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Abstract: A three dimensional probabilistic approach for the path planning of
uninhabited air vehicles (UAVSs) is presented. The algorithm can be used in real
time because of a low computational load in spite of the fact that it finds a path
in three dimensions. The paths are locally optimal and are feasible for the UAV
to follow by keeping the turn angle within a certain maximum limit. For this
purpose, a relation has been derived that transforms the maximum turn angle
into a maximum search angle. The UAVs are prevented from flying at very low
altitudes to avoid crashing into the ground. Because of limited fuel, a compromise
is made between risk and fuel consumption by limiting the height and search angle.
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1. INTRODUCTION

Uninhabited air vehicles (UAVs) are likely to
become increasingly important in the 21st cen-
tury (Pachter and Chandler, 1998; Bortoff, 1999;
McLain, 1999; Chandler et al., 2002). UAVs are
advantageous over piloted counterparts in terms
of manoeuvrability, low human risk, low cost and
light weight. Examples of the wide use of UAVs
for civil, military and commercial applications in-
clude weather and atmospheric monitoring, emer-
gency communications, telecommunications, bor-
der patrol, and battlefield deployment, etc. The
ever increasing interest in UAVs demands higher
levels of autonomous behaviour. Among the many
open issues in the development of autonomous,
intelligent UAVs, flight path planning, or trajec-
tory selection, is of crucial importance. To develop
an algorithm for such a task is a challenging
problem. The algorithm must compute a stealthy
path which steers the vehicle away from potential
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dangers. The path selected should be optimal in
a certain sense as well as feasible. The algorithm
must be fast enough for real time use in an un-
certain environment, and efficient in memory and
computational demand so that it can be run on
airborne processors.

The problem of path planning has been studied
for decades in a variety of different contexts and
tackled with various approaches. Path planners
are generally divided into local and global plan-
ners. The former group work in on-line mode while
most of the latter group work off-line. A global
path planner needs to know everything about
the system and its environment. A clear disad-
vantage of this is that a replanning is necessary
each time the environment changes, which often
happens in a real situation. There is a tendency
therefore to design local path planners for vehicle
autonomy (Borenstein and Koren, 1991; Elnagar
and Base, 1993). A local path planner does not
suffer from the above disadvantage, although such
a planner would lead to the loss of global optimal-



ity. In this paper, we present a method for path
planning which is based on local optimisations
and may take into account flight constraints such
as turning angles. The algorithm can be used to
select a flight path for each UAV in a group of
UAVs on a collaborative mission. Each vehicle has
its own processor and applies the algorithm to find
its path with consideration of the other vehicles’
positions and movements. This kind of algorithm
is thus called decentralized. The formulation and
example discussed below will, however, concern
one vehicle only, due to the length limit of the
paper.

This paper is organised as follows: Section 2 de-
scribes the problem and models for estimating
risk. Section 3 addresses a local probabilistic min-
imisation approach and its application to path
planning. An example is shown in Section 4 with
simulation results and discussions. Section 5 con-
cludes the paper.

2. PROBLEM FORMULATION AND RISK
MODELLING

The problem under consideration is to find a
“safe”path for a UAV to fly from a starting point
Py to a target point Pp. Suppose that the UAV
moves at a constant speed and let p(z,y,z) be
the risk at position (z,y, z). The path selected is
a sequence of points in 3-dimensions (waypoints)
obtained by minimising the cost function

T
J = /p(x,y,z)dt (1)

over all points (z,y,z). The overall UAV risk
function is complex due to the influence of dif-
ferent factors and can be modelled adequately in
a probabilistic framework as described below.
Probability of Hit

For each defence unit (radar and SAM) aiming at
a UAV, there is a hit probability. Within a given
range, this probability depends on the position of
the UAV. This can be calculated by a function of
height (h) and distance (d) of the UAV from SAM
site and is given by (GARTEUR Action Group
AG14, 2003)

pr(h,d) = (1 —5S(d,Rs m1,5k,)) - SS(d,0.1.Rs m 1,
Sk,) - SS(arcsin(h/d), 7y, sk,) (2)
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and <y is the lower coverage angle of the radar and
sp; the softness of the step function SS. Ry
is the range of the missile which may be short,
medium or long. The hit probability for long range
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Fig. 1. Hit probability of long range SAM

SAM (R = 65 km) is shown in Figure 1 for
S, = 12, s, = 2.4, s, = 0.1, with numbers on
different contours indicating the hit probability.
Probability of Destruction

If the UAV is within the reach of M SAM sites,
the hit probability is increased by possible co-
operation such as alternating radar transmission
or choice of launch site. This effect is modelled
by evaluating the hit probability of all covering
SAM sites pj,(h,d) (the worst case) and using the
relation

M

pdes(had) =1- H(l _p?c(h’d))

Jj=1

Probability of Crash

When a UAV flies at very low altitude, there is
a possibility of crashing into ground objects like
trees or hills. So in order to prevent all UAVs from
flying around at zero altitude, a crash probability
can be modelled as

pcr(h) =1- SS(h, hcra Scr)

where h,, is the nominal critical height and each
UAV is forced to fly above this height for safety
reasons. S, is the softness parameter of the above
probability function which can be tuned according
to the situation. This softness parameter is used
to relax or strictly follow the critical height.
Probability of Survival

Due to small sizes, UAVs have limited fuel capac-
ity. Typically, flight times of UAVs are 30 (min).
The risk decreases with increasing height after a
critical height but on the hand fuel decreases. So
a compromise can be made between risk and fuel
consumption by limiting the height.This effect can
be modelled as survival probability pgy, similar to
the crash probability.

Probability of Collision

When the mission involves a group of UAVs, risk
of collision with other vehicles is a function of the
distance of the vehicle from other UAVs and can
be modelled as

Peo(D) = 1 — softStep(D, deo, Sco)

Where d., is the safety distance to avoid collision.



Probability of Risk
The overall risk probability can be calculated due
to all the above factors as

p(hid) =1-[(1=pe) [JA -] (3)
J
Note that the collision probability is not included
in (3).

3. PROBABILISTIC LOCAL MINIMISATION
ALGORITHM

The algorithm is based upon a search for a local
minimum on a disc whose centre passes through
the line of sight of the target from the current
point and is also perpendicular to that line. The
radius of the disc is decided from the maximum
search angle, which in turn can be decided from
the maximum turn angle. The disc is divided into
sectors by a suitable number of lines all passing
through its centre as shown in Figure 2 below.
The search is carried out along these lines. The
distance of the search disc from the current point
is chosen according to the type and range of
the search sensor mounted on the UAV and all
points on the disc should be within the range of
the search sensors. The maximum search angle
could be different for different search lines in the
disk. This is because the maximum climb rate
may be different in different directions. To find
the coordinates of each point on the disc, it is
necessary to specify a known reference line lying
in the disc and passing through its centre. The
reference line (RL) is selected to be parallel to the
horizontal plane. For the two dimensional case,
the search is limited to the reference line only but
in three dimension, we have to search the whole
disc along various lines.

Consider such a disc having centre at a point
P.(z¢,yc, 2c), which is at a distance h from the
current point P;(x;,y;,2;) on the line of sight of
the target having coordinates Pr(zp,yr,zr) as
shown in Figure 2. For each line in the disc, the
search is initialised from the point P.(z.,y, zc)
and moves on either side of the line with equal
small steps; it is limited by the maximum search
angle for that line.The equation of the plane
containing the disc and P(x,y, z) representing any
point on the plane is given by

a(®—zc) +b(y —ye) te(z—2z:) =0 (4)
where
a=(zr — ), b= (yr —¥i), ¢ = (27 — 2i) (5)

are the direction ratios of the line of sight of the
target. Let [,m, 0 be the direction cosines of RL.
We have

P+m”=1 (6)

Horizontal
reference line

Fig. 2. Search Disk

Consider the j'* search line in the search disc
which is an angle of §; from RL. Let P(x,y, ) be
the point on the line at a distance r from P, and
r is less than or equal to R; which is the radius of
the j** search line. Then the equation of the jt*
search line is

(@ —z)l+ (y —yc)m = rcosb; (7)
Since P(z,y, z) and Pc are r distance apart
('7: - mc)2 + (y - yc)2 + (Z - ZC)Q = T2 (8)

The reference line and the line of sight are per-
pendicular which implies

l-a+m-b=0 9)

By solving Equations (6) and (9), we will get
two sets of values representing two parallel unit
vectors in the opposite direction. Select one set as

b a
l=— , m= , n=
1/012_|_b2 1/a2_+_b2

Hence Equation (7) becomes

—b(x —z.) +aly —y.) =rcosb;\/a? +b> (10)
Furthermore, solving Equations (4), (10) and (8)

for z, y and z, two points Pp(zp,yr,z1) and
Pr(zr,yr,zr) will be obtained on either side of
the search line at a distance r from the point P,
zp =x.—rde (xg =zx.+ rdz)
yr=ye +rdy (yr =yc —rdy) (11)

z, =2c+rdz (zr =2z, —rdz)

where

dx

b
= ————cosbli+ ——.
va? + b2 T VaZ b2
dy = —2 9
V= T T



When a local minimum point P, (Zm, Ym, 2m) is
found after searching all the lines, the UAV will
move in that direction by a distance h. From
simulation, it has been observed that by moving
exactly to the local minimum point along the
chosen safe direction, the vehicle may find itself in
a danger zone in the next iteration. Although the
point is safe, it may be very near to the threat. So
it is better to cover some shorter distance (in our
case h) to have a safety margin. The next point
of the path can be calculated as

OP;i1 = OP; + hitim

where 7, is the unit vector in the direction of
the local minimum Py, (2, Ym, 2m) from point P;
and is calculated by

~ ['/I:m —ZTisYm — Yi; Zm _zi]T

Nim = \/(l‘m —2)2 + (Ym — ¥i)2 + (2m — 2;)?

The coordinates of the next point are

Tiy1 = T; + d—(xm - wz)
h

Yirr =Yi+ 7 Um — i) (13)
m

Zit1 = 2i + %(zm - 2i)

where

dim = \/(mm - wi)2 + (ym - yi)2 + (Zm - Zi)2

The process of local minimisation for the case of
the circular disc and the strong dependence of the
maximum turn angle on the search angle can be
seen in Figure 3.

Fig. 3. Local minimisation and maximum turn
angle

From Figure 3, the maximum turn angle 3 is

B=/CBG=2)+0 (14)
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=9 Y
B ¢+arctand_ Trcosd

(15)
where h is the forward step size and d is the
distance of the current point from the destination
T. For constant h and v, the maximum turn angle
depends on d only. When d is very large, then
tand - 0 = 6 — 0 = 3 — 2. On the other
hand S increases when the UAV approaches the
targets.

The algorithm for path planning is described

below. It requires information on the threats,

starting point and target point. A few parameters
should be chosen first including forward step size

h and lateral step angle év, disc search direction

angles [6;]37", vector of maximum search angles

along each search line [1&]];;”{“”, risk threshold «,
tolerance, etc..

ALGORITHM PROCEDURE:

Step 1 Initialise the path vector with the start-
ing point and declare it the current point P; and
set the indices i =1, j = 1, dy = §.

Step 2 Find the distance
V(xr —x:)? + (yr — yi)? + (217 — 2;)? of the cur-
rent point to the target. If this distance is less
than the tolerance limit, go to Step 10. Other-
wise go to the next step.

Step 3 Find the direction ratios a, b, ¢ of the line
of sight of the target using (5).

Step 4 Find a point P, on the line of sight at a
distance h from the current point P; using (14)
(P,, should be replaced by Pr) and calculate
the risk value p. at this point using the relation
(3).

Step 5 If this value of the risk probability is less
than the threshold «, then there is no need to
worry about the safety of this point; add it to
the path list, set i = ¢ + 1, and go to Step 3.
Otherwise declare it to be an expected point of
the optimal path by assigning it to a point P,
and go to the next step.

Step 6 Set r = htandiy and find two points Pp,
and Pg on the left and right side respectively of
the point P, at a search angle §¢» along the jt"
search line which makes an angle §; with the
reference line using (11) and (13). Find the risk
probabilities p; and pgr at these points using
the relation (3).

Step 7 If the risk p, is less than or equal to the
risks pr, and pg, then go to Step 9. Otherwise
go to the next step.

Step 8 If the risk probability p;, (pr) is less than
the risk p. and also it is less than or equal to the
risk pr (p), then Pp, (Pg) is the minimal risk
point among these points and there is a chance
of getting a further low risk point on the left
(right) side. Repeat the following:

P, =Py (Pe:PR)
dp = dip + 6, 1 = htandy



by updating Pj, (Pg) each time using (11) and
(13) until one of the following occurs:
e search angle exceeds its maximum value
which means dy > ¢
e alocal minimum is found which means risk
pe < 1isk pr, (pr)

Step 9 If j < Jjmaz, then assign point P, to
P; and the risk p. to p; and set j = j + 1,
dip = 61 and go to step 6. Otherwise find the
minimum risk point Py, (Zm, Ym, 2m) on the disk
by comparing the minimum risk p; found from
all search lines. Find a new (i + 1)t* safe path
point using (14) and set ¢ = i+1. Add this point
to the path list and also set j = 1, diyp = 0. Go
to Step 2

Step 10 Output the result in the form of

e Optimal path which consists of way points.
e Total and average risk on this path

4. SIMULATION RESULTS

An example is discussed in this section. We con-
sider 23 defence units (threats) located over a
300 kmx 300 km region. The threats are assumed to
be medium range SAM units with range varying
from 15 km to 35 km. For ease of demonstration,
the algorithm will first be applied to a problem
of finding a path in 2 dimensions with the height
fixed at 10 km. The starting point of the UAV is at
(10,100, 10) and the destination at (250,240, 10).
Different risk contours are drawn around each
SAM unit with the inner most having a risk of
0.9 while the outermost is at risk of 0.1. The
parameters of maximum lateral search angle, lat-
eral search angle step, path step, and stopping
tolerance are 60°, 5.7°, 1 km, 2 km, respectively.
Three risk thresholds, 0.01, 0.5 and 1, are chosen
to generate 3 paths as shown in Figure 4.

Fig. 4. Paths obtained for threshold, a =
0.01,0.5,1

It is clear that when the value of risk thresh-
old a increases, the path becomes shorter. For
a = 1, the path is a straight line. The tar-
get assignment feature of the algorithm can be
explored by visiting more than one target in a
specified order. Consider a UAV which starts at
position (10,100, 10) and intends to visit a set of

targets (110,270, 10), (260,200, 10), (213,38, 10),
(130,160, 10). Call these points Targets 1,2,3,4,
respectively. We are interested in finding a path
to visit these targets and the effect on path and
other parameters of taking different orders. The
resultant paths for the first and fifth orders of
target points (see Table 1) are shown in Figures
5 and 6. Distances and average risk estimations
are summarised in Table 1. It is interesting to

Table 1. Data for different order of visit

Order Targets Distance (km)  Aver. Risk
1 1 2 3 4 924 19.48
2 4 1 2 3 767 23.52
3 1 4 3 2 838 20.45
4 2 1 4 3 914 16.02
5 3 4 1 2 845 16.85

note that in the first case when the vehicle is on
its way to visit the second target, it is at one
instant within the reaching range of three SAM
units. This situation is difficult to avoid. In order
to minimise the risk, the vehicle may have to fly
with maximum speed to leave the zone quickly.

- ) / Target 3
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Fig. 6. Minimum risk path for order 5

For the 3-D case, we consider a multiple-target
visit with all targets at the same altitude (10
km). Two search lines are used. One line on the
search disk is parallel to the horizontal plane. The
other one is perpendicular to the first one while
remaining on the disk plane. The 5% order of
target visit in Table 1 is selected. The full version
of the algorithm (i.e., 3-D) is applied. There is



no restriction on the maximum flight altitude of
the UAV. The path obtained is shown in Figure
7. Before the UAV reaches the first target point,

300

Fig. 7. 3-D Path for all targets without restriction
on maximum height of UAV

it remains close to the horizontal plane of 10
km high. When it is near the first target, it
starts climbing due to the risk from neighbouring
threats. During the rest of the flight, the UAV
always tries to fly high to escape from the dangers.
It comes down only to reach the 10 km high target
points. This choice is of course difficult to make
in a real situation,due to limited fuel, climb rate
and flight time constraints. For this reason, either
height restriction or/and fuel consumption must
be included in the cost function. With a maximum
altitude set at 30 km, the path as shown in Figure
8 is obtained.

Fig. 8. Path obtained in 3D for all targets consid-
ering cost due to height

5. CONCLUSION AND FURTHER
RESEARCH

A real time three dimensional probabilistic ap-
proach for the path planning of autonomous ve-
hicles has been presented. The approach finds a
safe path but also takes account of real world
constraints. The problems of low fuel consump-
tion, low altitude crashes have all been addressed.
The paths are locally optimal and feasible for the
UAV to follow by keeping the turn angle within
some certain maximum limit. A relation has been
derived that transforms the maximum turn angle

into the maximum search angle. The algorithm is
applied in decentralized mode, that is, each vehi-
cle has its own processor and applies the algorithm
to find its path with consideration of the collision
with other vehicles. UAVs are prevented from fly-
ing at very low altitudes because of the danger of
crashing into ground objects. Since each UAV has
limited fuel, a compromise has been made between
risk and fuel consumption by limiting the height
and search angle.

One important observation of the proposed algo-
rithm is that while evaluating the stealthy path for
the UAV, every time vehicle achieved its target,
which shows the convergence of the algorithm.
This property can be utilised to explore the co-
ordinated rendezvous aspect of the algorithm.
The algorithm produced good results despite its
locally optimal nature. Optimality of the algo-
rithm can be improved further by using it in com-
bination with a globally optimal approach e.g.,
with the Voronoi diagrams approach.
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