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1. INTRODUCTION 

 
Theoretical work on identification for control has 
shown that it is not always necessary to have 
a precise model of the system to design a good 
controller, even in the case of complex industrial 
processes. The important point is that this model 
should capture the essential dynamical characteristics 
that are important for control (e.g. Schrama, 1992; 
Åström, 1993). These ideas have led to the 
development of iterative schemes with separate 
stages of closed-loop identification and model based 
control design, and consequently to iterative 
feedback tuning methodology (Gevers, 2002; 
Hjalmarsson, 2002) which is now frequently used for 
optimization of parameters of any restricted 
complexity controller. 
 
This contribution presents a modification of 
an iterative method for closed-loop identification and 
control design that arose from the above mentioned 
theoretical background. The method is based on 
a suitable way of plant-parametrization, also referred 
to as the dual Youla-Kucera parametrization 
(e.g. Anderson, 1998), and the modification (Gazdos, 
2004) enables simple on-line identification and 
control of a class of symmetric MIMO systems; 

moreover, unlike the original algorithm, which uses 
separate stages of off-line closed-loop identification 
and subsequent model-based control design, the 
modification represents a true adaptive control 
scheme. 
 
The aim of this work is to present the methodology 
together with conditions for its successful usage and 
show some results when controlling a two-input/two-
output nonlinear system, namely a coupled drives 
apparatus. The first part of the contribution 
introduces both the original and the modified 
algorithm. 
 
 

2. THEORETICAL BACKGROUND 
 
Consider the closed-loop set-up presented by Figure 
1 where P  denotes a plant to be controlled and C  is 
a corresponding controller. The input and output 
dimensions are given by ( )ty , ( ) nt ∈1r  and ( )tu , 

( ) mt ∈2r  where y  represents the controlled output 
and u  the control input. External signals 1r , 2r  can 
be either reference signals or external disturbances 
uncorrelated to each other and to a noise signal n . 



 

     

 
 
Fig. 1. Closed-loop set-up. 
 
Let the plant give rise to a linear time-invariant 
transfer function matrix P  and let C  be also a linear 
time-invariant transfer function matrix of 
a controller. Further, let both P  and C  have right 
and left coprime factorizations as follows: 
 
 1 1− −= ⋅ = ⋅P N D D N  (1) 
 
 1 1− −= ⋅ = ⋅C C C CC N D D N  (2) 
 
where , , ,C CN D N D  denote matrices of the right 
matrix fractions whereas , , ,C CN D N D  describe the 
left counterparts. All matrices are with elements in 

PSℜ , the ring of proper and stable transfer functions, 
which helps to handle situations of unstable plants 
and/or controllers. The presented feedback system 
will be stable if and only if (Vidyasagar, 1985) 
the so-called double Bezout identity holds: 
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The relation expresses both coprimeness of the 
matrices involved and internal stability of the 
feedback loop of Figure 1. This concept offers a tool 
for finding all plants that are stabilized by a given 
controller – in addition, expressed using a single 
parameter. The methodology, known as the dual 
Youla-Kucera parametrization, can be exploited for 
an iterative approach to closed-loop identification 
and control design as presented in the next part. 
 
 

3. METHODOLOGY 
 
First, the original ideas and algorithm are presented, 
followed by the developed modification. 
 
 
3.1 Original idea and algorithm 
 
Consider the closed-loop system of Figure 1 and 
suppose that a nominal plant-model (1) stabilized by 
the controller (2) is available and that the double 
Bezout identity (3) holds; then, the set of all plant 
models stabilized by the controller is given as: 
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where R  is a free parameter of PSℜ  that satisfies 

non-singularity of ( )− ⋅CD N R  and ( )− ⋅ CD R N  
(for proof, see e.g. Vidyasagar, 1985). This result can 
be used for closed-loop identification (e.g. Hansen, 

1989; Schrama, 1991, Tay, et al., 1989). When 
a plant-model is chosen in the form of (4), using 
e.g. the left coprime factorization, then a noise 
contaminated closed-loop can be alternatively 
formed according to Figure 2. 
 

 
 
Fig. 2. Alternative closed-loop configuration. 
 

In this set-up, the key idea is to identify the free 
parameter R  using signals x  and z  rather than 
identifying all coefficients of the plant-model. This is 
an “open-loop-like” identification problem, 
i.e. identification of this parameter is not dependent 
on the noise contribution of the data. From the figure 
above, it is possible to derive following relations 
defining and relating the auxiliary signals x  and z : 
 
 = ⋅ + ⋅ = ⋅ + ⋅C C C 1 C 2x D u N y N r D r  (5) 
 
 = ⋅ − ⋅z D y N u  (6) 
 

 ( )= ⋅ + − ⋅ ⋅Cz R x D R N n  (7) 
 
The last equation reveals that the parameter R  can 
be identified using the signals x  and z  which can 
be reconstructed from the data through (5)-(6). The 
estimated parameter, in fact, represents discrepancy 
between the actual plant and a nominal model. A nice 
property of this approach is that, as a result of the 
dual Youla-Kucera parametrization, the identified 
model is guaranteed to be stabilized by the current 
controller. A drawback represents the fact that the 
order of the resultant plant model is not simply 
tunable due to the required re-parametrization 
according to (4). 
 
Practical implementation of the concept above leads 
to an iterative scheme consisting of a sequence of 
identification and model-based control design steps 
and it can be formed as follows: let there be 
a nominal model MP  of the plant stabilized by 
a controller C . Denoting iC  the controller used to 
regulate the control input into the plant during 

thi  iteration step, the following algorithm can be 
prepared: 
• step 1: perform an experiment on the closed-loop 

system of Figure 1 using the controller 1i−C  and 
external signals ( )t1r , ( )t2r  and collect the 

experimental data set { }, , ,1 2r r u y  of a length N ; 

• step 2: generate the auxiliary signals ( )tx , ( )tz  

employing knowledge of the controller 1i−C , of 
the nominal model 1i−

MP  and the input-output 
data record { },u y  according to (5)-(6); 



 

     

• step 3: identify the parameter R  from the 
equation (7) using the constructed signals 

( )tx , ( )tz  and a least-squares algorithm with 
e.g. an output-error model structure; 

• step 4: compute a new plant-model which 
replaces the nominal one using rel. (4) and if 
necessary, apply an order-reduction technique; 

• step 5: design a new controller iC  using the 
Bezout equation (3) and continue by step 1 with 

iC . 
 

Note that both signals x  and z , due to the algebraic 
framework which employs PSℜ -description, 
represent stably-filtered quantities u  and y . Hence, 
the signal z  can be interpreted as a stably filtered 
equation error. As a result, in practice, if this signal 
is close to zero (which results in coefficients of the 
parameter R  to be also close to zero), it is possible 
to state that the plant model represents a good 
approximation of the real plant. This is exploited for 
monitoring the iterations - if R  is close to zero, 
the procedure is stopped. 
 
 
3.2 Modification for a class of symmetric systems 
 
The modification, originally considered in the work 
of Gazdos (2004), is focused on systems with the 
same number of input and output signals. It is based 
on the idea of choosing the identified matrix 
parameter R  as simply as a diagonal matrix with 
constant elements, i.e. in the continuous-time form: 
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This choice offers significant simplification of the 
identification process and consequently, it enables 
recasting the original iterative algorithm into a true 
adaptive control scheme. Here, the idea is to perform 
the process of identification on-line, i.e. in real-time. 
Having the actual measurements of ( ) ( ){ },t tu y  
with a nominal model and a controller at our 
disposal, it is possible to generate the signals ( )tx , 

( )tz  continuously as stable filtration of 

( ) ( ){ },t tu y  according to (5)-(6). As a result, 
the parameter R  can directly be identified from the 
filtered signals. Having it in the simple form of (8), it 
is possible to compute R -coefficients continuously 
from the equation (7) (provided that the noise 
contribution is neglected) without the need for using 
a least squares algorithm. The computation can be as 
simple as: 
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The division should be of course done cautiously and 
only if elements of the signal x  differ from the zero 
value, which is monitored. Then R -coefficients, 
computed in each discrete-time step according to (9), 
are considered identified when they stabilize, 
i.e. the period of updating plant-model’s and 
controller’s coefficients is irregular - after settling of 
the identification process. The procedure of settling 
is monitored by the standard deviation of the 
identified coefficients: if any of them has the 
standard deviation under a certain level within 
a given number of discrete-time steps, then 
adaptation of corresponding plant-model’s and 
controller’s coefficients is performed. The process of 
adaptation is controlled by the values of 
R -coefficients – each channel of the controlled 
MIMO system is being adapted until the 
corresponding coefficient of the parameter R  is 
close to zero; then, adaptation of relevant 
plant-model’s and controller’s coefficients is stopped 
and starts again only if there is a significant 
difference between the model and the real plant in 
the given channel, i.e. when the identified coefficient 
exceeds a given threshold. Details of the 
methodology can be found in the work of Gazdos 
(2004). One of the issues addressed in the thesis was 
whether such simple structure of the estimated 
parameter (8) is able to capture unknowness of the 
plant and under what conditions the process of 
identification stabilizes to enable adaptation. 
The obtained results can be summarized into the 
following points: 
 

• nominal-model’s structure must be comparable to 
the plant’s structure;  

 

•  initial estimates of plant-model coefficients play 
an important role only for unstable and nonlinear 
plants. Then it is necessary to guess 
approximately at least gains and time-constants of 
the system. Apart from this, for unstable plants, 
it is advisable to pre-suppose the instability and 
this holds also for a negative gain or 
non-minimum-phase systems; 

 

• convergence of the algorithm, particularly when 
controlling unstable or strongly-nonlinear plants, 
depends on an order-reduction technique applied 
after re-parametrization of a model. Therefore, 
it is advisable to employ an adequate 
order-reduction technique when one has a priori 
knowledge of possible instability or nonlinearity. 

 
Taking into account these facts, the presented 
simplification makes sense and leads to a more 
transparent process of identification and control than 
would offer a classical adaptive scheme with 
recursive identification. Then, the introduced 
algorithm enables to identify a whole MIMO plant 
using only few coefficients in a simple way with 
independent identification and adaptation of each 
channel of the system. Nevertheless, one has to keep 
in mind the recommendations above. 
 



 

     

4. CASE STUDY 
 
The proposed method was tested by a carefully 
selected series of simulation and real-time 
experiments. One series of the experiments was 
performed using a product of TecQuipment Inc., 
the CE108 Coupled Drives Apparatus displayed in 
Figure 3. 
 

 
 
Fig. 3. The CE108 Coupled Drives Apparatus. 
 
The system relates to industrial material transport 
problems as they occur in magnetic tape drives, 
textile machines, paper mills, strip metal production 
plants, etc. where the material is processed in 
continuous lengths, it is transported through work 
stations by drive systems and the material speed and 
tension have to be controlled within defined limits at 
all times. 
 
 
4.1 Plant description 
 
A scheme of the controlled system is sketched in 
Figure 4. 
 

 
 
Fig. 4. Scheme of a coupled drives system. 

It has two drive motors (Motor 1 and Motor 2). 
These drives operate together to control the speed of 
a continuous flexible belt that goes round pulleys on 
the drive motor shafts and so called jockey pulley. 
The jockey pulley is mounted on a swinging arm that 
is supported by a spring. The deflection of the arm is 
a measure of the tension in the drive belt. The pulley 
and arm assembly represents a work station where 
material that the belt represents can be processed. 
The control problem is to regulate the belt speed and 
tension by varying the motor torques. 
 
The coupled drive apparatus is designed to have 
characteristics seen in industrial drives, but it is not 
any particular industrial application – it is a prototype 
for all industrial coupled drive applications. Detailed 
description of the system together with derivation of 
a mathematical model can be found e.g. in the work 
of Wellstead (1979).  
 
 
4.2 Plant characteristics 
 
For purposes of an experiment, the system is 
interpreted as a multivariable plant with interacting 
inputs and outputs where the coupling is given by the 
fact that both motors change both outputs (due to the 
drive belt). Static properties as they were measured 
are provided by next two graphs. Figure 5 shows 
a scaled final value of the first controlled variable – 
the pulley speed yω  when applied various torques of 
the motors expressed by power supply in voltages 
(0-10V correspond to 0-3000 t/min.). 
 

 
 
Fig. 5. Static characteristics – pulley speed yω . 
 
As can be seen, the surface is quite smooth when 
speed of both motors does not differentiate much. 
When there is a significant difference between 
torques of the motors, the system starts to oscillate 
(the belt slips) and becomes nearly unstable. 
The second graph – Figure 6 demonstrates how the 
scaled tension in the belt xy  varies for different 
speed of the motors. Apparently, there is a smaller 
area where the system behaves well and conversely, 
there is a stronger possibility of oscillatory behaviour 
and instability. 



 

     

 
 

Fig. 6. Static characteristics – tension in the belt xy . 
 
 

4.3 Experimental conditions 
 

Real-time measurements were performed using the 
Advantech MultiLab Analog and Digital I/O card 
PCL-812PG and MATLAB®/SIMULINK® 

environment with the help of Real Time Toolbox. 
The algorithm was discretized using the concept of 
δ -models (e.g. Middleton and Goodwin, 1990) 
enabling high-frequency sampling without risking 
possible instability of obtained models. Both 
controlled outputs yω , xy  were filtered using 
discrete-time filters of the form (10) and a sampling 
interval was set to 0 0.05secT = . 
 

 
( ) ( )

1 1
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As the plant to be controlled represents 
a two-input/two-output system, the estimated 
parameter R  was chosen in the form of (11). 
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A nominal plant-model was derived from the 
linearized model of the system and controller design 
methodology was based on the pole-assignment 
technique. The resultant closed-loop system had one 
double pole iα  for each channel and they were 

placed at: [ ] [ ]1 2, 3, 1α α= = − −α . Variables 
controlling the adaptation process were tuned to have 
these values: 1 0.005ε = , 20Rn =  and 2 0.02ε = , 
where Rn  is a number of sampled-data of 
R -coefficients to compute the standard deviation, 

1ε  stands for the threshold for deciding whether the 
coefficients are stable or not and 2ε  denotes the level 
for switching off/on the adaptation process 
(see section 3.2 for details).   
 
 

4.4 Results and discussion 
 

Control response for the setting described in the 
previous section is displayed in Figure 7 where the 
controlled variables yω , xy  were scaled to match the 
form presented by the graphs of static characteristics. 

 
 

Fig. 7. Plant output and control input responses. 
 

The figure shows stable and smooth control response 
with only minor over/under-shoots and minimal 
coupling. The identification record, as presented by 
Figure 8, where the adaptation points are indicated 
by circles, reveals that both identified coefficients 
soon settle near the zero value changing considerably 
only as a response to a change in an operating point 
of either one or the other controlled variable. This 
fact means that the model approximates soon the real 
plant well, adapting quickly to the new operating 
conditions.  

 
 

Fig. 8. Identified coefficients of the parameter R . 
 
A response to disturbances is demonstrated by 
Figure 9. During the experiment, transient 
disturbances acting on both control input 1u  and 
controlled output xy  (at approx. times 60t =  and 
120sec.  respectively) were applied in order to test 
sensitivity of the method to disturbance signals. 
The figure shows that the method is able to cope with 
both disturbances. While disturbance acting on the 
controlled output does not affect the other controlled 
variable significantly, disturbance applied on the 
control input causes changes in all variables, which 
shows interlacing in the system. 



 

     

 
 
Fig. 9. Plant output and control input responses 

to disturbances. 
 
Based on all performed experiments, it is possible to 
state that the effect of either transient or 
step-disturbances on both controlled output and 
control input can be entirely eliminated. This is 
attributable to the control design methodology 
employed where the controller compensates 
disturbances of the same form as the reference 
signal, i.e. if the reference signal is a step-function, 
then disturbances with up to the step-dynamics can 
be attenuated. 
 
As far as the noise influence is concerned, 
the method is sensitive especially when there is 
a small signal-to-noise ratio (owing to the small 
sampling period and neglect of the noise contribution 
to the identification). Then, experiments indicated 
positive effects of filtering the measured data. 
In addition to this, it helps to increase values of the 
thresholds 1ε , 2ε  proportionally to the noise level. 
Then, despite the noise-effect, results are 
satisfactory. 
 
Experimental results also revealed the need for 
a priori information about this controlled plant. 
When initial estimates of model coefficients were set 
without a priori information, the method did not give 
good results. It was necessary to guess approximately 
at least gains and time-constants of the system.  
 
 

5. CONCLUSION 
 
A modification of an iterative method for 
closed-loop identification and control design based 
on the dual Youla-Kucera parametrization has been 
presented, discussed and tested on a nonlinear 
two-input/two-output system. The resultant adaptive 
scheme enables simple on-line identification and 
control of a class of MIMO systems having the same 

input and output signal dimensions. For successful 
implementation of the method, it is advisable to 
follow presented recommendations, mainly the 
requirements concerning nominal-model’s structure, 
adequate order-reduction techniques and initial 
estimates, especially when controlling unstable or 
strongly-nonlinear plants. 
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