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Abstract: A highly nonlinear system of acoustic and optical oscillations in a complex
crystalline lattice consisting of two sublattices is analyzed. The system is obtained as
a generalization of the linear Carman–Born–Kun Huang theory. Large displacements of
atoms up to structure stability loss and restructuring are admitted. It is shown that the
system has nontrivial solutions describing movements of fronts, emergence of periodic
structures and defects. Strong interaction of acoustic and optical modes of oscillations
for media without center of symmetry, energy exchange between modes and excitation
of the optical mode by means of torque applied to the ends of the lattice (rod) are
examined. Control algorithm based on speed-gradient method is proposed. Simulation
results demonstrate that application of control may allow to eliminate or reduce influence
of initial conditionsCopyright c© 2005 IFAC.
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1. INTRODUCTION

Properties of complex oscillatory systems such as
atomic lattices are determined by interaction of large
number of degrees of freedom. Studying such prop-
erties as structure and phase transitions, formation of
defects, shock waves and others requires considera-
tion of strongly nonlinear phenomena. Some nonlinear
effects may arise spontaneously and can be studied
based on free oscillations theory. However, purposeful
changes of the crystal state demand for development
of the methods of controlling its properties, particu-
larly, control of its nonlinear oscillations.

In the first part of the paper (Secs. 2–4) appropriate
models of complex crystalline lattice are developed
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and their nonlinear dynamics are analyzed. In the
second part (Sec. 5) application of nonlinear control
methods to analysis of complex crystalline lattice is
made.

2. MODELING INTERACTION OF ACOUSTIC
AND OPTICAL MODES

In (Aero, 2002) the following system of equations
describing interaction of acoustic and optical modes in
a nonlinear continuum model of crystal without center
of symmetry is proposed:

ρÜi = cikjuk,j + λikjmUk,jm;

(.)k,j → ∂(.)k/∂xj ; (.)k,jn → ∂2(.)k/∂xj∂xn (1)

µüi = − ∂Φ
∂ui

− ckijuk,j + κikjmuk,jm. (2)

HereUi(x1, x2, x3, t), ui(x1, x2, x3, t) are unknown
functions describing components of displacements



due to acoustic and optical modes in crystal, corre-
spondingly. The vectorUi(xj , t) represents displace-
ment of the center of inertia of each elementary cell
(pair of atoms), while the vectorui(xj , t) represents
mutual displacement for pair of atoms within the el-
ementary cell of relative displacement of sublattices.
Hereafter the following standard notations are used:
repeated indices assume summation, upper dot stands
for the time derivative, spatial derivatives are denoted
by means of comma in the indices as it is shown in (1).
The coefficientscijk, c̄ijk, κikjm, λikjm are the com-
ponents of the tensors describing elastic properties of
the lattice. They possess a certain symmetry under
permutation of indices, (Aero, 2002). The nonlinear-
ities in the system are specified by the scalar energy
functionΦ(ui), describing interaction of atoms in an
elementary cell. It also reflects internal translational
symmetry in a complex lattice – relative displacement
of sublattices for a period or for an integer number of
periods does not imply change of the complex lattice
structure. In a more general case the functionΦ(u i)
may be replaced by another vector periodic function
of the argumentu. Note that using approximationΦ ≈
uiui, Eqs. (1), (2) are transformed into a continuum
analog of the well known linear Carman–Born–Kun
Huang model, (Born and Huang Kun, 1998). In the
case of media with center of symmetry the second
spatial derivatives appear instead of the first ones in
both equations, see (Aero, 2002).

The system (1), (2) possesses the conservation law
with the following energy integral:

E =
∫
Ω

(1
2
(
ρU̇iU̇i + µu̇iu̇i + λikjmUk,jUi,m

+ κikjmuk,jui,m

)
+ cikjukUi,j + c̄ikjukui,j + Φ

)
d3x. (3)

In the expression (3) the symmetries under permu-
tation of indices for material tensors are taken into
account.

The existence of a single integral of motion is not suf-
ficient for describing general solutions behavior when
t → ∞. However, it becomes possible after introduc-
ing dissipative terms in Eqs. (1), (2) proportional to
the first time derivatives. Since the system energy is
bounded from below for small values of the coupling
c between modes, it is possible to justify existence and
uniqueness of the system solutions for allt > 0 and
their convergence to the stationary solutions of Eqs.
(1), (2).

3. EQUILIBRIUM SOLUTIONS OF THE
ONE-MODE SYSTEM

It seems not possible to describe all the equilibrium
solution in general case. At first only equilibrium

solutions for the one-mode system (1), (2) will be
considered. Such solutions are determined from the
equations

cφx+λUxx = 0, −Φ′(φ)−cUx+κφxx =0. (4)

The system will be studied on the interval(0, l) with
zero Dirichlet boundary conditions at the ends of the
interval. EliminatingU by means of the first equation
we obtain

κφxx = Φ′(φ)+A(φ)−c2λ−1φ,

φ(0)=φ(l)=0, (5)

whereA is linear averaging operator

A = c2λ−1l−1

l∫
0

φdx.

Below only the most interesting and physically natural
caseΦ′ = −a sinφ with a > 0 will be studied. For
c = 0 the problem (5) is well studied (Molotkov and
Vakulenko, 1988). For everya it has a finite number of
equilibriaN(a), depending ona. For small values ofa
only the trivial equilibrium exists. Whena grows, new
nontrivial equilibrium solutions emerge, bifurcating
from the zero solution for somea = an. The first
solution has the form of arch and does not have any
roots. The second one has only one root, the third one
has two roots, etc. Fora ∈ (

an, an+1

)
there exist

2n+ 1 solutions: one trivial and2n nontrivial ones of
the form±φk(x), k = 0, 1, . . . , n−1, where everyφk

has exactlyk zeros. According to the result of (Born
and Huang Kun, 1998), all the nonzero equilibria
are hyberbolic, i.e. the corresponding operator of the
linearized system does not possess zero eigenvalue.
The bifurcation valuesan are easy to calculate: for
l = π they are equal ton2.

It is easy to show by means of standard perturbation
theory that the above results concerning the number
of solutions hold for smallc. Obviously, the results
do not hold for sufficiently largec, since the energy
of the system is not bounded from below. It can be
interpreted from physics point of view as an instability
arising from interaction of optical and acoustic modes.
The bifurcation pointsan(c) can be easily calculated
for small c. Assumingλ = π, κ = 1 without loss of
generality, we obtain

an(c) = n2 + c2λ−1

(
−1 + 2

(1 − (−1)n

πn

)2
)

Let us turn to analysis of the casex ∈ ( − ∞,∞)
and consider the existence problem for the travelling
solutions of shock wave type.

4. SOME DYNAMIC PROBLEMS

Let us study some special solutions to the problem.
Let only one component of u and only one component



(x or y) ofU be distinct from zero and all the solutions
depend on only one coordinatex = x1 and on timet.

After adding dissipative terms containing first time
derivatives Eqs. (1), (2) take the following form:

ρÜ + ρ1U̇ = cu,x + λU,xx,

u,x = ∂u/∂x, U,xx = ∂2U/∂x2 (6)

µü+ µ1u̇ = −a sinu− cU,x + κu,xx. (7)

If ρ1 = µ1 = 0 then the system (6), (7) possesses the
conservation law with the following energy integral:

E =
∫
Ω

(1
2
(
ρU̇2 + µu̇2 + λU2

,x + κu2
,x

)

+ cUu,x + a(1 − cosu)
)
d3x. (8)

If c = 0 then the system into to independent equations:
the equation for optical mode turn into a nonlinear
wave equation while dynamics of acoustical mode are
described by a linear equation.

4.1 Shock waves as 1D kinks

Consider a kink-like solution of the system (6), (7)
defined on the whole real axis:x ∈ (−∞,∞). Such
a solution (shock wave) according to (Maslov and
Omelyanov, 1981), has two distinct limitsu+ andu−
for x → ∞. It tends to its limits with an exponential
rate. Such properties are typical for many nonlinear
hyperbolic and parabolic equations, (Molotkov and
Vakulenko, 1988). Besides, in the absence of the dis-
sipative terms there is usually a whole family of kink
solutions, depending on their propagation rateV . In
the presence of dissipation for typical simple bistable
(unlike periodic ones) nonlinearities the propagation
rateV may take values only from some discrete set.

If cε̃ is small, it is possible to construct asymptotic
solutions describing perturbed solutions of such a
type by means of a standard procedure, (Maslov and
Omelyanov, 1981; Molotkov and Vakulenko, 1988).
Let a solution be represented by the asymptotic series

φ=σ0(z)+εσ1(z, τ)+. . . , z=x−V t−q(τ), (9)

U = εU0(z) + ε2U1(z, t) + . . . , τ = ε2t (10)

where the leading termσ0 = σ(x − V t) is a kink
solution of Eq. (7) withε = 0, q = 0. The function
U0 is determined from the equation

(ρV 2 − λ)U0
,zz − V ρ1U

0
,z = σ0

,z. (11)

It is easy to show that Eq. (11) has a bounded solution
which time derivative exponentially decreases when
z → ∞ and has the following form

U0
,z(z) = exp(az)

z∫
+∞

exp(−as)σ0(s) ds. (12)

The kink coordinate is determined by a functionq(τ),
satisfying equation

µM
d2q

dτ2
+ µ1M

dq

dτ
=

∞∫
−∞

U0
,zσ

0
,z dz, (13)

whereM is a “mass” of a kink which is equal to∫ ∞
−∞ U0

,zσ
0
,z dz. In the beginning the kink moves with

a varying speed depending on parametersρ1, ρ, λ,
µ1, V . In the limit t → ∞ the speed of the kink
approaches its steady-state value.

4.2 Free nonlinear oscillations

Consider the initial-boundary problem for Eqs. (6), (7)
on the bounded interval0 ≤ x ≤ h with the initial
conditions

U(χ, 0) = U0(χ), u(χ, 0) = u0(χ),
∂U/∂τ(χ, 0) = V (χ), (14)

∂u/∂τ(χ, 0) = ν(χ), χ = x/h, (15)

and the boundary conditions

(A1U +B1∂U/∂χ)(0, t) = F1(t),
(a1U + b1∂u/∂χ)(0, t) = f1(t),
(A2U +B2∂U/∂χ)(0, t) = F2(t),
(a2U + b2∂u/∂χ)(0, t) = f2(t), (16)

In Fig. 1 the numerical solution of the system (6), (7)
is shown for the case when at the initial timet = 0
a triangular distribution of the acoustic displacements
U(χ) (dashed line), zero optical displacementsu(χ)
(dashed line) and zero velocities of both variables.
Zero values of both functions are also given in the
ends of the interval(0, 1). In fact, in the initial time
instantt = 0 the deformations (2ε = U,x) are given
that have opposite signs in the left and right parts
(domains) of the interval. Sharp boundary between
domains is interpreted as a defect. The evolution of
the deformations for several values of the finite time
t = T1 is shown with solid lines.

Simulations demonstrate strong interaction of the os-
cillation modes. An inherent structureu(χ) emerges
in the form of two domains of opposite signs (bold
solid line). It means appearance of the two phases with
different values of the order parameter+u and−u.

A strong dependence of the system motion on initial
conditions and, certainly, on the coefficients of the
equations is observed. To eliminate dependence on
initial conditions an approach of control theory is
applied in the next section.

5. CONTROL OF NONLINEAR OSCILLATIONS

Application of the control methods allows to elim-
inate dependence of solutions on initial conditions.



Fig. 1. Free evolution of optical and acoustic modes.

Besides, it allows to create purposeful energy ex-
change between modes leading to the rebuilding of
the lattice structure and to phase transitions. The
control goal may correspond to either excitation or
to suppression of specific oscillation modes. Let us
study the possibility of the optical mode excitation by
means of changing the torque applied to the ends of
the rod (undimensional lattice) according to a feed-
back mechanism. To design appropriate feedback the
speed-gradient method, (Fradkov, 1979; Fradkov and
Pogromsky, 1998) will be employed.

5.1 Speed-gradient method

A number of feedback design methods are based on
reduction of the current value of some goal (objective)
functionQ

(
x(t), t

)
. The current valueQ

(
x(t), t

)
may

reflect the distance between the current statex(t) and
the current point of the goal trajectoryx∗(t), such as

Q(x, t) =
∣∣x − x∗(t)

∣∣2, or the distance between the
current state and the goal surfaceh(x) = 0, such as
Q(x) =

∣∣h(x)|2, or the value of some characteristic
of the system dynamics that is desirable to diminish.
For continuous-time systems the valueQ(x) does
not depend directly on controlu and decreasing the
value of the speedQ̇(x) = ∂Q/∂xF (x, u) can be
posed as immediate control goal instead of decreasing
Q(x). This is the basic idea of the speed-gradient (SG)
method, proposed by Fradkov (1979), where a change
in the controlu occurs along the gradient inu of the
speedQ̇(x). The general SG algorithm has the form

u = −Ψ
(∇uQ̇(x, u)

)
(17)

where Ψ(z) is vector-function forming acute angle
with its argumentz. For affine controlled systems
ẋ = f(x) + g(x)u algorithm (17) is simplified to:

u = −Ψ
(
g(x)T∇Q(x)

)
(18)

Special cases of (17) are the proportional SG-algorithm

u = −Γ∇uQ̇(x, u), (19)

whereΓ is a positive-definite matrix, and the relay SG-
algorithm

u = −Γ sign
(
∇uQ̇(x, u)

)
. (20)

Another version of the SG-algorithm is its differential
form

u = −Γ∇uQ̇(x, u). (21)

Justification of the SG-method is based on a Lyapunov
functionV decreasing along trajectories of the closed-
loop system. The Lyapunov function is constructed
from the goal function:V (x) = Q(x) for finite
form algorithms andV (x, u) = Q(x) + 0.5(u −
u∗)T Γ−1(u−u∗) for differential form algorithm (21),
whereu∗ is the desired (ideal) value of the control
vector.

5.2 Control law design

Suppose that the bending torque applied to the ends
of the rod is considered as the control action. It is
assumed that the torque applied to the left end is bal-
anced by the torque applied to the right end, i.e. com-
pression force is identically zero. Then the boundary
conditions 16 readF1 = F2 = 0, f1(t) = −f2(t) =
f , wheref is the control variable. Let the control goal
be formulated as increase of the optical mode energy
E. According to the speed-gradient method the goal
functionQ should be introduced such that achieve-
ment of the control goal corresponds to maximization
of the goal function. In this case the kinetic component
K of the energy can be chosen as the goal function, i.e
Q = K, where

K = (hs/2)
n∑

i=1

u̇2
i . (22)

According to the speed-gradient method, the asymp-
totic maximization of the functional (22) can be
achieved by choice of the controlling action which
sign coincides with the sign of the speed-gradient (gra-
dient of the speed of changingQ along the solutions
of the system)

f = −R
(
∇fQ̇(x, f)

)
(23)

where x is the state vector (function) of the controlled
system (6), (7),f is the vector of controlling variables,
R is a vector-function forming an acute angle with
its argument, e.g. multiplying by a positive factor or
taking sign of each component of the vector argument.

For the sake of simplicity the problem is discretized
by means of replacing the first and second derivatives
in the system equations (6), (7) and in the expression
for the energy (3) by their finite differences as follows:
(ui+1−ui)/h; (ui+1−ui)/T ; (ui+1−2ui+ui−1)/h2;
(ui+1 − 2ui + ui−1)/T 2.

Direct calculation yields the following form of the
speed-gradient function:

ψ =
(
1/h

)(
u̇1/a1 − u̇n/an

)
(24)

Therefore the control algorithm for excitation of the
optical mode may have e.g. the “relay” form

f = γ sign
(
u̇1/a1 − u̇n/an

)
(25)



Numerical results are obtained for the oscillations ex-
citation in the discrete version of the system consisting
of n = 50 atoms. The following constants in the
equations are chosen:ρ = 0.9, ρ1 = 0, µ = 2.5,
µ1 = 1, c = 5, a = 1.5, λ = κ = 1, A1 = A2 = 1,
a1 = a2 = 1,B1 = B2 = b1 = b2 = 0.

The control algorithmf = 0.5 sign
(
u̇1/a1 − u̇n/a2

)
is used. In Fig. 2 the shapes of the acoustic modeU(χ)
and the optical modeu(χ) are shown for timet = 15.
In the initial time t = 0 both functions are equal
to zero. The evolution of the energy of the modes is
shown in Fig. 3. It is seen that the effect of control
leads to a strong excitation of the optical mode.

Fig. 2. Controlled excitation of optical mode.

Fig. 3. Evolution of energy of the modes in the con-
trolled system.

An important question in crystalline lattices dynamics
is sencitivity to changes of initial conditions. A num-
ber of simulations have been performed to examine
dependence of limit energy of modes on the initial
conditions. Figure 4 shows the results for two differ-
ent triangular functionsU(χ) like in Fig. 1. At the
initial time t = 0 zero optical displacementsu(χ),
U(χ)|χ=0.5 = 1 (line a) andU(χ)|χ=0.5 = 10 (line
b) are taken. Initial velocities of both variables are
zeroized. It is seen that changes of initial displacement
in order of magnitude leads in3÷5% changes of limit
energy of each mode.

6. NONFEEDBACK CONTROL

For study of microscopic systems the problem of
physical realization of control arises. The main dif-
ficulty is to implement the feedback exploiting mea-
surements of microscopic phase variables deflections.
To solve an analogous problem in the area of molec-
ular and quantum control (Brown and Kocarev, 2000;

Fig. 4. Dependence of energy of the modes on the
initial conditions in the controlled system.

Laser control, 2001; Fradkov, 2003) the idea of using
program (feedforward, nonfeedback) control was pro-
posed. In our case the idea is to first calculate control-
ling actionf(t) as a function of time during simulation
of the system with feedback algorithm (25). Then the
precalculated functionf(t) is applied to the physical
system during experiment. At the second stage neither
measurements nor feedback is used.

Fig. 5. Dependence of energy of the modes on the
initial conditions in the nonfeedback system.

To analyse efficiency of such an approach the simu-
lation of the system with nonfeedback control action
was performed. The results are shown in Fig. 5. Initial
conditions were chosen same as for feedback control,
both for calculation of program controlf(t) and for
its testing. It is seen that nonfeedback control designed
using the proposed method the result is quantitatively
the same as with feedback algorithm (25) (cf. Fig. 4).

7. CONCLUSIONS

A new nonlinear dynamical theory of crystalline bod-
ies has been proposed describing movements of fronts,
emergence of periodic structures and defects, energy



exchange between modes. It also allows to describe
other complex phenomena such as cardinal rebuild-
ing of the body structure, including phase transitions
of martencite type and others. The role of the or-
der parameter is played by the inherent displacement
u(x, y, z) depending on coordinates.

An important result of the paper is demonstration of
the possibility of purposeful excitation of the optical
mode by means of torque applied to the ends of the
lattice (rod) in a broad range of initial conditions on
the steady-state oscillations. It means that application
of control may allow to eliminate or reduce influence
of initial conditions.

Another conclusion is based on the well-known fact
that static strains (deformations) influence phase state
of smart materials. It implies that application of con-
trol of energy exchange between macroscopic defor-
mation and microscopic degrees of freedom may al-
low to control dynamics of phase transitions and, par-
ticularly, effect of the memory shape which is charac-
teristic for smart materials.
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