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Abstract: A switched sliding mode control strategy for a class of nonlinear
uncertain systems is presented in this paper. It is characterized by an event–
driven gain reduction mechanism which relies on a decomposition of the system
state into regions. By enforcing sliding mode behaviors on a suitable set of sliding
manifolds, while avoiding the generation of limit cycles, the proposed strategy
proves to globally asymptotically stabilize the origin of the system state space.
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1. INTRODUCTION

A huge number of scientific publications have
been devoted to hybrid systems throughout the
last decade: see, for instance, (A. S. Morse, 1997;
Morse et al., 1999; van der Schaft and Schu-
macher, 1999; Savkin and Evans, 2002), and the
references therein cited. A remarkable class of
hybrid systems, from the point of view of con-
trol engineering applications, is that of switched
systems, i.e., dynamical systems capable of as-
suming different continuous–time mathematical
models depending on a pre–specified switching
rule. Also Sliding Mode Control (SMC) systems
(Utkin, 1992; Hung et al., 1993; DeCarlo et al.,
1998; Edwards and Spurgeon, 1998) belong to this
class: they are, intrinsically, “switched systems”
in the sense that the control design relies on a
state space decomposition through a border, the
so–called sliding manifold, which is a linear or

nonlinear function of the full system state, so
that the control law is switched on crossing it.
Yet, in contrast to what happens in conventional
switched systems, in SMC systems the state tra-
jectory is not forced to instantaneously cross the
commutation manifold, but to slide on it. Indeed,
in this way, the desired dynamical features are
assigned to the controlled system.

The aim of the present paper is to design and
analyze a truly switched SMC strategy for a class
of nonlinear uncertain systems which relies on a
peculiar system state decomposition into count-
able partitions by means of a grid of conventional
sliding manifolds, and a set of nested switching
boundaries. With each partition of the state space
a control law is univocally associated. The choice
of the control laws is aimed at the attainment of
one of the following two objectives: to reach a par-



ticular sliding manifold, or to cross the switching
boundary closer to the origin.

The switched SMC system presented in this paper
is an example of controller for which the switched
version has a clear advantage over the conven-
tional (non–switched) realization: it provides a
solution to the problem of gain reduction in SMC
systems. Indeed, the choice of the control ampli-
tude in SMC is usually made taking into account
the known bounds on the system uncertain dy-
namics, as well as the limits of the workspace to
determine an upper bound on the variation of the
state norm, which makes this choice quite conser-
vative. A way to overcome this drawback is to in-
clude in the SMC design an adaptive tuning of the
control gain (Bartolini et al., 1998; Gessing, 2001).
In the present work, an alternative approach is
presented: as long as the state trajectory crosses a
switching boundary, a gain variation is generated.
More precisely, a state evolution approaching the
state space origin tends to determine, on cross-
ing switching boundaries closer to the origin, a
reduction of the gain of the component of the
control law which is discontinuous (as required to
enforce sliding modes). In contrast to (Bartolini et

al., 1998) and (Gessing, 2001), where a continuous
variation of the gain is generated, in the present
proposal the gain reduction mechanism is event–
driven and asynchronous in time. Most impor-
tantly, it does not require that the state is evolving
along a sliding manifold, being active even during
the reaching phases. As a result, the proposed
switched SMC strategy with gain reduction proves
to globally asymptotically stabilize the origin of
the system state space, in spite of the presence of
a bounded uncertain term in the system model.

The fact of dealing with dynamical systems with
uncertainty is the motivation for using SMC to
design a switched strategy. In fact, among the ap-
preciable features of the SMC methodology, there
is its robustness versus matched uncertainties and
disturbances, which is naturally inherited by the
proposed control approach.

Note that, the combination of SMC with hybrid
control has already been investigated in (Bartolini
et al., 1999a) and (Bartolini et al., 1999b). Yet, in
such papers, the switching mechanism is driven by
a logic based on the decomposition of the sliding
variable phase plane, rather than of the original
system state space, which can appear less intuitive
as far as the control laws design is concerned.
Rather, the present paper can be viewed as a
development of (Ferrara et al., 2002) in which a
switched SMC strategy is designed for second or-
der nonlinear systems through the decomposition
of the system state space into a couple of regions,
and no gain reduction mechanism is implemented.

The present paper is organized as follows. The
next section is devoted to problem formulation
and to the formal description of the proposed
control strategy. The analysis of its stability and
convergence properties is carried out in Section
3. Finally, in Section 4, a couple of examples are
briefly discussed.

2. PROBLEM FORMULATION AND DESIGN
OF THE SWITCHED SLIDING MODE

CONTROLLER

Consider the nonlinear continuous–time dynami-
cal system in controllable canonical form



















ẋ1(t) = x2(t)
...

ẋn−1(t) = xn(t)
ẋn(t) = f(x(t)) + gu(t)

(1)

with x(0) = x ∈ <n, where x = [x1 . . . xn]′ ∈ <n

is the state vector, f(x) = fn(x(t))+ f̄(x(t)) ∈ <,
with fn(x(t)) known nominal part, and f̄(x(t))
uncertain but such that

∣

∣f̄(x(t))
∣

∣ < k, ∀ t ≥ 0 (2)

k being a positive constant, u ∈ <1 is a scalar
control variable which influences the state vector
linearly through the known positive constant g.

Assume that the state space of system (1) is par-
titioned into different regions Ωi(x), i = 1, . . . , ν,
bounded by nested switching boundaries ϕ̄i, i =
1, . . . , ν, defined by ϕi(x) = 0, where

ϕi(x) = x′Pix − ci (3)

with Pi = P ′

i = diag {pi1 , . . . , pin
} > 0. Note

that also the origin of the state space can be
interpreted as a switching boundary, i.e., ϕ̄ν . More
specifically,

Ω1(x) = {x : ϕ1(x) > 0}

Ωi+1(x) = {x : ϕi+1(x) > 0 ∩ ϕi(x) < 0} (4)

i = 1, . . . , ν − 1.

With reference to the regions Ωi, i = 1, . . . , ν,
introduce the linear functions

σi(x) = xn +
n−1
∑

j=1

αijxj (5)

with αij = 1
µi

α(i−1)j , i = 2, . . . , ν, j = 1, . . . , n−1,
and the design parameter µi > 1, as well as the
corresponding sliding manifolds σi(x) = 0, i =
1, . . . , ν. As usual in SMC control (Utkin, 1992),
the switching functions σi(x), i = 1, . . . , ν, are



selected so that when the state of system (1)
is restricted to lay on the sliding manifolds, the
system dynamics exhibits the desired behavior.
Then, according to the SMC theory, define the
switched control law

u(t) = un(t) + ud(t)

=−
fn(x(t))

g
− Kisign(σi(x(t))) (6)

when x ∈ Ωi(x), i = 1, . . . , ν, where Ki is a
positive design parameter to be selected.

Then, the control problem is to design a switched
control strategy to make the origin of the state
space be a globally asymptotically stable equi-
librium point of the controlled system. Moreover,
the following constraint on the amplitude of the
discontinuous component of the control law is
considered

|ud|i > |ud|i+1, i = 1, . . . , ν − 1 (7)

|ud|j being the amplitude of ud in the region
Ωj(x). Clearly, constraint (7) prescribes a reduc-
tion of the gain of the discontinuous control ac-
tion as the state trajectory moves through regions
closer to the origin of the state space, driven by
the event of crossing a switching boundary.

As it is well known, see e.g. (Branicky, 1988),
a hybrid strategy where the controller switches
between different control laws can result in an
overall unstable closed–loop system even if each
control law is designed so as to guarantee stability.
So, the proposed switched SMC strategy does not
guarantee by itself the global asymptotic stability
of the origin of the controlled system state space,
but some further conditions on the gains Ki must
be imposed. To this end, define the functions

a =

{

1 if xn > 0
−1 if xn < 0

b =

{

1 if sign(σi(x)) > 0
−1 if sign(σi(x)) < 0

c =

{

1 if sign(σi+1(x)) > 0
−1 if sign(σi+1(x)) < 0

Then, for any switching boundary ϕ̄i, i = 1, ..., ν−
1, define

∆i,i+1
abc =

{

x ∈ Ωi | |xn| > δ1 ∩ ‖x − ϕ̄i‖ < δ2

}

(8)

∆i+1,i
abc =

{

x ∈ Ωi+1 | |xn| > δ1

∩‖x − ϕ̄i‖ < δ2 } (9)

and let

∆i,i+1 = ∪∆i,i+1
abc (10)

∆i+1,i = ∪∆i+1,i
abc (11)

With the ν regions Ωi, the following positive
values can be associated

K̃i > max

{

|x′Pi−1F(x)|

|x′Pi−1G|
∀x ∈ ∆i,i−1,

|x′PiF(x)|

|x′PiG|
∀x ∈ ∆i,i+1

}

(12)

for i = 1, . . . , ν, with

F(x) = [x2 . . . xn−1 f(x)]′ ∈ <n (13)

G = [0 . . . 0 g]′ ∈ <n (14)

where the terms inside the maximum have to be
regarded as zero for x ∈ ∆1,0 and x ∈ ∆ν,ν+1.

Thus, since a key design requirement, in the
present case, is determined by constraint (7),
assume that the control gains Ki, i = 1, . . . , ν, of
the switched part of the control law (6) are chosen
as follows

Ki ≥ max
{

K̄i, K̃i

}

, i = 1, . . . , ν (15)

with

Ki−1 > Ki, i = 2, . . . , ν (16)

where K̄i is a lower bound of the interval of values
of the gain Ki for which the reaching condition
σi(x)σ̇i(x) < −γ|σi(x)|, with γ positive constant,
(Utkin, 1992), is fulfilled in Ωi(x), i = 1, . . . , ν.

3. STABILITY AND CONVERGENCE

The stability of the origin of the closed-loop sys-
tem (1), (6), (15) is now investigated by analyz-
ing the behavior of the state trajectories in the
vicinities ∆i,j of the switching boundaries. For
the sake of clarity, the analysis is carried out in
the particular case of ν = 2. Note, however, that
the following results can be easily extended to the
case ν > 2.

A reaching condition is analyzed with reference
to ϕ̄ = ϕ̄1 (setting ϕ(x) = ϕ1(x), for the sake
of simplicity) in order to establish which parts
of it exerts an attractive or repulsive action on
the controlled state trajectories. Since ν = 2,
partitions ∆1,0

abc and ∆3,2
abc must not be considered,

and the only partitions of interest are ∆1,2
abc and

∆2,1
abc. For simplicity, let ∆1

abc = ∆1,2
abc and ∆2

abc =

∆2,1
abc. In view of definition (3), system (1), and

the switched control law (6), in ∆i
abc, i = 1, 2, it

results that

ϕ̇(x) = 2x′PF(x) − 2x′PGKisign(σi(x)) (17)

P := P1. Moreover, in ∆1
abc, one has ϕ(x) > 0

and, in view of (12), (15),

sign(x′PGK1sign(σ1(x))) = sign(ab) (18)



and

sign(ϕ(x)ϕ̇(x)) = −sign(ab) (19)

In contrast, in ∆2
abc, one has ϕ(x) < 0,

sign(x′PGK2sign(σ2(x))) = sign(ac) (20)

and

sign(ϕ(x)ϕ̇(x)) = sign(ac) (21)

Three different cases can occur:

case 1 : when ab = −1 and ac = −1, ϕ(x)ϕ̇(x) > 0
in ∆1

abc, while ϕ(x)ϕ̇(x) < 0 in ∆2
abc, so

that the state trajectories move from ∆2
abc

to ∆1
abc;

case 2 : when ab = 1 and ac = 1, ϕ(x)ϕ̇(x) < 0 in
∆1

abc, while ϕ(x)ϕ̇(x) > 0 in ∆2
abc, so that the

state trajectories move from ∆1
abc to ∆2

abc;
case 3 : when ab = −1 and ac = 1, ϕ(x)ϕ̇(x) > 0

both in ∆1
abc and in ∆2

abc. Hence, the state
trajectories cannot go through the switching
boundary ϕ̄, which is “repulsive” both in
∆1

abc and in ∆2
abc.

The following results can be proved in a row.

Proposition 1. The trajectories of the switched
closed–loop system do not present any limit cycle.

Proof: For the sake of simplicity, the first part of
the proof refers to the case n = 2, ν = 2, shown in
Fig. 1. Limit cycles entirely included inside Ω1 or
Ω2 cannot exist in view of the globally stabilizing
property of the SMC law (6) guaranteed by the
choice of the gains (12), (15). Hence, a limit
cycle, if any, should belong to both Ω1 and Ω2.

Specifically, and with reference to Fig. 1, only
limit cycles of type 1 or type 2 are allowed by
the attractive or repulsive properties of ∆1

abc and
∆2

abc. Any other possibility is forbidden, since it
would imply that the closed trajectory intersects
the sliding manifold σ1(x) = 0 in Ω1. However,
in this case, the trajectory would follow such a
sliding manifold until it reaches the origin. As
for limit cycles of type 1, they should cross in
Ω1 a level line of the Lyapunov function 1

2σ2
1 in

a forbidden direction, which is not allowed. The
same kind of arguments can be used to show the
infeasibility of cycles of type 2. When n > 2
and/or ν > 2, the previous arguments can be used
to draw the the same conclusions. 4

Proposition 2. Any trajectory moving from Ω2 to
Ω1, reaches in Ω1 the sliding manifold σ1(x) = 0.

Proof: This is a direct consequence of the fact that
every trajectory starting in Ω2 and passing in Ω1

through ∆2
−1,1,1 should cross in Ω1 a level line

of the Lyapunov function 1
2σ2

1 in the forbidden
direction. 4

x 2

x 1

W

s 1

s 2

j 1

t y p e  1  -  c y c l e  

 t y p e  2  -  c y c l e  

2

W 1

Fig. 1. The state space partition for x ∈ <2 with
the admissible crossing directions.

Proposition 3. The origin of the state space is a
globally asymptotically stable equilibrium point
for system (1) controlled by the switched SMC
strategy (6), (15).

Proof: First assume that x(0) ∈ Ω2. Then, two
cases are possible.

A1 The trajectory starting from x(0) reaches the
sliding manifold σ2(x) = 0 and goes to the
origin with the dynamics imposed by the
choice of α2j , j = 1, . . . , n − 1.

A2 The trajectory leaves Ω2 and enters Ω1. In
view of Proposition 2, it reaches the sliding
manifold σ1(x) = 0; then, the case B1 below
holds.

When x(0) ∈ Ω1, one of the following two cases
holds.

B1 The trajectory starting from x(0) reaches the
sliding manifold σ1(x) = 0; then, the tra-
jectory enters in Ω2 and reaches the sliding
manifold σ2(x) = 0 (case A1). Note that
in this last case, it cannot exit Ω2 without
passing through σ2(x) = 0.

B2 The trajectory enters Ω2 and one of the cases
A1–A2 applies.

We finally have to prove that the overall state
trajectory goes to the origin asymptotically. To
this end, note that by virtue of the choice of the
control law (6) with the control gains in (15),
and of the previous considerations, as well as of
the results in Propositions 1 and 2, the sliding
manifold σ1(x) = 0 is reached in finite time. Then,
classical results of the theory of SMC guarantee
that the controlled system state is steered to the
origin asymptotically (Utkin, 1992). 4



4. SIMULATION EXAMPLES

As a first example, the proposed switched SMC
strategy with event–driven reduction of the con-
trol gain is applied to the following system















ẋ1(t) = x2(t)
ẋ2(t) = x3(t)
ẋ3(t) = f̄(x(t)) + u(t)
f̄(x(t)) = −10sin(x2(t))

(22)

i.e., the nominal part of f(x(t)) is equal to zero,
and the uncertain part is bounded. Two regions
Ωi, i = 1, 2, are delimited by the switching
boundary

ϕ̄1 : x2
1 + x2

2 + x2
3 − 4 = 0 (23)

Associated with the Ωi’s, the following sliding
manifolds

σ1(x) = x3 + 4x2 + 6x1 = 0
σ2(x) = x3 + 0.4x2 + 0.6x1 = 0

(24)

are selected. As a first choice, the corresponding
control gains are set to the following values: K1 =
200, K2 = 15. The state trajectory of the con-
trolled system, starting from x(0) = [2 2 2]′, and
moving to the origin of the state space through
a sequence of “reaching” and “sliding” phases, is
shown in Fig. 2, while the switched control signal
component ud with gain reduction is illustrated in
Fig. 3. Note that, with reference to system (22),
if one sets the gain value equal to 15 ∀ t ≥ 0,
then the state trajectory of the controlled system,
starting from the same initial condition, does not
reach any equilibrium point, as shown in Fig. 4.
This is a sign of the fact that the gain selected in
the inner region is very low, taking into account
the system dynamics and the initial condition, and
that the origin can be made an asymptotically sta-
ble equilibrium point of the controlled system only
by virtue of the switched nature of the controller,
which enables the control gain to have an initial
higher value.

The class of systems considered in this paper
is rather general, in the sense that it obviously
includes all the nonlinear systems which can be
transformed into the canonical form (1) through
a suitable diffeomorphism. An example is given by
the system















ẋ1(t) = −x2(t) − x3(t)
ẋ2(t) = x1(t)
ẋ3(t) = f̄(x(t)) − u(t)
f̄(x(t)) = −cos(x2(t))

(25)

Relying on the global diffeomorphism z = [z1 z2 z3]
′

:= [x2 ẋ2 ẍ2]
′ = [x2 x1 (−x2 − x3)]

′, system (25)
can be transformed into the canonical form

−1

0

1

2

3

−4

−2

0

2

4
−20

−15

−10

−5

0

5

x1x2

x3

Fig. 2. The state trajectory of the controlled
system when the control gains are K1 = 200,
and K2 = 15.
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−250
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−150
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−50

0
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100

150

200

250

time [sec]

Fig. 3. The switched control with gain reduction
from K1 = 200 to K2 = 15.






ż1(t) = z2(t)
ż2(t) = z3(t)
ż3(t) = −z2(t) + cos(z1(t)) + u(t)

(26)

so that one has a nominal part fnz
(z(t)) = −z2(t)

(and, consequently, un(t) = z2(t)), and a bounded
uncertain part f̄z(z(t)) = cos(z1(t)). Also in this
example, two regions Ωi, i = 1, 2, are considered.
They are delimited by the switching boundary

ϕ̄1 : x2
1 + 2x2

2 + x2
3 − 4 = 0 (27)

while the corresponding sliding manifolds are

σ1(x) = x3 + 5x2 + 2x1 = 0
σ2(x) = x3 + 0.5x2 + 0.2x1 = 0

(28)

The control gains in the two regions are set equal
to: K1 = 200, K2 = 20. The state trajectory of the
controlled system, starting from x(0) = [3 3 3]′,
and moving to the origin is shown in Fig. 5, while
the switched control signal component ud with
gain reduction is illustrated in Fig. 6.

5. CONCLUSIONS

A switched SMC strategy has been presented in
the paper. Sliding mode behaviors are suitably
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Fig. 4. The state trajectory of the controlled
system when the control gains are both equal
to 15.
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Fig. 5. The state trajectory of the controlled
system (25).
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Fig. 6. The switched control with gain reduction
in the second example.

generated so that they have finite duration when
they occur on sliding manifolds which are sep-
arated from the origin by switching boundaries.
Alternatively, they asymptotically steer the con-
trolled system state trajectory to the origin of the
state space. As a result, the proposed switched
SMC strategy proves to globally asymptotically
stabilize the origin of the system state space.
The major advantage of the proposed controller
is that its positive stability features are attained
in spite of a reduction of the gain of the discontin-
uous component of the control law. The reduction

mechanism is not of adaptive type, but is driven
by the event of crossing a switching boundary, as
the state trajectory moves through regions closer
to the origin of the state space.
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