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Abstract: This paper presents a nonlinear model predictive control (NMPC)
strategy that can be used to tackle model predictive control problems that involve
relatively simple nonlinear dynamic models, as for example obtained with first-
principles modeling. The main feature of the proposed NMPC strategy is the
usage of a moving horizon estimator (MHE) for the estimation of the states and
disturbances (and, if desired, parameters). The closed-loop performance properties
of the proposed NMPC strategy are demonstrated by applying it to a model of
a municipal solid waste (MSW) combustion plant under a realistic disturbance
realization. In addition, a comparison is made with extended Kalman filter (EKF)
based NMPC. Copyright c©2005 IFAC
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1. INTRODUCTION

Due to lack of space, combustion of municipal
solid waste (MSW, i.e. household waste) repre-
sents a suitable alternative to dumping in many
densily populated parts of the world, despite the
associated (assumed) negative effects on the envi-
ronment. MSW is typically combusted at a plant
as depicted in figure 1. After having been collected
from households and transported to the MSW
combustion (MSWC) plant, for example by truck,
it is stored in a large bunker from which it is trans-
ported by cranes into a large chute. At the bottom
of the chute the waste is pushed onto a moving
grate by a ram. The waste is combusted while it is
traveling on this grate using oxygen from air flows
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Fig. 1. A typical MSW combustion plant.

that are fed through holes in the grate (primary
air flow) and furnace side walls (secondary air
flow) to the solid waste layer and gas phase above
it. The resulting flue gas enters a boiler delivering
heat which is transformed into steam and, sub-
sequently, into energy in the form of heat and/or



electricity. Having passed the boiler, the flue gas is
cleaned from residues that are not allowed to enter
the surroundings. A MSWC plant is controlled by
several control systems which can be divided in
(i) a combustion control system, controlling the
furnace part of the MSWC plant, and (ii) flue
gas cleaning equipment (also referred to as air
pollution or ”post-combustion” control systems).
In this paper only the combustion control system
of the MSWC plant is considered. (See (Leskens
et al., 2005) for a more extended discussion on
control of MSWC plants). The control objectives
for this system can be stated as to maximize
the waste throughput and energy output (steam),
both being important from an economic point of
view, while exceeding certain bounds that arise
from environmental and lifetime considerations
as few times as possible. (These objectives are
most of the times not directly reflected by the
control systems and control behavior encountered
in practice, however). In addition, it needs to
fulfill these objectives in the presence of large
fluctuations in the process variables due to the
variation in waste composition. Suppressing these
fluctuations is an important objective, in partic-
ular to obtain a minimum back-off to the bounds
mentioned above. One control strategy that seems
to be very well suited to fulfill these objectives
is model predictive control (MPC), in particular
because of the presence of constraints and the
multivariable nature of the MSWC plant. This
paper presents results from research on the ap-
plicability of MPC on MSWC plants. The strat-
egy that is followed in this research is that of
applying a relatively simple dynamic model of
the MSWC process, obtained from first-principles,
directly within an MPC strategy, which, as a
result of the nonlinearity of the model, is a non-
linear model predictive control (NMPC) strategy.
Motivations for this research strategy are that
(i) recent results, among which (Leskens et al.,
2002), suggest that the dynamics of the MSWC
process can be modeled with a relatively simple
first-principles model, i.e. with a small number
of differential and algebraic equations, and that
(ii) an NMPC strategy applied to such a model
is able to deliver a solution for the manipulated
variables (MVs) well within the chosen sample
time with the current generation of computers (at
least when the optimization problem to be solved
by the NMPC controller (i.e. the time horizon) is
not overly large).
Two of the three main aims of this paper are
(i) to present an NMPC strategy that is able to
fulfill the latter computational requirement and
(ii) to show its closed-loop performance proper-
ties by applying the NMPC strategy to a simple
first-principles model of the MSWC process under
a realistic disturbance realization. The proposed
NMPC strategy is characterized by the usage of

a moving horizon estimator (MHE) for the es-
timation of the states and disturbances (which,
if desired, can be easily extended to include pa-
rameters). Although MHE has been given much
attention in the literature, see e.g. (Rao and
Rawlings, 2002), its application as part of an
NMPC strategy still seems to be rare. Typically,
an extended Kalman filter (EKF) is used instead
of a MHE. See e.g. (Lee and Ricker, 1994). A
third main aim of this paper is to compare the
closed-loop performance properties of MHE and
EKF based NMPC. This is done on the basis
of the same MSWC test case referred to above.
In addition to these three main aims, also the
following issues will be discussed briefly (i) the
advantage of NMPC of being able to deal with a
much wider range of control problem formulations
than most of the other control strategies, (ii) the
exploitation of this advantage by applying the
proposed MHE based NMPC strategy to an a-
typical MSWC control problem formulation that
reflects more directly its true control objectives,
as stated above, and (iii) the back-off properties
of the proposed NMPC strategy.
The contents of this paper is as follows. First,
in section 2, the proposed NMPC strategy will
be discussed in more detail. The focus here is
on the basic idea behind MHE. Then, in section
3 the closed-loop performance properties of this
NMPC strategy will be discussed and compared
to those of an EKF based NMPC strategy on the
basis of the MSWC test case referred to above. A
comparison of only the MHE and EKF estimation
performances is also included here. The final part
of this section is devoted to the three issues men-
tioned just above. Finally, in section 4, conclusions
are given.

2. MHE BASED NMPC

2.1 Global set-up

The NMPC strategy proposed here follows the
usual decomposition into (i) an estimation prob-
lem, where states and, if desired, disturbances
and parameters are estimated, and (ii) a problem
where the MVs are computed, using the estimated
states (parameters, disturbances) as the true ini-
tial states. Here, the parameters are assumed to
be known exactly and, therefore, are excluded
from the discussion. Extension of the estimation
part with uncertain time varying parameters is,
however, straightforward. Typically, an EKF is
used for this estimation part. Here, in contrast,
an MHE approach is chosen for that purpose. For
the purpose of the presentation of the proposed
MHE based NMPC approach models of the form

xk+1 = f(xk, uk, dk) (1)



yk = h(xk, uk, dk) (2)

are considered here although it is not restricted to
this type of models. Here, xk represent the states
of the model, uk the inputs/MVs, dk the distur-
bances and yk the measured outputs/controlled
variables (CVs). Models of the type (1), (2) can
be obtained in different ways, e.g. through sys-
tem identification techniques or via first-principles
modeling. In the latter case a model (1), (2) is
typically obtained implicitly via integration of its
continuous-time counterpart over e.g. piecewise
constant inputs. The latter approach is also used
in this paper in the MSWC examples. In terms of
the model equations (1), (2), then, the following
two steps are performed during every sample in-
terval starting from the present sample instant k
and ending before the next sample instant k + 1:

(1) estimation of the states and disturbances at
time k + 1, x̂k+1 resp. d̂k+1, using a MHE.

(2) computation of the optimal MVs over a cer-
tain future time horizon Nmpc, i.e. comput-
ing uopt

k+1, uopt
k+2, ... , uopt

k+Nmpc
, using the es-

timates x̂k+1 and d̂k+1 and assuming the
disturbances constant and equal to this latter
value over the future time horizon.

After that, at sample instant k +1, the computed
values for uopt

k+1 are implemented on the real plant
and the two steps are repeated. The MHE step
is discussed in detail in section 2.2. The second
step in the NMPC strategy proposed here is not
essentially different from the moving horizon for-
mulations typically found in the literature, min-
imizing at each sample instant a criterion that
reflects the control objectives for the plant under
a set of constraints on the MVs, states and CVs.
Apart from some remarks in section 3.1 on how
the underlying dynamic optimization problem was
solved in the MSWC examples, this second step
is not discussed here.

2.2 Moving horizon estimation

For ease of explanation, the discussion of the ba-
sic idea behind MHE given here follows a least
squares (LS) or system identification approach.
(Typically, one starts this discussion with a prob-
abilistic interpretation as e.g. in (Rao and Rawl-
ings, 2002)). Assume that an optimal estimate
for the state vector at time k + 1, i.e. xk+1, is
desired. From the state equation(s) (1) it follows
that this optimal estimate, denoted as x̂k+1, can
be obtained as

x̂k+1 = f(x̂k, uk, d̂k)

if the optimal estimates for x̂k and d̂k are given
(uk is, obviously, known). Following the same line

of thought, an optimal estimate for x̂k can be
obtained as

x̂k = f(x̂k−1, uk−1, d̂k−1)

if, indeed, the optimal estimates for x̂k−1 and d̂k−1

are given. Repeating this line of thought Nmhe

times, it follows that an optimal estimate x̂k+1 can
be obtained, from integrating the state equations,
when x̂k−Nmhe

and {d̂k−Nmhe
, ..., d̂k} are known.

How to obtain these latter estimates ? The answer
is by fitting them to the data, i.e. by minimizing,
over these estimates, a criterion that is a function
of the differences between the measured outputs
yk−i and the predicted outputs

ŷk−i = h(x̂k−i, uk−i, d̂k−i)

at the time instants defined by i = 0, ..., Nmhe

(using the state equations to obtain the interme-
diate state estimates x̂k−i, i = 0, ..., (Nmhe − 1)).
Choosing an LS criterion, the following dynamic
optimization problem to be solved is obtained for
the MHE:

min
x̂k−Nmhe

,{d̂k−Nmhe
,...,d̂k}

Nmhe∑

i=0

‖yk−i − ŷk−i)‖2

subject to the model equations (1) and (2).
Having obtained the estimates x̂k−Nmhe

and
{d̂k−Nmhe

, ..., d̂k}, an estimate for x̂k+1 is then
obtained via integrating the model equations.
For obvious computational reasons the time hori-
zon Nmhe cannot be chosen arbitrarely large. In-
stead, a moving horizon formulation is chosen
where the dynamic optimization problem is solved
repeatedly every new sample instant for a fixed
chosen time horizon Nmhe.
The MHE criterion formulations found in the lit-
erature are, generally, extensions of the LS formu-
lation given above: they generally contain, moti-
vated by probabilistic arguments (see e.g. (Rao
and Rawlings, 2002)), an additional term that
punishes the difference between x̂k−Nmhe

and a
previously obtained estimate xk−Nmhe

for this ini-
tial state vector:

‖x̂k−Nmhe
− xk−Nmhe

‖2
Q +

Nmhe∑

i=0

‖yk−i − ŷk−i)‖2
R

(3)

In addition, one could also add a term punishing
the rate of change of the disturbance estimates
{d̂k−Nmhe

, ..., d̂k}. In the MSWC examples to be
discussed, a criterion of the form (3) is used to-
gether with a term punishing the rate of change of
the one disturbance assumed to be acting on the
MSWC plant.
A very important characteristic of the MHE ap-
proach, in particular with respect to the EKF,



is that constraints can be included, i.e. on dis-
turbance, state and output estimates. It is this
ability of including constraints together with the
ability to include (all) nonlinear dynamics what
distinguishes MHE from other estimation strate-
gies (Rao and Rawlings, 2002). In the latter refer-
ence, examples show the significant improvement
in estimation performance that can be obtained
by including constraints into the estimation prob-
lem.
The MHE discussed so far does not deliver an es-
timate for the disturbances at time k+1, i.e. d̂k+1;
only disturbance estimates up to k are delivered.
One obvious and, assumably, best way to obtain
an estimate for d̂k+1 is to incorporate a (state
space) model of the disturbances in the MHE.
Another simple way, one that can be employed
if no such disturbance model is available and one
that is employed here in the MSWC example(s)
to be discussed, is to simply set d̂k+1 = d̂k.

3. APPLICATION TO A MSWC MODEL

3.1 Implementation issues

The NMPC strategy presented in section 2 was
applied to a relatively simple first-principles
model of the MSWC process derived from (Van
Kessel, 2003) and the so called calorific value
sensor (CVS) equations given in (Van Kessel et
al., 2004). This model contained 4 inputs (MVs), 4
differential states, 1 algebraic state and 2 outputs
(CVs). The inputs were (i) a measure for the waste
inlet flow Uwif , (ii) a measure for the speed of the
grate Usog, (iii) the primary air flow Φprim and
(iv) the secondary air flow Φsec (see also figure
1). The states of the model were (i) a state related
to the dynamics of the grate, (ii) the waste mass
on the grate, (iii) the temperature of this waste
mass Ts and (iv) the produced steam flow Φst.
The outputs were (i) (again) the steam flow and
(ii) the concentration of O2 in the flue gas. Finally,
the algebraic state was the gas phase temperature.
The model contained one disturbance z which is
a measure for the waste composition. The model
consisted largely of mass and energy balances
and contained severe nonlinearities, among which
radiation terms containing state variables to the
power four. The model was (only) validated with
respect to its capability of reproducing a set of
measured steady-state values corresponding to an
operating point of a real-life MSWC plant and was
thought to be at least a reasonable representation
of the MSWC dynamics. The (largest) dominant
time constant of the model was approximately half
an hour while the fastest time constant of the
model was smaller than 1 minute. The latter was
also the sample time for the NMPC controllers
employed in the MSWC examples to be discussed.

Most closed-loop simulations to be discussed were
performed with a realization for z that was ob-
tained from the real-life MSWC plant mentioned
just above using the also already mentioned CVS
equations. This realization was assumed to be a
realistic representation of the true waste composi-
tion variation. No other disturbances were acting
on the plant during the simulations. Also, in the
design of the NMPC controllers employed in the
MSWC examples z was the only disturbance as-
sumed to be acting on the plant.
The two MHE based NMPC controllers employed
in the MSWC examples used the same MHE
whose purpose was to estimate the past trajectory
for z and an initial state vector as explained in
section 2.2. (Note that, in a real-life setting, z can
equally well be estimated, though not predicted,
with the CVS equations. One reason for not con-
sidering this situation here is that not all MSWC
plants have all measurements available for apply-
ing the CVS equations and, in addition, some of
these measurements are not always reliable.)
The EKF used in the EKF based NMPC con-
troller employed in the MSWC examples was
equipped with a random walk model for z, as-
suming no (more specific) disturbance model to
be available for this disturbance. It was optimally
tuned using simulations. The part of this NMPC
controller that computed the MVs was the same
as used in the MHE based NMPC controller to
which it was compared.
All programming was done with FORTRAN on a
2.4 GHz Pentium 4 computer. Both the dynamic
optimization problem underlying the MHE and
the one underlying the computation of the MVs
were solved according to the approach of (Tou-
sain and Bosgra, 2000): the nonlinear program-
ming problem underlying both these dynamic op-
timization problems was solved with a sequential
quadratic programming (SQP) method which was
derived from (Boggs and Tolle, 1995) and which
used an l1-merit function and BFGS Hessian up-
dates. Both MHE based NMPC controllers em-
ployed in the MSWC examples used time horizons
Nmhe = Nmpc = 5. Also worth mentioning is the
usage of the, so called, sensitivity equations to
obtain gradient information for the SQP method.
These equations remove the sometimes difficult
choice of perturbation step size in finite-difference
gradient computation methods. Sensitivity equa-
tions were effectively obtained from the model
equations using MapleTM (V).
Tuning of the two NMPC controllers proved to
be not that difficult. The ability to play around
with the accuracy levels inherent to the SQPs was
found to be very useful as this allowed for making
a good compromise between desired accuracy and
computational speed. The latter also applied to
the ability to set a maximum number of iterations
for each of the SQPs and (sub)iterations therein.



It is worth mentioning that during initialization
of the NMPC controllers the computational speed
could be much lower than after the initialization
phase where each of the SQPs could be ”warm-
started” properly with the values for the solution,
Lagrange multipliers and Hessian computed at the
previous step. Finally, the computations made by
the NMPC controllers employed in the MSWC
examples ended all well within the sample time
of 1 minute.

3.2 Application to MSWC model for a typical
combustion control problem formulation

The combustion control problem formulation typ-
ically used at MSWC plants is that of minimizing
the deviations from the measured Φst and O2

from their setpoints. A continuously and severely
changing waste composition makes this a challeng-
ing problem. Generally, a multivariable controller
is used consisting of several proportional and,
sometimes, integrating actions. Application of the
MHE and EKF based NMPC controllers to tackle
this conventional MSWC control problem led to
the results depicted in figures 2 and 3 and those
given in table 1. Figure 2 focuses on the closed-
loop responses whereas figure 3 focuses on the esti-
mation results obtained with the MHE and EKF.
The realization for the (”real”) disturbance z used
to obtain these simulation results is depicted in
the upper part of figure 3. From these results it
can be concluded that (i) both the proposed MHE
based NMPC strategy and the EKF based NMPC
strategy exhibit good disturbance rejection prop-
erties, (ii) the EKF based NMPC strategy exhibits
worse disturbance rejection properties than the
MHE based NMPC strategy and (iii) the MHE
gives better estimation results than the EKF,
which is thought to explain the second conclu-
sion. The closed-loop performance and estimation
differences are thought to be the result of only
the linearization steps performed in the EKF as
constraints did not come into play during the
simulations: if they do, the EKF is expected to
perform much more worse than the MHE.
Note the rather large difference in the computed

Table 1. MHE vs. EKF based NMPC.

PERF. MEASURE MHE EKF
(in standard dev.)
(sp = setpoint)

closed-loop std(Φsp
st - Φst,k) 0.19 0.31

performance std(Osp
2 - O2,k) 0.58 0.63

state std(ẑk+1-zk+1) 0.043 0.046
and std(x̂1

k+1-x1
k+1) 0 1.2 ∗ 10−19

disturbance std(x̂2
k+1

-x2
k+1

) 0.12 0.24

estimation std(x̂3
k+1-x3

k+1) 3.3 19.7

performance std(x̂4
k+1

-x4
k+1

) 0.05 0.18

values for the third MV, Φprim: see lower par
of figure 2. Also note that the MHE estimates
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Fig. 2. NMPC applied to MSWC test case: distur-
bance rejection properties (x-axes: minutes).
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Fig. 3. NMPC applied to MSWC test case: esti-
mation results.

for z represent an almost perfect one-step-ahead-
shifted version of their real counterparts, see up-
per part of figure 3, implying that the MHE is
very well capable of providing good estimates d̂k

(note that the MHE sets d̂k+1 = d̂k).
To highlight only the setpoint tracking properties
of the NMPC strategies, simulations have been
performed with constant z and setpoint changes
for both Φst and O2. The results are depicted
in figure 4. From this figure it can be concluded
that (i) the MHE based NMPC strategy exhibits
good setpoint tracking properties and (ii) these
properties are considerably better than those cor-
responding to the EKF based NMPC strategy.

3.3 Application to MSWC model for an a-typical
combustion control problem formulation

One advantage of NMPC is that one can apply a
much wider range of control problem formulations
than with other control strategies. In particular,
one can apply other control problem formulations
than the quadratic one typically encountered in
the control literature and which is also used in
the previous section in the MSWC example. This
gives the opportunity to employ a MSWC control
problem formulation that reflects more directly
its true control objectives. These are, as stated
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Fig. 4. NMPC applied to MSWC test case: set-
point tracking properties.

in section 1, maximization of both Uwif and Φst

while having a back-off to the constraints imposed
out of lifetime and environmental considerations
that is as small as possible but still large enough
to avoid too frequent crossing of these constraints.
Changing the control problem formulation of the
MHE based NMPC strategy of section 3.2 to one
that is maximization based (the rest as before)
led, with z again as in figure 3, to the closed-
loop simulation results depicted in figure 5. Both
Uwif and Φst can now be seen to jump from
their initial values right on resp. close to their
imposed upper bounds (the one on Φst imposed
out of lifetime considerations), thereby demon-
strating the maximizing effect of the new NMPC
strategy. Φst, however, can be seen not to have
good back-off properties, frequently crossing the
imposed bound. This is thought to be due to the
impossibility of the NMPC scheme to predict the
exact values of the disturbances at time k + 1.
Remedies to improve the back-off properties are
(i) the introduction of an accurate disturbance
model in the estimation part of the NMPC con-
troller and (ii) lowering the upper limit on Φst.
A third and perhaps better remedy is to use one
of the recently proposed (closed-loop, stochastic)
MPC strategies that claim to deal more systemat-
ically with disturbances as e.g. proposed in (Van
Hessem and Bosgra, 2004).

4. CONCLUSIONS

This paper has presented an NMPC strategy that
is characterized by the usage of an MHE for the
estimation of the states and disturbances (and,
if desired, parameters). This strategy has been
shown to be able to tackle NMPC problems em-
ploying relatively simple nonlinear dynamic mod-
els, as for example obtained with first-principles
modeling. It also has been shown, through an
MSW combustion example, that the MHE based
NMPC strategy has good disturbance rejection
and setpoint tracking properties which, in addi-
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native control problem formulation.

tion, are better than those obtained with an EKF
based NMPC strategy.
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