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Abstract: In this paper, we develop a finite horizon model predictive control
algorithm which is robust to model uncertainties. A moving average system
matrix is constructed to capture model uncertainties and facilitate future output
predictions. The paper is focused on step tracking control. Using linear matrix
inequality techniques, the design is converted into a semi-definite optimization
problem. Closed-loop stability is treated by adding extra terminal cost constraints.
The simulation results demonstrate that the approach can be useful for practical
applications. Copyright c©2005 IFAC
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INTRODUCTION

Since the first version of model predictive con-
trol (MPC), known as dynamic matrix control
(DMC), was published in 1978, various MPC al-
gorithms have been developed. However, the per-
formance and stability of MPC controllers are
greatly dependent on the accuracy of process
models. To overcome such a limitation, Kothare
and co-workers established a comprehensive infi-
nite horizon robust model predictive control (IH-
RMPC) algorithm (Kothare et al., 1996), which
is superior in closed-loop stability, in 1996, and
since then, IH-RMPC has drawn considerable at-
tention (Rodrigues and Odloak, 2003; Wan and
Kothare, 2003; Hu and Linnemann, 2002). Despite
its popularity, the fixed infinite horizon reduces
the tuning freedom of MPC schemes, and origi-
nates a potential problem — feasibility.

In this paper, we will focus on the finite hori-
zon robust MPC (FH-RMPC) problem, namely,

setting both the prediction horizon and control
horizon as finite integers, still remains open. This
is due to two obstacles: (1) It is difficult to perform
state predictions if there exist uncertain terms in
the state space matrices, specially in the matrix
A of the linear discrete state space model; (2)
robust stability is another barrier in FH-RMPC
study (Mayne et al., 2000). In this paper, a
moving average system matrix, capturing model
uncertainties, is constructed, and extra terminal
cost constraints in the form of LMIs for closed-
loop stability are imposed in the FH-RMPC for-
mulation. Based on a property of linear matrix
inequalities of uncertain matrix terms (Ghaout
and Lebret, 1997; Löfberg, 2001), the FH-RMPC
formulation is finally recast into a semi-definite
optimization problem.

1. NOMINAL MPC USING LMIS

Consider a nominal model,



x (k + 1) = Ax (k) + Bu (k) ,

y (k) = Cx (k) + Du (k) , (1)

where x ∈ Rn is the state vector, u ∈ Rm is the
input vector and y ∈ Rq is the output vector. A,
B, C and D are constant system matrices with
compatible dimensions. To obtain step tracking
control, the objective function is defined as

J =
Np−1∑

i=1

‖r − y (k + i|k)‖2Q +
Nu−1∑

i=0

‖u (k + i|k)‖2R

+ ‖r − y (k + Np|k)‖2QNp
, (2)

where r is the given reference signal, u (·|k) , y (·|k)
are the predicted input and output signals over
the control horizon and prediction horizon start-
ing at instant k, and Q, R and QNp

are output,
input and terminal positive semi-definite weight-
ings. Both Np and Nu are integers, which repre-
sent the prediction horizon and control horizon,
respectively. The norms in J are defined as

‖r − y (k + i|k)‖2Q = (r − y (k + i|k))T

Q (r − y (k + i|k)) ,

similarly for the other ones. Based on the model
in (1), the predicted states, x (k + i|k) can be
calculated by:

Aix (k) + Ai−1Bu (k|k) + · · ·+ Bu (k + i− 1|k) ,
(3)

where u (k + i|k) ≡ u (k + Nu − 1|k) if Nu <
i ≤ Np. Rewrite the objective function in (2)
into the augmented matrix form described in
(Maciejowski, 2002)

J = ‖(T − Y (k))‖2Q + ‖U (k)‖2R , (4)

where the augmented vectors are defined as fol-
lows

U (k) =
[
uT (k|k) · · · uT (k + Nu − 1|k)

]T
,

Y (k) =
[
yT (k + 1|k) · · · yT (k + Np|k)

]T
,

T =
[
rT · · · rT

]T
; (5)

the augmented weightings are

Q = diag
(
Q, · · · , Q, QNp

)
, R = diag (R, · · · , R) .

(6)
Inserting the predicted states in (3) into (1) ,
setting i = 1 to i = Np iteratively, and then
utilizing the augmented vectors and weightings in
(5) and (6), the predicted output sequence Y (k)
can be also expressed in the term of the state
measurement x (k) , i.e.,

Y (k) = C (Ax (k) + BU (k)) +DU (k) , (7)

where
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Fig. 1. Framework of the FH-RMPC system

A =
[
AT · · · (

ANu
)T · · · (

ANp
)T

]T

,

B =




B 0 · · · 0
...

...
...

...
ANu−1B ANu−2B · · · B

...
...

...
...

ANp−1B ANp−2B · · · ANp−NuB+
· · ·+ B




,

C =




C · · · 0
...

. . .
...

0 · · · C


 , and D =




0 D · · · 0
...

...
. . .

...
0 0 · · · D
...

...
...

...
0 · · · 0 D




.

(8)
Substituting (7) into (4), taking advantage of an
auxiliary positive scalar t, and applying Schur
complements, the nominal MPC controller can be
solved by minimizing a linear objective function,
i.e.,

Jo = min
t, U(k)

t,

subject to
t > 0,




t (T − (CAx (k)+ UT (k)
(CB +D)U (k)))T

∗ Q−1 0
∗ ∗ R−1


 ≥ 0, (9)

where the symbol “∗” indicates symmetric terms
in the matrix, and x (k) is the state measurement
at instant k.

2. FH-RMPC

How to configure a system framework to represent
the influence of model uncertainties on controller
design as well as facilitate state/output predic-
tions, is the key point in the FH-RMPC synthesis.

2.1 Framework for model uncertainties

Fig. 1 shows the framework adopted by this paper.
It is composed of the nominal model paralleling
the model uncertainty block, and in the form
of input to state, and then to output. In Fig. 1,



∆k stands for the model uncertainties over the
prediction horizon starting at instant k, i.e.,

∆k=




∆k (k, k) · · · 0
...

. . .
...

∆k (k + Np, k) · · · ∆k (k + Np, k + Np)


 ,

(10)
with ‖∆k‖ = σ̄ (∆k) ≤ 1, i.e., the maximal
singular value of ∆k is less than 1. W and P are
weighting matrices. To simplify the FH-RMPC
formulation, we assume that C is known precisely,
x (k), the state measurement at instant k, is fully
measurable, and the predicted state values are
independent of the previous model uncertainties
due to the monotonicity of the prediction horizon.
Taking advantage of such an assumption, the
controller design may be significantly simplified.

2.2 FH-RMPC formulation

Based on the uncertainty block defined in (10), we
do the state predictions. The key point is exploit-
ing the monotonicity of the prediction horizon,
say, at every prediction horizon starting at instant
k, predictions are independent of the previous
horizon uncertainty block ∆k−1.

The nominal model is given by

x̄ (k + i + 1|k) = Ax̄ (k + i|k) + Bu (k + i|k) ,
(11)

where x̄ (·) denotes the nominal value, correspond-
ing to the real state x (·), and the uncertain term
δ (k) caused by model uncertainties can be com-
puted from

δ (k + i|k) =
k+i∑

j=k

∆̂ (k + i, j)u (j|k) , (12)

where the uncertainty matrix ∆̂ is defined, for
convenience, as

∆̂ = P∆kW.

From (11) and (12), we can derive the real state
space model for state/output predictions,

x (k + 1 + i|k) = Ax (k + i|k) + Bu (k + i|k)

+
k+1+i∑

j=k

∆̂ (k + 1 + i, j)u (j|k)

−A

k+i∑

j=k

∆̂ (k + i, j) u (j|k) , (13)

y (k + i|k) = Cx (k + i|k) + Du (k + i|k) .

(14)

Without loss of generality, the uncertainty block
∆k is presumed strictly causal, i.e., it is lower
triangular matrix with the identical zero diagonal.
Consequently, ∆̂ (k, k) = 0 because weightings P

and W are block diagonal matrices. From (13),
the predicted state x (k + i|k) can be calculated
by:

Aix (k) + Ai−1Bu (k|k) + · · ·+ Bu (k + i− 1|k)

+
k+i∑

j=k

∆̂ (k + i, j)u (j|k) , (15)

where u (k + i|k) ≡ u (k + Nu − 1|k) if Nu ≤ i ≤
Np. In the same fashion of state predictions in
nominal MPC schemes, the above predicted states
and outputs can be represented in the form of
augmented matrices,

X (k) =Ax (k) + BU (k) + MlP∆kWMrU (k) ,

Y (k) = CX (k) +DU (k) , (16)

where constant matrices Ml and Mr are defined
as the left- and right-multipliers of the uncertainty
block ∆̂,

Ml =




0 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 0 · · · I


 , and Mr =




I 0 0 0
...

. . .
...

...
0 · · · I 0
0 · · · 0 I
...

. . .
...

...
0 · · · 0 I




,

(17)
and X (k) is for the augmented, predicted state
vector,

X (k) =
[
xT (k + 1|k) · · · xT (k + Np|k)

]T
.

Therefore, the approach to the nominal MPC
scheme for step tracking control, could be ex-
tended into FH-RMPC cases:

The finite horizon robust MPC system can be
represented by its corresponding nominal model
in parallel with a weighed unity-norm uncertainty
block. Based on such a framework, robust step
tracking control, say, step tracking in the presence
of model uncertainties, can be achieved by solving
a robust semi-definite optimization problem (if so-
lutions exist) whose constraints contain uncertain
matrix terms:

Jo = min
t, U(k)

t, (18)

subject to
t > 0,

max
∆k

J ≤ t (with ‖∆k‖ = σ̄ (∆k) ≤ 1) ,

J = ‖T − Y (k)‖Q + ‖U (k)‖R ,

X (k) =Ax (k) + BU (k) + MlP∆kWMrU (k) ,

Y (k) = CX (k) +DU (k) . (19)



2.3 FH-RMPC using LMIs

Due to the presence of model uncertainties,
Eq. (19) comprises the uncertain terms of ∆k.
Therefore, we cannot apply Schur complements
directly, and use existing software packages to
solve it numerically. In order to overcome such
a barrier, we first introduce the following Lemma:

Lemma 1. (Ghaout and Lebret, 1997; Löfberg,
2001) Let T1 = TT

1 , and T2, T3, T4 be real matrices
of appropriate sizes. Then det (I − T4∆) 6= 0 and

T1 + T2∆(I − T4∆)−1
T3+

TT
3 (I − T4∆)−T ∆T TT

2 ≥ 0 (20)

for every ∆, ‖∆‖ = σ̄ (∆) ≤ 1, if and only if
‖T4‖ < 1 and there exists a scalar τ ≥ 0 such
that

[
T1 − τT2T

T
2 TT

3 − τT2T
T
4

T3 − τT4T
T
2 τ

(
I − T4T

T
4

)
]
≥ 0.

Theorem 2. The robust step tracking performance
for the MPC system in Fig. 1 is achievable if
the following semi-definite optimization problem
is solvable:

Jo = min
t, U(k), τ

t,

subject to
t > 0, τ ≥ 0,

and



t (T − CAx (k)− UT (k) (WMrU (k))T

(CB +D)U (k))T

∗ Q−1− 0 0
τCMlP (CMlP )T

∗ ∗ R−1 0
∗ ∗ ∗ τI




≥ 0,

(21)
where I is an identity matrix. The augmented
reference input T, predicted input sequence U (k)
and weighting matrices Q, R, are defined in (5)
and (6) . The constant augmented matrices A, B,
C, D, and left-, right- matrices Ml, Mr of the
uncertainty block ∆k in Fig. 1 are introduced in
(8) and (17).

PROOF. Applying Schur complements and rewrit-
ing constraints in (19), we have




t (T − CAx (k)− UT (k)
(CB +D)U (k))T

−(CMlP∆kWMrU (k))T

∗ Q−1 0
∗ ∗ R−1



≥ 0.

(22)
Separating the certain and uncertain terms of (22)
and defining

T1 =




t (T − CAx (k)− UT (k)
(CB +D)U (k))T

∗ Q−1 0
∗ ∗ R−1


 ,

T2 =




0
−CMlP

0


 , T3 =

[
WMrU (k) 0 0

]
,

and T4 = 0. (23)

Now that (22) is equivalently rewritten into the
form of (20), Theorem 2 is then proved. ¤

3. TERMINAL COST CONSTRAINTS

In 1988, Keerthi and Gilbert first proposed a
method which employed the objective function of
MPC system as a Lyapunov function to solve the
nominal stability problem (Keerthi and Gilbert,
1988). In this paper, we will employ a similar idea
and develop terminal cost constraints to guarantee
robust stability of FH-RMPC systems.

3.1 LMIs for terminal cost constraints

In order to analyze closed-loop stability, we pre-
sume that the reference input r is equal to zero.
Then the objective function J in (19) can be
rewritten as:

J =
Np−1∑

j=1

‖x (k + j|k)‖2Q′ + ‖u (k + j|k)‖2R

+ ‖x̂ (k + Np|k)‖2Q′
Np

, (24)

where

Q′ = C ′QC and Q′
Np

= C ′QNpC.

Without loss of generality, here we set Np =
Nu, otherwise we can enforce the terminal input
u (k + Nu − 1|k) = 0 to resume the following
derivation.

Consider a quadratic function

V (x) = xT Φx, Φ > 0, (25)

satisfying

V (x (k + i + 1|k))− V (x (k + i|k)) <

−
(
‖x (k + i|k)‖2Q′ + ‖u (k + i|k)‖2R

)
. (26)

Summing (26) from i = 0 to i = Np, we get

V (x (k + Np|k))− V (x (k)) <

−J − ‖x (k)‖2Q′ + ‖x (k + Np|k)‖2Q′
Np

.



In the sequel, we will employ V (x (k)) as a Lya-
punov function, satisfying

V (x (k)) > ‖x (k)‖2Q′ − ‖x (k + Np|k)‖2Q′
Np

+V (x (k + Np|k)) + t, (27)

where t is the upper bound of the cost J defined
in (19). Then if Ṽ (k) : Rn → R, the difference
of Lyapunov functions of x (k + 1) and x (k) , is
decreasing, i.e.,

Ṽ (k) : = V (x (k + 1))− V (x (k))

< ‖x (k + 1)‖2Φ − t− ‖x (k)‖2Q′ +

‖x (k + Np|k)‖2Q′
Np

− ‖x (k + Np|k)‖2Φ
< 0, (28)

closed-loop asymptotic stability of the resulting
FH-RMPC system can be guaranteed. From (15) ,
it can be seen that

x (k + 1) =
(
A + BFk + ∆̂ (k + 1, k) Fk

)
x (k) ,

(29)
where Fk is defined as a feedback gain satisfying
u (k|k) = Fkx (k) . Then, introduce two constant
matrices E1 and E2 such that

∆̂ (k + 1, k) = E1∆̂E2 = E1MlP∆kWMrE2,
(30)

where

E1 =
[
0 I 0 · · · 0

]
, and E2 =

[
I 0 · · · 0

]T
.

Inserting (29) and (30) into (28) , we get

∥∥∥
(
A + BFk + ∆̂ (k + 1, k)Fk

)
x (k)

∥∥∥
2

Φ
−

‖x (k)‖2Q′ − t + ‖x (k + Np|k)‖2(
Q′

Np
−Φ

) < 0 .

(31)

So if the following two inequalities

−
∥∥∥
(
A + BFk + ∆̂ (k + 1, k) Fk

)
x (k)

∥∥∥
Φ

+ ‖x (k)‖2Q′ + t > 0, (32)

Φ−Q′
Np
≥ 0, (33)

hold simultaneously, we can guarantee the condi-
tion in (31). Applying Schur complements and the
property of robust LMIs (Lemma 1 ), (32) is recast
into:




xT (k)Q′x (k) + t ∗ ∗
(A + BFk) x (k) X − λ1E1MlP ∗

(E1MlP )T

WMrE2Fkx (k) 0 λ1I


 > 0,

(34)
where X = Φ−1 and λ1 is a positive scalar. Then
left- and right-multiplying X to both sides of
inequality (33) and defining a small positive scale

κ which is selected to satisfy the invertibility of(
Q′Np

+ κI
)
, we have

X −X
(
Q′

Np
+ κI

)
X ≥ 0 (35)

It is obvious that if κ → 0, (35) is equivalent to
(33) . Apply Schur complements to Eq. (35) and
derive [

X X

X
(
Q′Np

+ κI
)−1

]
≥ 0. (36)

Combined with (36) , (34) forms a sufficient con-
dition to (28), which is designed for asymptotical
stability of the closed-loop FH-RMPC system.

Moreover, in order to use V (x (k)) as a Lyapunov
function candidate, in the sequel, we will manage
to derive another LMI to guarantee (27). To this
end, taking advantage of the condition in (33) , we
can derive a sufficient condition to (27),

‖x (k)‖2QNp
− t−‖x (k)‖2Q′ −‖x (k + Np|k)‖2Φ > 0.

(37)
From (15) , x (k + Np|k) is expressed as:

x (k + Np|k) = ANpx (k) + E3BU (k)

+E3MlP∆kWMrU (k) , (38)

where E3 =
[
0 · · · 0 0 I

]
. Therefore, applying

Schur complements and using the property of
robust LMIs, (37) is equivalent to




xT (k)Q′
Np

x (k)− ∗ ∗
xT (k) Q′x (k)− t

ANpx (k) + E3BU (k) X − λ2E3MlP ∗
(E3MlP )T

WMrU (k) 0 λ2I




> 0,

(39)
where λ2 is a positive scalar.

Theorem 3. To achieve step tracking performance
for the FH-RMPC system defined in Fig. 1,
the state feedback matrix Fk in the control law
u (k|k) = Fkx (k) , k > 0, can be obtained by min-
imizing the upper bound of the objective function
J in (19) , i.e., solving the following optimization
problem:

Jo = min
U(k), Fk

t,

subject to (21) , (34) , (36) and (39), where X, λ1

and λ2 are variables of LMIs for terminal cost
constraints. The closed-loop system is guaran-
teed asymptotically stable if the optimal input
sequence Uo (k) does exist.

4. SIMULATION EXAMPLE

Consider a classical angular positioning system,
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Fig. 2. IH-RMPC controller and FH-RMPC con-
trollers.[

x1 (k + 1)
x2 (k + 1)

]
=

[
1 0.1
0 1− 0.1α

]
x (k) +

[
0

0.787

]
u (k) ,

y (k) =
[
1 0

]
x (k) , (40)

where α ∈ [0.1, 10] is the uncertain term. Based
on approaches discussed in (Kothare et al., 1996),
an IH-RMPC controller for the model uncertain-
ties in the form of the structured feedback loop
and two FH-RMPC controllers, are first designed.
Comparing control results, it can be seen that FH-
RMPC controllers have better tracking perfor-
mance and smaller overshoot of the optimal input
sequences (Fig. 2). Here the tuning parameters
are selected as: r = 1, Q = I, QNp = I, R =
0.00002I, P = I, Nu = 3 and W = 0.1. The
simulation length equals to 50. For the simulations
presented in Fig. 2, α = 0.7.

Fig. 3 demonstrates the influence of the imposed
terminal cost constraints on the system perfor-
mance with the different terminal weighting QNp .
Here we set α = 0.9, Np = 3 and Nu = 3. In
the figures, solid lines are derived from Theorem
2, and dash-dotted lines from Theorem 3.

5. CONCLUSION

In this paper, we have discussed finite horizon ro-
bust model predictive control (FH-RMPC) prob-
lems. Two topics were covered: how to achieve ro-
bust step tracking control based on an FH-RMPC
scheme, and the closed-loop stability analysis of
the resulting FH-RMPC system. Taking advan-
tage of the property of robust LMIs, whose con-
straints have uncertainty terms, the conventional
min-max problem was converted into a standard
semi-definite optimization problem. Comparing
with the infinite horizon model predictive control,
FH-RMPC has more tuning freedom, better con-
trol performance, and faster online implementa-
tion.
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Fig. 3. Influence of terminal cost constraints with
terminal weightings.
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Löfberg, J. (2001). Minimax mpc for systems with
uncertain input gain — revisited. Technical
report. Automatic Control Group in Link
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