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1. INTRODUCTION 

Formal validation of industrial automation systems 
requires three constituent components: a model of the 
controller, a model of the uncontrolled plant and a 
specification of desired or forbidden plant behavior.  
Generation of the two first elements can be facilitated 
by application of modular modeling approaches and 
from automatic model-generation as described in 
(Vyatkin, Hanisch, 2003).  

However, the languages commonly used for 
specification, such as temporal logic, are still rarely 
familiar to control engineers. So, the engineers would 
benefit from having user-friendly means of 
specifying the desired or forbidden behavior of a 
model.  
Inspired by timing diagrams, well-known in the 
hardware domain (e.g. explored in works (K. 
Fisler,1999), (N. Amla et al., 2000), (R. Schlör, 
1999)), a graphical language for describing the 

dependency of interface signal changes has been 
proposed in (Vyatkin and Hanisch, 2001). 
In this paper we proceed with the issues that are 
specific for application of timing diagrams for 
specification and verification purposes of some 
classes of industrial automation systems.  
The work is based on the model representation in the 
formalism of Net Condition/Event Systems (NCES) 
as described in (Rausch and Hanisch, 1995), 
(Hanisch, Lüder, 1999). 
The basic idea of the formalism is to encapsulate a 
representation of discrete event dynamic behavior in 
modules with input and output signals of two types, 
namely  

- condition signals that provide information 
about a state of a module, and 

- event signals that provide information about 
a state transition of a module.  

This distinction is essential for the sequel of this 
contribution. More details about the modeling 
formalism are provided in (Thieme, 2002). 
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This paper suggests two procedures for translation of 
visual specifications that differ slightly depending on 
whether the verified module has inputs.  
It is therefore organized as follows. Timing Diagrams 
as a means for specifying desired or forbidden 
behavior are defined in Section 2. The transformation 
of Timing Diagrams to NCES modules is subject of 
Section 3. Section 4 describes the implementation of 
the method in a software prototype. Some 
conclusions are presented in Section 5.  

2. TIMING DIAGRAMS 

The use of Timing Diagrams (TD) as a method of 
formal specification requires the definition of a 
graphical specification and its semantics. 
In a diagram, sequences of changes in signal 
specification values are assigned to condition and 
event signals. Given the subsets  and 

, a specification for a signal set 
 is described as a tuple , where 

defines sequences of specification values: 
 with  

specifies sequences for event inputs and outputs, 
while  with  
defines values for condition signals. The partial 
function 

outin EEE ∪⊆
outin CCC ∪⊆

CEA ∪= ),,( gfAS =

ce fff ∪=
*: ee Ef Σ→ { alwaysmaybenoevente ,,=Σ }

}*: cc Cf Σ→ { onestableanyzeroc ,,,=Σ

( ) ( ) ),,(NN: ≠=>→××× AfAfg  assigns an 
ordering operator (precedence, simultaneity or non-
simultaneity) between signal changes from different 
signals, in such a way that g(ai,m,aj,n) indicates an 
ordering restriction between the m-th signal change 
of ai and the n-th signal change of aj. 
A graphical description of a specification S is 
illustrated in Figure 2. Signal changes at the 
beginning or ending of the diagram are implicitly 
simultaneous. Nevertheless, no further ordering is 
determined by the horizontal position of signal 
changes - therefore a timing diagram usually 
specifies a partial ordering among signal changes. 
The semantics associated to the diagram is as 
follows: when the set of levels specified at the 
beginning of the diagram is achieved, it is required 
that the sequence of changes of the signals does not 
violate the partial ordering specified in the diagram, 
until a final state is reached. 

2.1. Specified Signals 

In order to describe specifications of NCES models, 
TDs must provide different representations for event 
and condition signals. Thus, we define the following 
possibilities of specification:  

• in the case of a condition signal, the specification 
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Figure 2. Specification including two event 
inputs, one condition output and a simultaneity 
operator.
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ent signals are specified in two possible levels: 
 event, in the case where the occurrence of the 
ent is forbidden, and maybe, meaning that the 
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ligatory occurrence of the event signal (always), 
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 instantaneous nature of an event signal. 
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Event Ordering at Different Signals 

partial ordering semantics is assumed, no prior 
ring of events on different signals is implicit. In 
r words, although each signal presents an 
ring of its events, two events of different signals 
 occur at any sequence, except when special 
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ts is defined through their position at the visual 
ription. In this case, we are talking about a strict 
quential ordering. 
ough more intuitive, adopting a sequential 
ring would limit the representational capabilities 
diagram. Therefore, we adopt a partial ordering 
ntics for the TD language. In this case, the same 
represents a set of possible behaviors of the 
m, each one represented by a different event 
 on the modeled system. Each chain is called 

ario, and the set of scenarios defined by the 
ram is named diagram language. 
igure 1 (a) we observe the specification of two 
ls s1 and s2. If we have adopted as our 
s1 

s2 

s1 

s2 

Figure 1. Specifying temporally independent signals (a) and event ordering (b). 



convention a sequential ordering semantics, only one 
scenario would compose the diagram language: s2

+s1
-

s2
-. As the temporal dependence among events from 

different signals is not predefined (assumed partial 
ordering semantics) the same figure represents a TD 
with the following scenarios: (s2

+,s1
-)s2

-; s2
+(s1

-,s2
-); 

s1
-s2

+s2
- and s2

+s2
-s1

-. Figure 1(b) indicates the timing 
diagram that, based on the adopted semantics, 
accepts as its only scenario s2

+s1
-s2

-, by introducing 
operators that indicate the obligatory ordering among 
events from different signals. The meaning of these 
operators will be stated in the next section. 
In order to constrain the ordering of two events from 
different signals, we define the following precedence 
operators:  

≠ : events are not allowed to occur simultaneously; 
= : events must be simultaneous; 
> : event from the first signal must occur prior to the 
event from the second signal. 

2.3. Specification of Finite Behavior 

The TD represents a finite behavior that must be 
satisfied by the model. The satisfaction of a TD is 
evaluated from the moment when all specified 
signals are in their initial levels and some of them 
execute an initial transition, as indicated at the 
beginning of the diagram. The verification process 
ends when all signals achieve their final state, 
indicated in the end of the diagram. The initial part of 
the diagram, denominated precondition, corresponds 
to a condition, whose satisfaction by the model 
indicates that we must start comparing the model’s 
behavior with the remaining part of the TD. The 
comparison ends up when the final part of the 

diagram, called postcondition, is reached. Both 
pre- and postcondition are highlighted at the 
diagram (Figure 3). 
When a TD specifies a finite behavior, different 
interpretations are possible: 
Existence of a scenario (from the diagram 
language): here we require that at least one of the 
specified scenarios will occur at the model. In 
other words, there is a path at the state tree of the 
model, where the precondition is satisfied and the 
behavior of the model does not contradict the 

specification. 
Existence of all scenarios: the existence of each 
scenario must be tested inside the state space of the 
model. 
Generality of a single scenario: here a single 
scenario, from the set of scenarios specified at the 
diagram, must be recognized in every path, indicating 
a situation that has to occur in the future, regardless 
of which path is taken by the model. 
Generality of the diagram’s language: the behavior 
specified at the diagram will eventually occur, no 
matter which scenario, in each path from the state 
tree of the model. Notice that, in this case, the 
existence of a path with no occurrence of the 
precondition would already be a counter-example. 
Satisfaction of a single scenario: every satisfaction of 
the precondition must be followed by the satisfaction 
of the same scenario, among those that are possible 
according to the specification. This corresponds to an 
assume-guarantee clause, where the precondition 
plays the role of an assumption that, when fulfilled, 
guarantees the occurrence of a given sequence of 
events. 
Satisfaction of the diagram: the specified behavior 
must not be contradicted, which means that every 
occurrence of the precondition at the model leads to a 
behavior that is accepted by the diagram language. 
As a particular case, a model that presents no 
occurrence of a given precondition satisfies every 
specification starting with this precondition. The 
following topics will be based on this interpretation 
of the TD. 

precondition 

signal remains at its initial state 

transItion at signal during precondition  

postcondition  
Figure 3. Pre- and postcondition. 

Precondition 
Indicator 

Event Generator (EG) Signal Generador (DG) 

EG 
Signal 1  EG 

Signal n
 
 

(...)

DG 
Signal 1 

DG 
Signal 2 

DG 
Signal n 

(...)

Event Signals

Event Signals

Precedence (interdependency)

 

 

 
Starts 
Verification 
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2.4. Specification of Infinite Behavior 

The timing diagram could also correspond to a 
specification to be satisfied from the time when the 
precondition occurs, without the need to specify a 
postcondition. In this case, the final state specified at 
the diagram would correspond to a restriction that 
must not be violated. 

The absence of a specification for the precondition 
could indicate that the initial state of the model 
should comply with the levels specified at the 
beginning of the diagram. 

Although these two approaches also present a 
practical appeal, the absence of postcondition or 
precondition will not be issued in the work, as a 
matter of simplicity. 

2.5. Feasibility of Finite Behavior Diagrams 

In order to allow the translation of the timing 
diagram into a formal model, some requirements 
have to be done in respect to the events presented in 
each signal. Diagrams satisfying the requirements are 
said to be feasible. 

3. NCES MODEL OF TIMING DIAGRAMS 

When verifying autonomous NCES models without 
inputs, each signal specification is translated into a 
NCES supervisor module comprising two basic 
submodules: an event generator creates sequences 
of transitions, one for each change of level specified 
for the signal. Each transition stimulates, through an 
event arc, the corresponding event input of a signal 
generator, which causes the output of the signal 

generator to recreate the signal according to the input 
stimulated. Ordering operators are translated into 
special places and transitions that create 
interdependency of event generators. 
The verified module is then connected through event 
arcs to the event generators of the corresponding 
signals, in such a way that every change of signal in 
the first is reported to the latter. Along with the 
translation of the specification into NCES modules, a 
set of automatically generated temporal-logic 
statements is created. The composite module is then 
model-checked against these statements to verify if 
each transition at the supervisor always fires 
whenever the corresponding transition at the verified 
module is fired. 
The graphical specification also provides automatic 
test possibilities for input/output behavior or non-
autonomous NCES modules. In this case, the NCES 
supervisor modules that describe input signals are 
used for generating the specified sequences of input 
signal changes, while the output signals are again 
verified as described before. 
The components of the NCES model of the timing 
diagram are detailed in the following sections.  

3.1. Event Generator  

The main part of the NCES model for the 
specification is called event generator, and consists 
of a set of parallel processes (sequences of transitions 
and places), started simultaneously by the firing of a 
transition denoted tstart. Each process is responsible 
for reproducing the behavior specified for one signal. 
Events on the signals are translated into transitions at 
the processes. 
For each signal i, there is a place pnotstart,i which is a 
preplace of tstart and postplace of the last transition of 
the corresponding process. The transition tstart 

inputs   

outputs   

output   

inputs   

(a) (b)

 
Figure 5. Signal generator for condition signals (a) and event signals (b). 



indicates the beginning of the timing diagram. The 
situation where the diagram language is not being 
executed corresponds to the marking pnotstart,i=1 for 
every signal i. 
In the case that at least a signal j has the marking 
pnotstart,j=0, the marking pnotstart,i=1 for a signal i 
indicates that this signal has already achieved the last 

level to, respectively, zero, any, stable or one – in 
other words, a diagram event has occurred. The 
condition outputs NOTsignal and signal are linked 
to the internal places DGZERO and DGONE. The 
remaining transitions and places implement the 
desired undeterministic behavior - after the firing of 
tostable and toany, the marking of places DGZERO 
and DGONE should be non-deterministic, and may 
change randomly in the latter case, until another 
input event is stimulated. 
Figure 5 (b) presents the internal structure of a signal 
generator for an event signal. Event signals are 
represented by modules with three event inputs, 
corresponding to the three possible specification 
values, and an event output, whose firing corresponds 
to the generation of the event. Internally, this 
generation corresponds to the firing of the DGEvent 
transition. The transitions to_no, to_maybe and 
DGEvent are fired by stimulating the no event, 
maybe and always inputs respectively. Every 
diagram event leads to the firing of at least one of 
these transitions – actually, an always peak at the 
specification, followed by the specification of a new 
level,  implies that both the DGEvent and the 
transition that leads to the new level specification 
(to_no or to_maybe) will be enforced to fire. 
Model to be verified  
(XML) 

 

Specification 
 (XML) 

 
Composite model 
(verifed model + 

specification model)  

Composite model
 (XML) 

Model under SESA format 
.pnt file  (SNS model) 
.in  (script / eCTL formulas)

Figure 6. User interface of the TDE tool and file 
formats adopted for data storage  
level specified at the diagram. 
The precedence relationships among events of 
different signals are mapped to special 
interconnections among the corresponding processes, 
as shall be detailed in the following section. 

3.2. Signal Generation Module 

For each specified signal, we create a signal 
generator module which reproduces, at its output, the 
possible values for the signal, according to the level 
specification stimulated at its input. Each event on 
the timing diagram (modeled by the firing of a 
transition at the event generator) stimulates, by an 
event arc, the corresponding change at the signal 
generator, which guarantees that the NCES module, 
resulting from the combination of the event generator 
with the signal generators, will reproduce at its 
output the diagram language. 

 To each condition signal included at the 
specification is assigned a signal generator module 
with four event inputs, corresponding to the four 
possible specification levels, and two condition 
outputs, indicating the two possible values assumed 
by the condition signal (zero or one). Figure 5 (a) 
shows the structure of a signal generator for a 
condition signal. The transitions toreset, toset, 
tostable and toany receive event arcs, respectively, 
from the reset, set, stable and any event inputs1. 
Firing one of these transition means that the 
corresponding signal has changed its specification 
                                                           

1 Although we can imagine the interface of an NCES module, it 
is not really implemented by the set of software tool used at this 
work. Therefore, linking an external transition to an event input is 
done by linking the transition, through event arcs, directly to the 
internal transitions that are supposed to be linked to the event 
input. Similar approach is used for module outputs. 

4. PROGRAM IMPLEMENTATION 

The Timing Diagram Editor (TDE) is an application 
developed with the aims of providing the following 
functionalities: 
- create, edit, save and load specifications of 

function blocks whose internal logic is specified by 
means of a NCES. These specifications are 
generated and visualized graphically as timing 
diagrams, while each signal at the timing diagram 
may be of one of the following types: event signals 
and condition signals; the signal levels allowed for 
each type of signals that were presented above. 

- translate the combination of a function block and 
the behaviour specified for it into a composite 
finite state model (NCES) and temporal 
propositions written in the eCTL (Roch, 2000) 
format, in such a way that the composite model, 
and consequently the original function block, can 
be verified formally with the aid of the SESA tool 
(SESA, 2004). If all the generated eCTL 
propositions evaluate to true with regard to the 
composite model, we conclude that the behavior of 
the original model satisfies the specification, as 
described in Chapter 5. 

The TDE tool uses XML as a storage format for both 
timing diagrams and NCES models and converts 
them to the input formats of the SESA model checker 
as illustrated in Figure 6. 
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