

TIMING DIAGRAM SPECIFICATIONS IN MODULAR MODELING
OF INDUSTRIAL AUTOMATION SYSTEMS

G. Bouzon*, V. Vyatkin**, H.-M. Hanisch**

*Dept. Automation and Systems, CTC

CP 476, Federal University of Santa Catarina
88040-900, Florianópolis, SC, Brazil

gbouzon@das.ufsc.br

**Dept. of Engineering Sciences,
Martin Luther University Halle–Wittenberg,

06099, Halle, Germany
Valeriy.Vyatkin@iw.uni-halle.de

Hans-Michael.Hanisch@iw.uni-halle.de

Abstract: This paper deals with further development of the timing-diagram based
specification language destined for application in modular modeling of industrial
automation systems. The results of this work are intended for application in formal
verification of software intensive automation systems. Copyright © 2005 IFAC

Keywords: formal verification, visual specification, timing diagrams, Net
Condition/Event systems

1. INTRODUCTION

Formal validation of industrial automation systems
requires three constituent components: a model of the
controller, a model of the uncontrolled plant and a
specification of desired or forbidden plant behavior.
Generation of the two first elements can be facilitated
by application of modular modeling approaches and
from automatic model-generation as described in
(Vyatkin, Hanisch, 2003).

However, the languages commonly used for
specification, such as temporal logic, are still rarely
familiar to control engineers. So, the engineers would
benefit from having user-friendly means of
specifying the desired or forbidden behavior of a
model.
Inspired by timing diagrams, well-known in the
hardware domain (e.g. explored in works (K.
Fisler,1999), (N. Amla et al., 2000), (R. Schlör,
1999)), a graphical language for describing the

dependency of interface signal changes has been
proposed in (Vyatkin and Hanisch, 2001).
In this paper we proceed with the issues that are
specific for application of timing diagrams for
specification and verification purposes of some
classes of industrial automation systems.
The work is based on the model representation in the
formalism of Net Condition/Event Systems (NCES)
as described in (Rausch and Hanisch, 1995),
(Hanisch, Lüder, 1999).
The basic idea of the formalism is to encapsulate a
representation of discrete event dynamic behavior in
modules with input and output signals of two types,
namely

- condition signals that provide information
about a state of a module, and

- event signals that provide information about
a state transition of a module.

This distinction is essential for the sequel of this
contribution. More details about the modeling
formalism are provided in (Thieme, 2002).

mailto:gbouzon@das.ufsc.br
mailto:Valeriy.Vyatkin@iw.uni-halle.de
mailto:Hans-Michael.Hanisch@iw.uni-halle.de

This paper suggests two procedures for translation of
visual specifications that differ slightly depending on
whether the verified module has inputs.
It is therefore organized as follows. Timing Diagrams
as a means for specifying desired or forbidden
behavior are defined in Section 2. The transformation
of Timing Diagrams to NCES modules is subject of
Section 3. Section 4 describes the implementation of
the method in a software prototype. Some
conclusions are presented in Section 5.

2. TIMING DIAGRAMS

The use of Timing Diagrams (TD) as a method of
formal specification requires the definition of a
graphical specification and its semantics.
In a diagram, sequences of changes in signal
specification values are assigned to condition and
event signals. Given the subsets and

, a specification for a signal set
 is described as a tuple , where

defines sequences of specification values:
 with

specifies sequences for event inputs and outputs,
while with
defines values for condition signals. The partial
function

outin EEE ∪⊆
outin CCC ∪⊆

CEA ∪=),,(gfAS =

ce fff ∪=
*: ee Ef Σ→ { alwaysmaybenoevente ,,=Σ }

}*: cc Cf Σ→ { onestableanyzeroc ,,,=Σ

() ()),,(NN: ≠=>→××× AfAfg assigns an
ordering operator (precedence, simultaneity or non-
simultaneity) between signal changes from different
signals, in such a way that g(ai,m,aj,n) indicates an
ordering restriction between the m-th signal change
of ai and the n-th signal change of aj.
A graphical description of a specification S is
illustrated in Figure 2. Signal changes at the
beginning or ending of the diagram are implicitly
simultaneous. Nevertheless, no further ordering is
determined by the horizontal position of signal
changes - therefore a timing diagram usually
specifies a partial ordering among signal changes.
The semantics associated to the diagram is as
follows: when the set of levels specified at the
beginning of the diagram is achieved, it is required
that the sequence of changes of the signals does not
violate the partial ordering specified in the diagram,
until a final state is reached.

2.1. Specified Signals

In order to describe specifications of NCES models,
TDs must provide different representations for event
and condition signals. Thus, we define the following
possibilities of specification:

• in the case of a condition signal, the specification

mi
co
the
log
ho
sin
on

• ev
no
ev
ev
ob
bu
the

We
spec
no e
or a
even

2.2.

If a
orde
othe
orde
may
oper
it is
even
desc
or se
Alth
orde
of a
sema
TD
syste
chain
scen
diag
In F
signa
Figure 2. Specification including two event
inputs, one condition output and a simultaneity
operator.
ght assume four possible levels: zero,
rresponding to a logical zero; any, representing
 situation where the signal might assume any
ical value; stable, which also means undefined,

wever assuming that the signal remains at a
gle level; or one, corresponding to the logical
e;

ent signals are specified in two possible levels:
 event, in the case where the occurrence of the
ent is forbidden, and maybe, meaning that the
ent might occur. It is also possible to specify an
ligatory occurrence of the event signal (always),
t in this case only as a single impulse, because of
 instantaneous nature of an event signal.

define a diagram event as: any level change
ified at a condition signal; a level change from
vent to maybe or vice-versa, at an event-signal;
specification of an obligatory occurrence of an
t (always peak at an event signal).

Event Ordering at Different Signals

partial ordering semantics is assumed, no prior
ring of events on different signals is implicit. In
r words, although each signal presents an
ring of its events, two events of different signals
 occur at any sequence, except when special
ators explicit their sequence. On the other hand,
also possible to assume that the ordering of all
ts is defined through their position at the visual
ription. In this case, we are talking about a strict
quential ordering.
ough more intuitive, adopting a sequential
ring would limit the representational capabilities
diagram. Therefore, we adopt a partial ordering
ntics for the TD language. In this case, the same
represents a set of possible behaviors of the
m, each one represented by a different event
 on the modeled system. Each chain is called

ario, and the set of scenarios defined by the
ram is named diagram language.
igure 1 (a) we observe the specification of two
ls s1 and s2. If we have adopted as our
s1

s2

s1

s2

Figure 1. Specifying temporally independent signals (a) and event ordering (b).

convention a sequential ordering semantics, only one
scenario would compose the diagram language: s2

+s1
-

s2
-. As the temporal dependence among events from

different signals is not predefined (assumed partial
ordering semantics) the same figure represents a TD
with the following scenarios: (s2

+,s1
-)s2

-; s2
+(s1

-,s2
-);

s1
-s2

+s2
- and s2

+s2
-s1

-. Figure 1(b) indicates the timing
diagram that, based on the adopted semantics,
accepts as its only scenario s2

+s1
-s2

-, by introducing
operators that indicate the obligatory ordering among
events from different signals. The meaning of these
operators will be stated in the next section.
In order to constrain the ordering of two events from
different signals, we define the following precedence
operators:

≠ : events are not allowed to occur simultaneously;
= : events must be simultaneous;
> : event from the first signal must occur prior to the
event from the second signal.

2.3. Specification of Finite Behavior

The TD represents a finite behavior that must be
satisfied by the model. The satisfaction of a TD is
evaluated from the moment when all specified
signals are in their initial levels and some of them
execute an initial transition, as indicated at the
beginning of the diagram. The verification process
ends when all signals achieve their final state,
indicated in the end of the diagram. The initial part of
the diagram, denominated precondition, corresponds
to a condition, whose satisfaction by the model
indicates that we must start comparing the model’s
behavior with the remaining part of the TD. The
comparison ends up when the final part of the

diagram, called postcondition, is reached. Both
pre- and postcondition are highlighted at the
diagram (Figure 3).
When a TD specifies a finite behavior, different
interpretations are possible:
Existence of a scenario (from the diagram
language): here we require that at least one of the
specified scenarios will occur at the model. In
other words, there is a path at the state tree of the
model, where the precondition is satisfied and the
behavior of the model does not contradict the

specification.
Existence of all scenarios: the existence of each
scenario must be tested inside the state space of the
model.
Generality of a single scenario: here a single
scenario, from the set of scenarios specified at the
diagram, must be recognized in every path, indicating
a situation that has to occur in the future, regardless
of which path is taken by the model.
Generality of the diagram’s language: the behavior
specified at the diagram will eventually occur, no
matter which scenario, in each path from the state
tree of the model. Notice that, in this case, the
existence of a path with no occurrence of the
precondition would already be a counter-example.
Satisfaction of a single scenario: every satisfaction of
the precondition must be followed by the satisfaction
of the same scenario, among those that are possible
according to the specification. This corresponds to an
assume-guarantee clause, where the precondition
plays the role of an assumption that, when fulfilled,
guarantees the occurrence of a given sequence of
events.
Satisfaction of the diagram: the specified behavior
must not be contradicted, which means that every
occurrence of the precondition at the model leads to a
behavior that is accepted by the diagram language.
As a particular case, a model that presents no
occurrence of a given precondition satisfies every
specification starting with this precondition. The
following topics will be based on this interpretation
of the TD.

precondition

signal remains at its initial state

transItion at signal during precondition

postcondition
Figure 3. Pre- and postcondition.

Precondition
Indicator

Event Generator (EG) Signal Generador (DG)

EG
Signal 1 EG

Signal n

(...)

DG
Signal 1

DG
Signal 2

DG
Signal n

(...)

Event Signals

Event Signals

Precedence (interdependency)

Starts
Verification

Figure 4. Diagram representing the main functionalities of the specification model.

2.4. Specification of Infinite Behavior

The timing diagram could also correspond to a
specification to be satisfied from the time when the
precondition occurs, without the need to specify a
postcondition. In this case, the final state specified at
the diagram would correspond to a restriction that
must not be violated.

The absence of a specification for the precondition
could indicate that the initial state of the model
should comply with the levels specified at the
beginning of the diagram.

Although these two approaches also present a
practical appeal, the absence of postcondition or
precondition will not be issued in the work, as a
matter of simplicity.

2.5. Feasibility of Finite Behavior Diagrams

In order to allow the translation of the timing
diagram into a formal model, some requirements
have to be done in respect to the events presented in
each signal. Diagrams satisfying the requirements are
said to be feasible.

3. NCES MODEL OF TIMING DIAGRAMS

When verifying autonomous NCES models without
inputs, each signal specification is translated into a
NCES supervisor module comprising two basic
submodules: an event generator creates sequences
of transitions, one for each change of level specified
for the signal. Each transition stimulates, through an
event arc, the corresponding event input of a signal
generator, which causes the output of the signal

generator to recreate the signal according to the input
stimulated. Ordering operators are translated into
special places and transitions that create
interdependency of event generators.
The verified module is then connected through event
arcs to the event generators of the corresponding
signals, in such a way that every change of signal in
the first is reported to the latter. Along with the
translation of the specification into NCES modules, a
set of automatically generated temporal-logic
statements is created. The composite module is then
model-checked against these statements to verify if
each transition at the supervisor always fires
whenever the corresponding transition at the verified
module is fired.
The graphical specification also provides automatic
test possibilities for input/output behavior or non-
autonomous NCES modules. In this case, the NCES
supervisor modules that describe input signals are
used for generating the specified sequences of input
signal changes, while the output signals are again
verified as described before.
The components of the NCES model of the timing
diagram are detailed in the following sections.

3.1. Event Generator

The main part of the NCES model for the
specification is called event generator, and consists
of a set of parallel processes (sequences of transitions
and places), started simultaneously by the firing of a
transition denoted tstart. Each process is responsible
for reproducing the behavior specified for one signal.
Events on the signals are translated into transitions at
the processes.
For each signal i, there is a place pnotstart,i which is a
preplace of tstart and postplace of the last transition of
the corresponding process. The transition tstart

inputs

outputs

output

inputs

(a) (b)

Figure 5. Signal generator for condition signals (a) and event signals (b).

indicates the beginning of the timing diagram. The
situation where the diagram language is not being
executed corresponds to the marking pnotstart,i=1 for
every signal i.
In the case that at least a signal j has the marking
pnotstart,j=0, the marking pnotstart,i=1 for a signal i
indicates that this signal has already achieved the last

level to, respectively, zero, any, stable or one – in
other words, a diagram event has occurred. The
condition outputs NOTsignal and signal are linked
to the internal places DGZERO and DGONE. The
remaining transitions and places implement the
desired undeterministic behavior - after the firing of
tostable and toany, the marking of places DGZERO
and DGONE should be non-deterministic, and may
change randomly in the latter case, until another
input event is stimulated.
Figure 5 (b) presents the internal structure of a signal
generator for an event signal. Event signals are
represented by modules with three event inputs,
corresponding to the three possible specification
values, and an event output, whose firing corresponds
to the generation of the event. Internally, this
generation corresponds to the firing of the DGEvent
transition. The transitions to_no, to_maybe and
DGEvent are fired by stimulating the no event,
maybe and always inputs respectively. Every
diagram event leads to the firing of at least one of
these transitions – actually, an always peak at the
specification, followed by the specification of a new
level, implies that both the DGEvent and the
transition that leads to the new level specification
(to_no or to_maybe) will be enforced to fire.
Model to be verified
(XML)

Specification
 (XML)

Composite model
(verifed model +

specification model)

Composite model
 (XML)

Model under SESA format
.pnt file (SNS model)
.in (script / eCTL formulas)

Figure 6. User interface of the TDE tool and file
formats adopted for data storage
level specified at the diagram.
The precedence relationships among events of
different signals are mapped to special
interconnections among the corresponding processes,
as shall be detailed in the following section.

3.2. Signal Generation Module

For each specified signal, we create a signal
generator module which reproduces, at its output, the
possible values for the signal, according to the level
specification stimulated at its input. Each event on
the timing diagram (modeled by the firing of a
transition at the event generator) stimulates, by an
event arc, the corresponding change at the signal
generator, which guarantees that the NCES module,
resulting from the combination of the event generator
with the signal generators, will reproduce at its
output the diagram language.

 To each condition signal included at the
specification is assigned a signal generator module
with four event inputs, corresponding to the four
possible specification levels, and two condition
outputs, indicating the two possible values assumed
by the condition signal (zero or one). Figure 5 (a)
shows the structure of a signal generator for a
condition signal. The transitions toreset, toset,
tostable and toany receive event arcs, respectively,
from the reset, set, stable and any event inputs1.
Firing one of these transition means that the
corresponding signal has changed its specification

1 Although we can imagine the interface of an NCES module, it
is not really implemented by the set of software tool used at this
work. Therefore, linking an external transition to an event input is
done by linking the transition, through event arcs, directly to the
internal transitions that are supposed to be linked to the event
input. Similar approach is used for module outputs.

4. PROGRAM IMPLEMENTATION

The Timing Diagram Editor (TDE) is an application
developed with the aims of providing the following
functionalities:
- create, edit, save and load specifications of

function blocks whose internal logic is specified by
means of a NCES. These specifications are
generated and visualized graphically as timing
diagrams, while each signal at the timing diagram
may be of one of the following types: event signals
and condition signals; the signal levels allowed for
each type of signals that were presented above.

- translate the combination of a function block and
the behaviour specified for it into a composite
finite state model (NCES) and temporal
propositions written in the eCTL (Roch, 2000)
format, in such a way that the composite model,
and consequently the original function block, can
be verified formally with the aid of the SESA tool
(SESA, 2004). If all the generated eCTL
propositions evaluate to true with regard to the
composite model, we conclude that the behavior of
the original model satisfies the specification, as
described in Chapter 5.

The TDE tool uses XML as a storage format for both
timing diagrams and NCES models and converts
them to the input formats of the SESA model checker
as illustrated in Figure 6.

ACKNOWLEDGEMENTS

The work of some authors was supported in part by
the cooperative project VAIAS funded by the
German Ministry for Education and Research
(BMBF) and industry, and by the Deutsche

Forschungsgemeinschaft under the reference Ha
1886/10-2 and Ha 1886/12-2.

REFERENCES

Amla, N., Emerson, E., Kurshan, R., and Namjoshi,
K: Model checking of synchronous timing
diagram,. Conference on Formal Methods in
Computer Aided Design (FMCAD), Proceedings,
November 2000

Fisler, K.: Timing diagrams: Formalization and
algorithmic verification. Journal of Logic,
Language, and Information, 8(7), July 1999.

Hanisch, H.-M. and Lüder, A.: Modular Modelling of
Closed-Loop Systems, Colloquium on Petri Net
Technologies for Modelling Communication Based
Systems, Berlin, Germany, October 21-22, 1999,
Proceedings, pp. 103-126

Schlör, R., Allara, A. and Comai, S.: System
Verification using User-Friendly Interfaces. In
Design, Automation and Test in Europe, pp. 167-
172. IEEE Computer Society Press, 1999

Rausch, M. and Hanisch, H.-M.: Net condition/event
systems with multiple condition outputs. In
Symposium on Emerging Technologies and
Factory Automation, volume 1, p. 592-600, Paris,
France, October, 1995. INRIA/IEEE

Roch, S.: Extended Computation Tree Logic, in Proc.
of Workshop on Concurrency, Specification and
Programming, Berlin, 2000

SESA – Signal/Net system analyzer. Humboldt
Universität zu Berlin, Institut für Informatik,
http://www.informatik.hu-
berlin.de/lehrstuehle/automaten/tools/

Thieme, J. Symbolische Erreichbarskeitanalyse und
automatische Implementierung struktuirter,
zeitbewerter Steuerungsmodelle, Dissertation zur
Erlagung des Grades Dr.-Ing., Berlin: Logos Verl.,
2002

Vyatkin, V. and Hanisch, H.-M.: Application of
Visual Specifications for Verification of
Distributed Controllers, Proceedings of the 2001
IEEE Systems, Man, and Cybernetic Conference.

Vyatkin, V. and Hanisch H.-M.: Verification of
Distributed Control Systems in Intelligent
Manufacturing, Journal of Intelligent
Manufacturing, special issue on Internet Based
Modelling in Intelligent Manufacturing, vol.14,
N.1, 2003, pp.123-136

http://www.informatik.hu-berlin.de/lehrstuehle/automaten/tools/
http://www.informatik.hu-berlin.de/lehrstuehle/automaten/tools/

	INTRODUCTION
	TIMING DIAGRAMS
	Specified Signals
	Event Ordering at Different Signals
	Specification of Finite Behavior
	Specification of Infinite Behavior
	Feasibility of Finite Behavior Diagrams

	NCES MODEL OF TIMING DIAGRAMS
	Event Generator
	Signal Generation Module

	PROGRAM IMPLEMENTATION
	ACKNOWLEDGEMENTS
	REFERENCES

