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Abstract: An approximate dynamic programming (ADP) strategy for a dual
adaptive control problem is presented. An optimal control policy of a dual adaptive
control problem can be derived by solving a stochastic dynamic programming
problem, which is computationally intractable using conventional solution methods
that involve sampling of a complete hyperstate space. To solve the problem in
a computationally amenable manner, we perform closed-loop simulations with
different control policies to generate a data set that defines a subset of a hyperstate
within which the Bellman equation is iterated. A local approximator with a
penalty function is designed for estimation of cost-to-go values over the continuous
hyperstate space. An integrating process with an unknown gain is used for
illustration. Copyright c©2005 IFAC
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1. INTRODUCTION

Practical control problems are characterized by
mismatches between model and plant, which can
be caused by structural/parametric uncertainties
and unknown exogenous disturbances. Uncertain-
ties may be modeled using either deterministic
bounds or stochastic processes. In the latter case,
the usual approach is to combine parameter esti-
mation and control into an adaptive control strat-
egy. The estimator delivers information about the
unknown parameters, such as their mean values
and covariances. Different classes of adaptive con-
trollers are obtained depending on how the in-
formation is utilized. The most popular approach
is to perform a control calculation by assuming
that the estimated parameter values are true val-
ues; this approach is referred to as the ‘certainty
equivalence’ approach. This, however, disregards
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uncertainties in the parameter estimates and can
lead to severe robustness problems such as the
“bursting” phenomenon. In addition, the disre-
gard of the coupling between the estimation and
control makes the learning “passive,” meaning
the controller does not make exploratory moves
to actively generate information about important
parametric uncertainties.

To obtain useful information about the process
dynamics, it is necessary to perturb the process
in general. On the other hand, such a perturba-
tion may not be favorable from a viewpoint of
closed-loop performance. Thus, there is a conflict
between information gathering and present con-
trol quality. This problem was first introduced
and discussed by Fel’dbaum in his series of pa-
pers published in the early 60s (Fel’dbaum, 1960,
1960, 1961, 1961). The optimal controller has
dual goals, and it should balance between control
and exploration. By gaining more process infor-
mation when needed, better control performance



can be achieved in the future. Fel’dbaum also
showed that Dynamic Programming (DP) can
be solved to obtain the optimal solution to the
dual control problem. It has been thought that
the DP solution for the problem is intractable,
and only a few very simple examples have been
solved this way after reducing the problem size
through some analytical insights into the specific
problem (Åström and Helmersson, 1986). Due to
the computational complexity, most researchers
approached the problem by introducing cautious
and active probing features to simpler suboptimal
controllers in a somewhat ad hoc manner (Lindoff
et al., 1999; Chikkula and Lee, 2000).

In this work, an approximate dynamic program-
ming (ADP) method is proposed to solve the dual
optimal control problem. The approach enables
us to combine the merits of the different starting
policies systematically through interpolation and
improvement of cost-to-go values in a hyperstate
space. If successful, the derived ADP-based con-
troller should demonstrate a well-balanced dual
feature. Section 2 presents a dual adaptive control
problem. Section 3 discusses a general procedure
for applying the ADP approach to the dual op-
timal control problem. An example of integra-
tor with unknown gain is presented in Section 4.
Section 5 provides conclusions.

2. STOCHASTIC ADAPTIVE CONTROL

2.1 Problem Formulation

We consider a discrete time model described as

x(k + 1) = f(x(k), u(k), θ(k), ζ(k)) (1)

where x(k) is a state vector, which is assumed to
be measured, u(k) is a manipulated input vector,
θ(k) is a vector containing unknown parameters of
the model, and ζ(k) is an exogenous noise, which
we assume here to be independently identically
distributed (i.i.d.) Gaussian. We also assume that
the structure f is known and the unknown param-
eter θ is also described by a Gaussian process.

The control objective is to minimize an infinite
horizon cost:

E

[ ∞∑
t=0

αtφ(x(k + t), u(k + t))

∣∣∣∣∣ ξ(k)

]
(2)

where α ∈ [0, 1) is a discount factor, and expecta-
tion operator E is taken over the distribution of ζ
and θ. ξ(k) is an information state (or hyperstate)
at time k, which includes the process state x(k)
and the first two moments of a posteriori proba-
bility density function of the Gaussian parameter
vector.

ξ(k) =
[
x(k), θ̂(k), P (k)

]T

(3)

where θ̂ and P are the conditional mean and
the covariance matrix of θ (conditioned by the
measurements), respectively. A feasible control
policy is the one that determines u(k) based on
the information available at time k (i.e. ξ(k)).

A closed-loop optimal solution to (2) assumes that
the future inputs are determined in a feedback-
optimal sense, which means they are dependent on
the future hyperstates. The optimal control policy
can be derived by solving the following stochastic
dynamic programming:

J∗(ξ(k)) = min
u(k)

E [φ(x(k), u(k))

+αJ∗(ξ(k + 1)) | ξ(k)]
(4)

The above equation is also referred to as Bellman
equation.

In real-time implementation, control action is cal-
culated at each sample time by

u(k) = µ∗(ξ(k)) = arg min
u(k)

E [φ(x(k), u(k))

+αJ∗(ξ(k + 1)) | ξ(k)]
(5)

Note that ξ(k + 1) is a stochastic variable and
is affected by the choice of control action u(k).
The difficulty in solving the above is that the
minimization, which requires expectation calcu-
lation for each evaluation of a candidate u, must
be solved for all the points in a densely gridded
hyperstate space. The control action influences
the immediate cost φ, quality of future estimation
(reflected through future hyperstate ξ), and future
control performance. Even though the optimal
controller will have the desired dual feature, the
DP formulation is intractable in all but simplest
cases if the conventional solution approach (e.g.,
value iteration, policy iteration) is taken.

2.2 Passive Learning Policies

This section introduces popular “passive” control
policies, the certainty equivalence (CE) control
policy and the cautious control policy. The CE
policy calculates a control action at each sample
time as if the estimate θ̂(k) were exact:

uCE(k) = µCE(x(k), ˆθ(k)) (6)

The inputs are designed without any regard for
their effects on future estimation quality, which
can make the achieved performance substantially
suboptimal and cause intermittent instability phe-
nomenon known as ‘bursting’ (Anderson, 1985).

A simple design that takes into account the uncer-
tainty is the ‘cautious’ controller that minimizes



the cost function of (2) only for a single step.
Note that, for a single step problem, u can be
optimized as a deterministic variable. This adds
a measure of caution to account for uncertainty
in that the gain in the controller is decreased as
the uncertainty is increased. It does not, however,
take into account the effect of a control action on
future estimation quality, and can lead to turn off
of the controller if the uncertainty becomes too
large. The cautious policy is also a passive learning
controller because there is no active probing signal
generated to improve the identification.

3. APPROXIMATE DYNAMIC
PROGRAMMING

In this section, we describe the ADP procedure
for solving the previously described stochastic
control problem. Due to the difficulties in com-
puting the exact solution to the DP formulation,
several approximate solutions have been proposed
(Wittenmark, 2002). One of them is to find an ap-
proximate solution for two-step ahead cost-to-go
function (Lindoff et al., 1999). It is, however, still
very complex and is restricted to simple problems.

To alleviate the computational barrier of curse-
of-dimensionality, which refers to the exponential
growth of the computation with respect to the
state dimension, the ADP approach attempts to
solve the Bellman equation only approximately
within limited confines of the hyperstate space
visited in closed-loop simulations of suboptimal
policies. Function approximator is used to provide
continuous cost-to-go estimate based on the dis-
crete data. The cost-to-go function approximation
is then improved through either iteration of the
Bellman equation (value iteration) or the itera-
tion between the Bellman equation and the policy
evaluation (policy iteration). The rationale behind
this idea is that even though the state space may
be huge, the dimension of the manifold for optimal
control for relevant conditions may be much lower,
given a small number of disturbance patterns and
set-point changes occurring in real operations.

From the method, one gets an approximation of
the optimal cost-to-go function, which maps the
state to the cost-to-go value under the optimal
control. The cost-to-go map then can be trans-
lated into an on-line control policy, which involves
solving a single-stage optimization problem rather
than a multi-stage one. Its potentials have been
demonstrated in several nonlinear control prob-
lems (Kaisare et al., 2002).

The followings are the outline of the suggested
approach for dual control problems.

• Step 1: Closed-loop simulations.

Perform closed-loop simulations with cho-
sen suboptimal control policies (µ0) under
all relevant operating conditions. Since the
ADP algorithm derives an improved control
policy from the data visited by starting poli-
cies, it is preferable to simulate with different
control policies having the characteristics of
cautiousness and active exploration. For ex-
ample, passive controllers with dither signals
can be used.

• Step 2: Approximation of the initial cost-to-
go values.

Using the simulation data, we first cal-
culate the infinite horizon cost-to-go, J̃µ0

,
for each state visited during the simulation
according to

Jµ0
(ξ(k)) =

∞∑
t=0

αtφ(x(k + t), u(k + t)) (7)

With the data, we construct a function ap-
proximator to approximate the cost-to-go as
a function of continuous hyperstate variables,
denoted hereafter as J̃µ0

. Here we use a local
averager of the following form:

J̃(ξ0) = β0J0 +
n∑

i=1

βiJ(ξi) (8)

with
n∑

i=0

βi = 1, βi ≥ 0 (i = 0, · · · , n) (9)

where ξ0 is a query point, J0 is a bias term,
and n is the number of neighboring points
in the data set for the approximation. K-
nearest neighborhood and kernel-based av-
eragers are of this class of approximators.
It can be proved that this local averaging
scheme guarantees the convergence of the
value iteration (Lee, 2004); however, it can
still introduce significant bias in regions of
the state space where the data density is
inadequately low. To systematically restrict
the search regions for the control actions, a
penalty function based on the estimate of a
local data density is employed. A nonpara-
metric density estimate for the query point
ξ0 using a training data set Ω is given by

fΩ(ξ0) =
1

nσm0

n∑

i=1

K

(
ξ0 − ξi

σ

)
(10)

where m0 is the hyperstate dimension, K is a
selected kernel function, and σ is a user-given
bandwidth parameter. We use the following
multivariate Gaussian function for the kernel:

K (·) =
1

(2πσ2)
m0
2

exp
(
−‖ξ0 − ξi‖22

2σ2

)
(11)



To use the cost-to-go approximator cau-
tiously, we incorporate into the cost-to-go a
quadratic penalty-term based on fΩ(ξ0).

J̃(ξ0) ⇐= J̃(ξ0) + Jbias(ξ0) (12)

Jbias = AH
(
f−1
Ω (ξ0)− ρ

)
[

1
fΩ(ξ) − ρ

ρ

]2

(13)

where H is a heavy-side step function, A is a
scaling parameter, and ρ is a threshold value.
In this work, ρ is the data density corre-
sponding to ‖ξ0 − ξi‖2 = σ, and A is calcu-
lated so that some large cost-to-go value, say
Jmax, is assigned to Jbias at ‖ξ0 − ξi‖2 = 3σ.
The penalty function biases upward the esti-
mate of cost-to-go for a query point in a man-
ner inversely proportional to the data den-
sity, which discourages the optimizer from
driving the system into unexplored regions
where data density is inadequately low.

We also note that the expectation operator
is not explicitly evaluated in this step, but
the function approximator should smoothen
the stochastic nature giving a good estimate
of the expected cost-to-go value. However,
this is not so critical because the off-line
iteration step will refine the cost-to-go with
explicit evaluation of the expectation opera-
tor.

• Step 3: Improvement of cost-to-go estimates
using value iteration.

To improve the cost-to-go approximation,
we perform the value iteration until conver-
gence according to

J i+1(ξ(k)) = min
u(k)

E [φ(x(k), u(k))

+αJ̃ i(ξ(k + 1))
] (14)

where superscript i denotes the ith iteration
step. J i+1 is calculated for every ξ(k) in the
data set, and ξ(k+1) is a successor state after
applying the control action u(k).

This step is complicated by the expec-
tation operator coupled with the minimiza-
tion. The expectation operator is evaluated
by sampling the innovation term, which is
also affected by the control action. We not
only sample the control actions used in the
suboptimal control policies but discretize the
actions with a reasonable grid size. Each can-
didate action gives probability distribution of
the corresponding innovation, according to
which the possible outcomes of hyperstate
are sampled using the Monte Carlo simula-
tion.

• Step 4: On-line implementation.
With the converged cost-to-go values, J̃∗,

control action in real-time is calculated from
the following minimization:

u(k) = arg min
u(k)

E [φ(ξ(k), u(k))

+αJ̃∗(ξ(k + 1))
] (15)

4. EXAMPLE

The ADP strategy is now applied to the integrator
process with two different scenarios: A step change
in the gain parameter and continuous drifts in the
parameter.

4.1 Problem Statement

Consider the integrator process (Åström and
Helmersson, 1986) described by

y(k + 1) = y(k) + bu(k) + e(k + 1) (16)

where y(k) is the output, u(k) is the manipulated
input, e(k) is a white noise, and b is an unknown
parameter. e follows the normal distribution of

e ∼ N (0, σ2) (17)

Furthermore, the unknown parameter b can vary
in time and its behavior is modeled as

b(k + 1) = φb(k) + γw(k) (18)

where w(k) is a Gaussian white noise.

The control objective is to minimize the following
discounted infinite horizon objective function:

E

[ ∞∑

t=k+1

αt−(k+1) [y(t)]2
∣∣∣Yk

]
(19)

where Yk denotes the sequence of observed out-
puts and inputs available at time k. Given the
measurements Yk, the estimator generates the
conditional probability distribution of the param-
eter b as follows:

b̂(k) = E {b(k)| Yk} (20)

P (k) = E

{[
b̂(k)− b(k)

]2
∣∣∣∣Yk

}
(21)

They can be calculated recursively according to

b̂(k + 1) = φb̂(k) + K(k) [y(k + 1)
−y(k)− b̂(k)u(k)

] (22)

K(k) =
φP (k)u(k)

σ2 + P (k)u2(k)
(23)

P (k + 1) =
φ2σ2P (k)

P (k)u2(k) + σ2
+ γ2Rw (24)

where Rw is the variance of w. The hyper-
state of the process, ξ(k), is defined as ξ(k) =
[y(k), b̂(k), P (k)]T .



4.2 Example 1: Step disturbance

Simulation Scenarios In most cases, the follow-
ing CE controller is nearly-optimal for the given
problem:

u(k) = −y(k)

b̂(k)
(25)

We consider a simple but somewhat idealized case
where the gain b can jump from the initial value
of 0.5 to a value between -15 and 15 (except 0)
and the timing of the jump is known. The initial
parameter value is assumed to be known exactly
so that the estimator is initiated with a covariance
of P (0) = 0. The covariance of the exogenous
noise term is set as 1 (σ = 1.0) but in the
particular realization we simulate, it is kept to as a
zero signal up to some time period (t = 100). The
parameter jump occurs at a certain time (t = 10)
during that period. We reset the covariance in the
estimator to 200 at the time of the jump.

The following cautious controller is also derived
by minimizing the one-step ahead cost-to-go func-
tion.

u(k) = − b̂(k)

b̂2(k) + P (k)
y(k) (26)

ADP-based Controller

• Data Generation
For generation of training data (hyperstate

vs. cost-to-go), closed-loop simulations were
performed using the following control poli-
cies: (1) The CE controller, (2) the cautious
controller, and (3) the CE and cautious con-
trollers with dithered inputs. We simulated
parameter jumps from the nominal value to
b = ±5,±10,±15. The dither signals were
randomly generated from the uniform dis-
tribution of [−0.1 0.1]. Three sets of the
dither signals were injected at regular inter-
vals during quiet periods. Each set of dither
signals lasted for 4 sample times. Three and
five realizations of e were simulated for non-
dithered policies and dithered policies, re-
spectively. Three separate realizations of the
input dithering were also simulated for each
realization of the dithered policies. The pa-
rameter was modeled as a constant for this
scenario, which means we set φ = 1, Rw = 0,
and the variance of σ was set as 1. The
total number of simulation data obtained was
3849.

• Value Iteration
In the value iteration step, we solve (14)

with φ(x(k), u(k)) = y2(k + 1) and α = 0.98.
The expectation operator was evaluated by
sampling 50 innovation values (ε(k)) for each

action candidate u(k) used for the optimiza-
tion.

ε(k) = y(k + 1)− y(k)− b̂(k)u(k) (27)

ε(k) has the following distribution:

ε(k) ∼ N (
0, 1 + u(k)2P (k)

)
(28)

The value iteration step converged after 24
runs with

∥∥∥∥
J i(ξ(k))− J i−1(ξ(k))

J i−1(ξ(k))

∥∥∥∥
∞

< 0.03 (29)

A distance weighted k-nearest neighbor esti-
mator was used for the cost-to-go approxima-
tion with k = 4, and the quadratic penalty
was designed with the parameter choices of
A = 0.87, ρ = 0.047, σ = 0.35, Jmax = 2500.
To bound the cost-to-go in the off-line iter-
ation steps, the additive penalty term is set
as Jmax whenever J̃(ξ0) ≥ Jmax.

• On-line Performance
Different parameter jump cases were sim-

ulated to compare the ADP policy with the
suboptimal control policies. The parameter
jump cases that had not been simulated for
generating the training data set were also
tested. For each case, the total cost over 50
sample times (

∑50
t=1 y2(t)) were calculated.

The total cost averaged over 10 realizations
are compared in Table 1. Whereas the aver-
age performance of the ADP controller does
not vary much with different parameters, the
other control policies suffer from bursting or
turn off phenomena, leading to poor average
performances.

Table 1. Averaged cost over 50 sample
times with 10 realizations of e

b CE Cautious Dithered Dithered ADP
CE Cautious

15 630.5 152.3 63.1 79.8 52.9
-15 936.7 179.8 116.0 93.3 50.7
10 194.6 169.6 99.7 85.5 66.3
-10 184.1 163.9 156.0 64.3 56.7
5 68.4 142.9 41.2 113.7 56.8
-5 72.0 130.5 83.4 64.7 48.0
12 630.1 109.3 60.0 52.3 51.2
-12 401.5 85.8 875.0 51.7 46.6
7 125.9 126.8 60.0 83.8 46.6
-7 345.1 167.4 84.1 65.2 60.7

The performance disparities were observed
during the transient period when the pa-
rameter jump occurred and exogenous noises
entered the system. Fig. 1 shows sample re-
sults of the output regulation under the three
policies (CE, Cautious, and ADP). At time
10, b jumps from 0.5 to 15 and the covariance
is reset to 200. White noise e enters the
system at time 15. It shows that the ADP
controller injects the probing signal at time
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Fig. 1. A sample run of the parameter jump case
(b = 15): y and u.

10 and achieves the best overall performance
of regulation, whereas the passive policies do
not move the control actions until time 15,
and the performances are degraded either by
bursting of the output or by turn off of the
control signals.

4.3 Example 2: Time-varying gain

We consider the case with nonzero Rw and σ.
To bound the parameter range well, we use φ =
0.9987 and γ = 0.05, which gives b of unit
variance. The performances of the CE and cau-
tious controller deteriorate when the parameter
estimate becomes close to zero even with small
uncertainty. Hence, we also simulated using CE
and cautious controllers with input dither signals
sampled from the uniform distribution of [−15, 15]
when |b̂(k)| < 0.2.

From 25 sets of simulations under the four differ-
ent control policies(CE, Cautious, CE/Cautious
+ input dither signals), 3323 data points (hy-
perstate vs. cost-to-go) were obtained. The value
iteration step converged after 21 runs using the
same convergence criterion as in the first example,
and the quadratic penalty term was designed with
K = 4, σ = 0.4, ρ = 0.1064, A = 0.8709,
and Jmax = 2500. 20 different realizations were
performed and the average on-line performances
are compared in Table 2.

Table 2. Averaged cost over 20 realiza-
tions of e: 500 sample times

CE Cautious Dithered Dithered ADP
CE Cautious

Avg 136120 894 13046 887 838
Max 387999 1016 327130 994 906
Min 7722 730 6708 690 654

5. CONCLUSIONS

An approximate dynamic programming strategy
was suggested to solve a stochastic optimal control
problem with a dual objective of identification and
control. Starting from different control policies,
including several passive and randomized policies,
the ADP approach could derive a superior control
policy that actively reduces the parameter uncer-
tainty, leading to a robust performance. Sufficient
number of simulations with dithered signals would
be beneficial in order for the approach to learn a
policy with the desired dual feature.
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