Vaidyanathan,
1993), where the corresponding projection matrix
is restricted to be of rank 1 and is difficult to
construct. It is conjectured that there exists at
least one bivariate (and multivariate) polynomial
paraunitary matrix of arbitrary but fixed McMil-
lan degree that is an atomic (irreducible) factor.
Therefore, there cannot be a canonic realization
structures like the cascade of lattices (in the 1-D
two channel case) for the 2-D two channel case.
The procedure here is quite different from other
attempts made to factor multivariate paraunitary
matrices including the recent one in (Delgosha and
Fekri, 2004), where the rational matrix case (IIR)
was also considered. Due to the use of nonsquare
bivariate polynomial matrices in signal processing
and control, the role of paraunitariness in such a
setting needs to be investigated.
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