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Abstract: Following the Smith compensator the parallel compensator designed for
difficult, e.g. nonminimum phase plants is applied to systems with relay control. The
compensator connected in parallel to the plant changes its properties so that the
replacement plant model becomes simpler and may be shaped dependently upon the
goal of the control. In the case of regulation on a constant level a first order lag may
be chosen for the replacement plant model. In the case of tracking or disturbance
rejection of signals with frequencies belonging to some working frequency band, the
replacement plant model should have its frequency response close to that of the
plant, in the working frequency band. The proposed approach simplifies the design
and improves accuracy of the control. Copyright c©2005 IFAC
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1. INTRODUCTION

It is known that relay control such as on–off con-
trol, or sliding mode control is very robust i.e
it has insensitive steady state error to relatively
large plant parameter changes. However this ob-
servation concerns only minimum phase plants for
which initial slope of the step response is positive.

The robustness property of the relay control may
be explained verbally as follows. In continuous
control with proportional regulator the gain of the
regulator influences both the accuracy in steady
state and stability. Higher gain would improve
accuracy if the system would be stable. However
higher gain usually causes instability. Therefore a
trade off must be applied in choosing the gain.
This creates a constraint for accuracy.

In contrary to that in relay control we resign from
the demand for stability. The high frequency oscil-
lations are generated which are filtered by the dy-
namics of the plant. The on–off relay works on the
vertical part of its characteristic which is related

with very high (close to infinite) gain. Therefore
the filtered by the plant ”steady state” is very
accurate independently of some plant parameter
changes.

It is also known that for nonminimum phase plant
with negative initial slope of the step response
it is impossible to implement a relay control
assuring appropriate accuracy in steady state.
This is related with high amplitude and not high
frequency of oscillations appearing then in the
system. Therefore in the case of the nonminimum
phase plants a special approach is needed.

For the plants with pure time delay Smith (1958)
proposed a compensator with effectively takes
the delay outside the loop and allows a feedback
design based on the plant dynamics without delay.
The result is that the system designed in this
manner is faster and assures higher accuracy.
Now this compensator is commonly called Smith
compensator (Franklin et al., 1994) (or predictor



(Goodwin et al., 2001)) and may be also applied
to the systems with relay control.

In the present paper, following the idea of the
Smith compensator a parallel compensator is pro-
posed, which may be applied to nonminimum
phase plants. Using this approach, the relay reg-
ulator may be designed for the replacement plant
with appropriately chosen minimum phase model.
Similarly as for the Smith compensator the as-
sumption is that the plant is stable (in the case of
Smith compensator this is not exactly formulated
in literature). This approach may be also applied
for the system with usual continuous P/PI/PID
regulator. The preliminary idea applied to the
sliding mode control with decreased chattering
effect was presented in (Gessing, 2002).

The contribution of the paper is in proposing to
the systems with relay and nonminimum phase
plants the parallel compensator which improves
the accuracy of control and in showing that the
compensator may be applied both, for the case of
regulation and tracking.

2. PARALLEL COMPENSATOR

Consider the linear plant described by the transfer
function (TF)

G(s) =
Y (s)

U(s)
=

L(s)

M(s)
(1)

where Y (s) and U(s) are the Laplace transforms
of the plant output and input, respectively, while
L(s) and M(s) are polynomials of m-th and n-th
order, respectively and m < n. Assume that the
plant is stable, that is its poles pi, i = 1, 2, ..., n
have negative real parts i.e. Repi < 0.

In the case of difficult plant (e.g nonminimum
phase, or with higher order dynamics), when it is
difficult to design the relay regulator assuring an
appropriate accuracy, a parallel compensator may
be applied. The closed loop system with relay and
parallel compensator, as well as the characteristic
of the relay is shown in Fig. 1. The idea of parallel
compensator, described by the TF

Gc(s) =
Yc(s)

U(s)
= G1(s) − G(s) (2)

is similar to that of the Smith compensator. Here
Yc(s) is the Laplace transform of the output yc

of the compensator, while G1(s) is the TF which
should be appropriately chosen.

Note that in the proposed structure shown in
Fig. 1 the TF Gr(s) of the replacement plant is
described by

Fig. 1. CL system with parallel compensator and
relay implementation; characteristic of the
relay.

Gr(s) =
Y1(s)

U(s)
= G(s) + Gc(s) =

= G(s) + G1(s) − G(s) = G1(s) (3)

Thus the replacement plant is described by the TF
G1(s) and the relay regulator should be designed
for the replacement plant. Therefore the crucial
point in the proposed method is the choice of the
TF G1(s).

We will distinguish two cases dependently upon
the goal of the control.

I. Regulation on a constant level in steady state
under stepwise excitations;

II. Tracking and disturbance rejection with some
accuracy for frequencies belonging to a work-
ing frequency band [0, ωmx].

3. REGULATION ON A CONSTANT LEVEL

In this case we are mainly interested in the ac-
curacy of the constant steady state, appearing
after some time from occurrence of stepwise exci-
tation (set point or disturbance). Since in the case
of nonminimum phase plants we have a limited
possibility of shaping transient response, which is
dependent upon the placement of zeros and poles
of the plant we do not formulate some special
demands concerning transient response, though it
should be acceptable. In this case the model G1(s)
may be chosen in the form of a first order lag i.e

G1(s) =
k0

Ts + 1
, k0 = G(0), (4)

so that G1(0) = G(0) (5)

Since the gain of constant signals (ω = 0) is the
same for both the models G1(s) and G(s), then in
steady state for constant signals, as results from
(2) and (5), it is

yc = 0 and e1 = w − y = e (6)

where e is the error signal.



Thus we have obtained the CL system composed
of the simplified replacement plant with first order
lag model (4) and the relay with the parameters
H and h. For sufficiently small hysteresis h the
frequency of the relay switchings is so high that it
is filtered by the dynamics of the plant G(s) and
the oscillations are not seen in the output y.

Note that the relation (6) is valid even then when
the plant parameters of G(s) are changed. For
n − m ≥ 2 and small h it is easy to note that the
change of the plant G(s) parameters giving plant
TF G∗(s) does not change the initial slope of the
step response of the replacement plant G∗

1(s) =
G1(s) − G(s) + G∗(s) essentially, because initial
slopes of G(s) and G∗(s) are zero (as n−m ≥ 2).
Thus the frequency of switchings is changed in-
significantly which means that the system may be
insensitive to the plant G(s) parameter changes.

3.1 Example 1

Consider the nonminimum phase plant described
by the following TF

G(s) = kp

−3s + 5

s3 + 2s2 + 3.5s + 2.5
, kp = 1 (7)

Assume that the goal of the control is regulation of
the plant output on a constant value determined
by the set point w. A stepwise change of the set
point (or output disturbance) may occur. The
relay control with parallel compensator is used,
as shown on Fig. 1.

Assume G1(s) in the form (4) with T = 0.1 and
k0 = G(0) = 2.

Fig. 2. Plots of y and w for Example 1.

In Fig. 2 the step response y of the CL system,
with relay parameters h = 0.1, H = 2 and parallel
compensator (4), to the set point w = 1(t − 1) is
shown (here 1(t) = 1 for t ≥ 0 and 1(t) = 0
for t < 0). It was obtained from simulations per-
formed in SIMULINK. Some changes of the plant
parameters do not influence the step response

significantly. For instance, increase of the plant
gain to kp = 1.5 (without change of the parallel
compensator) gives stable response with overshot
∼ 1.66 undershot ∼ −0.19 and higher decaying
oscillations. Decrease the gain to kp = 0.5 gives
stable, aperiodic response.

4. TRACKING AND DISTURBANCE
REJECTION

In this case we are mainly interested in the ac-
curacy during tracking or disturbance rejection
of varying signals with frequencies belonging to
some working frequency band [0, ωmx]. Similarly
as in the case of regulation systems, in the case
of nonminimum phase systems we have limited
possibility of shaping transient response, which
however should be acceptable.

Choosing the model G1(s) we should take into
account the fact that in the proposed system with
the parallel compensator, the replacement plant
has the model G1(s) and to this plant the relay
should be designed. Therefore the model G1(s)
should be minimum phase and it is recommended
that the relative degree of the rational TF G1(s) is
equal to one, since for this kind of the replacement
plant the initial slope of the step response is
nonzero and positive which gives high frequency
switchings of the relay if h is small. The high
frequency oscillations are filtered by the dynamics
of the plant (1) so that in the output signal they
are not noticeable.

Additional demand is that the frequency re-
sponses of G(jω) and G1(jω) in the working fre-
quency band [0, ωmx] should be close one to other
or

G1(jω) ≈ G(jω) for ω ∈ [0, ωmx] (8)

The demand (8) is justified for linear systems.
The justification of this demand for the systems
with relay is based on the fact that in the case
when the fast frequency oscillations resulting from
the relay switchings are generated, there appear
linearization and the system with relay works
approximately as a linear system (Slotine and Li,
1991).

Thus the process of design contains the following
steps

(1) choose the rational TF G1(s) with relative
degree equal to one;

(2) find the values of the coefficients of poly-
nomials in the numerator and denominator
of G1(s) so that the approximation (8) is
fulfilled in some interval [0, ωmx];

(3) design the relay for which the CL system has
negligible oscillations in the plant output sig-



nal. The choice of the parameters H and h of
the relay may be performed experimentally.

4.1 Algorithm for coefficients finding

Denote by Ḡ(s) = G(s)/G(0) the normalized
model of the plant with the gain Ḡ(0) = 1.

Assume the normalized model Ḡ1(s) in the form

Ḡ1(s) =
b1s

p−1 + b2s
p−R + ... + bp−1s + 1

a1sp + a2sp−1 + ... + aps + 1
(9)

We wont to find the coefficients ai, i = 1, 2, ..., p, bj,
j = 1, ..., p − 1, p ≤ n, for which the frequency
response Ḡ1(jω) in some interval [0, ωmx] approx-
imates Ḡ(jω), and the model Ḡ1(s) is stable and
minimum phase. We have

Ḡ1(jω) = ReḠ1(jω) + jImḠ1(jω) (10)

Ḡ(jω) = ReḠ(jω) + jImḠ(jω)

where Re and Im are the real and imaginary parts
of appropriate frequency response. Denote by

d(ω) = ||Ḡ1(jω) − Ḡ(jω)|| = (11)
√

[ReḠ1(jω) − ReḠ(jω)]2 + [ImḠ1(jω) − ImḠ(jω)]2

the distance between appropriate points of fre-
quency responses Ḡ1(jω) and Ḡ(jω). Of course it
should be

d(ω) ≤ ∆ for ω ∈ [0, ωmx] (12)

where ∆ is a given small positive number deter-
mining the accuracy of the approximation (e.g.
∆ = 0.01 or 0.05), and [0, ωmx] determines the
working frquency band in which the characteris-
tics Ḡ1(jω) and Ḡ(jω), for ω ∈ [0, ωmx] are close
one to other.

Let N denotes an assumed number of points ωi

equally distributed in the interval [0, ωmx] (eg.
N = 10). Then

ωi =
i

N
ωmx i = 1, 2, ..., N (13)

Denote by Ω the set of admissible values of the
coefficients ai, i = 1, ..., p, bj , j = 1, ..., p − 1,
for which the polynomials of the numerator and
denominator of the transfer function (9) are stable
(i.e. their zeros have negative real parts). The
set Ω may be determined using for instance the
Hurwitz stability criterion for the coefficients of
the numerator and denominator polynomials of
the transfer function (9).

The distance between the characteristics Ḡ1(jω)
and Ḡ(jω) in the interval [0, ωmx] may be deter-
mined from the dependence

d = max
i

d(ωi), i ∈ {1, 2, ..., N}. (14)

To find the values of the polynomial coefficients
the following algorithm may be used

Algorithm

(1) choose ωmx, N and ∆ and determine ωi from
(13);

(2) find the coefficients ai, i = 1, 2, ..., p bj =
j = 1, 2, ..., p − 1 from minimizing the ex-
pression dmin = minΩ d;

(3) if dmin < ∆ end;
(4) if dmin > ∆ decrease ωmx and repeat the

points 1 and 2 of the Algorithm.

As the result of applying the algorithm we obtain
the coefficients ai, bj , i = 1, 2, ..., p, j = 1, 2, ...p−
1 and dmin and ωmx for the assumed transfer
function Ḡ1(s) and numbers N , ∆.

The sought transfer function G1(s) results from
the dependence

G1(s) = G(0)Ḡ1(s) (15)

We may have difficulty with solving the mini-
mization problem mentioned in point 2 of the
Algorithm since the distance d as a function of the
coefficients ai, bj usually has many local solutions.
Therefore, it is reasonable to apply a random walk
within some appropriately restricted set Ω.

4.2 Example 2

Consider the plant described by the TF (7). We
would like to design CL system with relay and
parallel compensator, which for some frequency
band [0, ωmx] tracks varying set point and/or
rejects varying output disturbance.

We decide to use the second order model Ḡ1(s) in
the form

Ḡ1(s) =
b1s + 1

a0s2 + a1s + 1
(16)

Since G(0) = 2 then Ḡ(s = G(s)/2).

To find the coefficients of the TF (16) we have
applied the described Algorithm, assuming N =
10, ∆ = 0.3 and ωmx = 0.4rad/sec. To find
the minimum of the function d we have sought
in the set of coefficients restricted to the form
Ω = {0.1 < b1 < 7, 0.1 < ai < 7, i = 1, 2}, gen-
erating in the mentioned intervals random values
bj , ai equally distributed and next decreasing the
intervals in the vicinity of the preliminary found
values of the coefficients.



Using this approach we have found the following
solution: b1 = 0.1016, a1 = 2.038, a2 = 1.898.
Accounting (15) and the value G(0) = 2 we obtain

G1(s) =
0.2032s + 2

2.038s2 + 1.898s + 1
(17)

The Nyquist plots of the characteristics G(jw)
and G1(s) determined by (7) and (17), respec-
tively are shown on Fig. 3, where ωmx =
0.4 rad/sec.

Fig. 3. Nyquist plots of G(jω) and G1(jω) for
Example 2.

Fig. 4. Plots of y and w for Example 2.

In Fig. 4 the time response y of the CL system
with relay parameters h = 0.01, H = 2 and par-
allel compensator (determined by (7) and (17)), to
the set point w = sin(0.4t)1(t), is shown. It is seen
that beyond the initial, transient period the plots
of y and w are almost the same. The hysteresis
parameter h is now 10–times smaller than that
in Example 1 to avoid switching oscillations in
the output y. This is caused by the fact that
the initial slope of the step response of G1(s)
determined by 0.2032/2.038 = 0.0997, which for
given h decides about frequency of switching, is

now 2/0.0997 = 20.0602 – times smaller than
that of G1(s) for Example 1. The system now is
more sensitive to plant parameter changes than
in Example 1. For instance the system is stable
(neglecting switching oscillations not notable in
the output y) for kp from 0.75 to 1.24 without
change of the compensator parameters.

5. APPROXIMATE DESCRIPTION OF THE
SYSTEM

Let us notice that the block diagram of the CL
system shown in Fig. 1 may be transformed to
the form shown in Fig. 5.

Fig. 5. The transformed block diagram of the
system from Fig. 1

Assume that the hysteresis h of the relay is small
and high frequency oscillations generated by the
fast switchings of the relay are filtered by the
dynamics of the plant G(s), as well as by G1(s)
and by Gc(s). Let ȳ(t) and ȳc(t) be the outputs
of the plant G(s) and parallel compensator Gc(s),
respectively, in which the high frequency oscilla-
tions are neglected. Since the amplitudes of these
oscillations are small then it is

ȳ(t) ≈ y(t), ȳc(t) ≈ yc(t) (18)

During fast switchings the relay works on vertical
segment of its characteristic, therefore in approx-
imate description we may treat the relay as the
linear static element with very high gain k → ∞.

Let ū(t) is the averaged control signal contain-
ing slowly varying component such that Ȳ (s) =
G(s)Ū(s), where Ȳ (s) = L[ȳ(t)], Ū(s) = L[ū(t)]
and L denotes Laplace transform. Let Ȳc(s) =
L[ȳc(t)] and Ē(s) = W (s)−Ȳ (s), W (s) = L[w(t)].
Then the variables Ū(s) and Ē(s) are related with
the following TF

Ū(s)

Ē(s)
=

k

1 + kGc(s)
≈

1

Gc(s)
(19)

as k is high. Therefore we have



Ȳ (s)

W (s)
≈

G(s)/Gc(s)

1 + G(s)/Gc(s)
=

=
G(s)

Gc(s) + G(s)
=

G(s)

G1(s)
(20)

Thus the CL system with relay is described ap-
proximately by the linear model with TF equal to
the ratio of G(s) to G1(s). The formula (20) may
be also used for choosing appropriate replacement
plant G1(s).

5.1 A particular case

Denote by G1(s) =
L1(s)

M1(s)
(21)

a stable replace replacement plant with minimum
phase zeros. Thus the polynomials M1(s) nad
L1(s) are Hurwitz polynomials. In the considered
particular case we may choose M1(s) = M(s)
and L1(s) as an appropriate Hurwitz polynomial
of (n − 1)-th order, such that the CL system
composed of the plant G1(s) and the proportional
regulator with high gain k is stable. Then from
(21) we obtain

Ȳ (s)

W (s)
=

L(s)

L1(s)
(22)

Thus the numerator of TF (22) contains the poly-
nomial appearing in the numerator of (1), while
the denominator of (22) contains the polynomial
appearing in the numerator of (21). From these
considerations it results that in the considered
case the choice of L1(s) influences essentially the
dynamics of the researched CL system with relay.
Really its characteristic equation takes the form

L1(s) = 0 (23)

These observation may help in choosing the poly-
nomial L1(s) basing on linear theory (Goodwin et

al., 2001).

6. CONCLUSIONS

In the present paper, following the Smith compen-
sator (Smith, 1958) we apply a similar compen-
sator to relay systems with nonminimum phase
plants. The compensator, connected in parallel
to the plant, changes its model which becomes
minimum phase. For the changed replacement
plant model it is easy to design relay parameters
which assures appropriate accuracy. The kind of
the replacement plant model depends upon our
choice and the goal of the control.

If the main goal of the control is the accuracy
of regulation in constant steady state, then the
replacement plant model may take the form of a

first order lag with the gain equal to that of the
plant. The time constant of this model has also a
limited influence on under– and over–shot of the
step response.

If the main goal of the control is tracking or
disturbance rejection of signals with frequencies
belonging to some working frequency band, then
the replacement plant model in the form of ra-
tional transfer function with relative order equal
to one, should be chosen in this manner that it
is minimum phase and in the working frequency
band its frequency response is approximately the
same as that of the plant.

Especially in the case of regulation the proposed
system structure is robust since the frequency
response of the replacement plant model lies in the
first negative quadrant of the Nyquist plane (first
order lag). In the case of tracking or disturbance
rejection the demand of closing the frequency
response of the replacement plant to that of the
plant causes some decrease of robustness, since
the frequency response of the replacement plant
may lay now in the first and second negative
quadrants of Nyquist plane (closer to the critical
point (−1, j0)). This consideration is based on the
fact that the relay system, during fast oscillations
of the relay may be treated as linear system in
which the relay is replaced with a static linear
element with high gain k.

It seems that the described idea of parallel com-
pensator may be also used for other difficult plants
improving accuracy at least in steady state and
also robustness of the control.
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