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1. INTRODUCTION

In the past decades, there have been considerable
research efforts on the study of singular systems.
This is due to the extensive applications of sin-
gular systems in many practical systems, such
as circuits boundary control systems, chemical
processes, and other areas (Dai, 1989; Kumar
and Daoutidis, 1995). Singular systems are also
referred to as descriptor systems, implicit sys-
tems, generalized state-space systems, differential-
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algebraic systems or semi-state systems (Dai,
1989). A great number of fundamental notions
and results in control and systems theory based
on state-space approach have been successfully
extended to singular systems; see, e.g., (Takaba
et al., 1995; Verghese et al., 1981; Xu et al.,
2002a; Fridman, 2001; Lan and Huang, 2003; Xu
et al., 2002b), and the references therein.

Recently, a class of stochastic systems driven by
continuous-time Markov chains has been used to
model many practical systems, where random fail-
ures and repairs and sudden environment changes
may occur. For more detail, we refer the reader
to (Boukas and Liu, 2002), (Mariton, 1991) and
the references therein. This motivates the study of
Markovian jump systems. For example, sufficient
conditions on stochastic stability and stabiliza-
tion for such systems were reported in (Feng et



al., 1992; Ji and Chizeck, 1990; Mao, 1999; Boukas
and Hang, 1999; Boukas and Liu, 2001b) via differ-
ent approaches. The H∞ control problem was in-
vestigated in (de Souza and Fragoso, 1996; Shi and
Boukas, 1997), where sufficient conditions for the
solvability of this problem were proposed. When
time delays appear in a Markovian jump system,
the results on stability analysis and H∞ control
were reported in (Boukas et al., 2001), (Cao and
Lam, 2000), and (Boukas and Liu, 2001a) for
different types of time delays. For more detail on
Markovian jumping systems with time delay, we
refer the reader to (Boukas and Liu, 2002) and the
references therein. However, up to date singular
systems with Markovian jump parameters and
time delays has not yet been fully investigated.

This paper is concerned with the problems of ro-
bust stability analysis and robust stabilization for
uncertain singular Markovian jump systems with
time delays in the system state. In terms of a set of
coupled linear matrix inequalities, we present first
a sufficient condition, which guarantees regularity,
absence of impulses and robust stochastic stabil-
ity of such systems. Based on this, a sufficient
condition for the existence of the state-feedback
controller ensuring regularity, absence of impulses
and robust stochastic stability is proposed.

Notation: Throughout this paper, Rn and Rn×m

denote, respectively, the n dimensional Euclidean
space and the set of all n × m real matrices.
The superscript “T ” denotes matrix transposition
and the notation X ≥ Y (respectively, X > Y )
where X and Y are symmetric matrices, means
that X − Y is positive semi-definite (respectively,
positive definite). I is the identity matrices with
compatible dimensions. E(·) denotes the expecta-
tion operator with respective to some probability
measure P. ‖ · ‖ denotes the Euclidean norm for
vectors.

2. PROBLEM STATEMENT

Consider the following class of uncertain singular
Markovian jump linear systems defined on a com-
plete probability space (Ω,F ,P):

Eẋ(t) = A(rt, t)x(t) + A1(rt, t)x(t− h)
+ B(rt, t)u(t) (1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm

is the control input, h > 0 is a constant, and
represents the time-delay in the system state. The
mode switching process is assumed to be gov-
erned by a continuous-time discrete-state Markov
process {rt : t ≥ 0} taking values in a finite
state space S , {1, 2, . . . , s} and having the mode
transition probabilities

Pr(rt+∆ = j|rt = i)

=
{

πij∆ + o(∆), if j 6= i
1 + πii∆ + o(∆), if j = i

(2)

where ∆ > 0, and lim∆→0 o(∆)/∆ = 0, and πij ≥
0 (i, j ∈ S, j 6= i) denotes the switching rate from
mode i to mode j and πii , −∑s

j=1,j 6=i πij . The
matrix Π , (πij) ∈ Rs×s is known as the mode
transition rate matrix. The initial condition of the
system is specified as (r0, φ(·)), where r0 ∈ S is the
initial mode state and φ(·) is the initial functional
such that x(s) = φ(s), s ∈ [−h, 0].

For each mode i ∈ S, the system matrices Ai(t) ,
A(rt = i, t), A1i(t) , A1(rt = i, t) and Bi(t) ,
B(rt = i, t) are assumed to have the norm-
bounded uncertainties of the form[

Ai(t) A1i(t) Bi(t)
]

=
[
Ai A1i Bi

]
+ EiFi(t)

[
Hai Ha1i Hbi

]
(3)

where matrices Ai, A1i, Bi, Ei, Hai, Ha1i and
Hbi are known constant real matrices with ap-
propriate dimensions, while Fi(t) denotes the un-
certainties in these system matrices and satisfies
FT

i (t)Fi(t) ≤ I for all i ∈ S. The uncertainties
that satisfy the conditions (3) are referred to
as admissible uncertainties. The matrix E with
0 ≤ rankE ≤ n may be singular.

Definition 1. (Dai, 1989)

i. The nominal singular Markovian jump linear
system of uncertain system (1) with u(t) ≡ 0
is said to be regular if det(λE − Ai) is not
identically zero for each mode i ∈ S.

ii. The nominal singular Markovian jump linear
system of uncertain system (1) with u(t) ≡ 0
is said to be impulse free if deg(det(λE −
Ai)) = rank(E) for each mode i ∈ S.

For more details on other properties and the
existence of the solution of system (1), we refer
the reader to (Xu et al., 2002b), and the references
therein. In general, regularity is often a sufficient
condition for the analysis and the synthesis of
singular systems.

For uncertain system (1), we have the following
definitions.

Definition 2. Uncertain system (1) with u(t) ≡ 0
is said to be robustly stochastically stable if there
exists a constant T (r0, φ(·)) such that

E
(∫ ∞

0

‖x(t)‖2dt | r0, φ(·)
)
≤ T (r0, φ(·))

holds over all admissible uncertainties (3).

In this paper, we are interested in the design of a
state-feedback control law

u(t) = K(rt)x(t) (4)



where Ki , K(rt = i) ∈ Rm×n is the controller
to be determined for each i ∈ S.

Substituting the controller (4) into the uncertain
system (1), we obtain the closed-loop system

Eẋ(t) = Acl(rt, t)x(t) + A1(rt, t)x(t− h) (5)

where Acli(t) = (Ai + BiKi) + EiFi(t)(Hai +
HbiKi) for all i ∈ S.

Definition 3. Uncertain singular Markovian jump
linear system (1) is said to be robustly stabilizable
in the stochastic sense if there exists a control
law (4) such that the closed-loop system (5) is
robustly stochastically stable.

This paper studies the stochastic stability and
the stochastic stabilizability of the class of the
uncertain singular Markovian jump linear sys-
tems (1). Our goal is to design a state-feedback
controller (4) guaranteing that the closed-loop (5)
is regular, impulse free and robustly stochastically
stable. In the rest of this paper, we will assume
that all the required assumptions are satisfied, i.e.
the complete access to the system mode and state.
Our methodology in this paper will be mainly
based on the Lyapunov theory and some algebraic
results. The conditions we will develop here will be
in terms of the solutions to coupled linear matrix
inequalities that can be easily solved using LMI
control toolbox.

Lemma 1. (Boukas et al., 2004) The nominal sys-
tem of the uncertain singular Markovian jump
system (1) with u(t) ≡ 0 is regular, impulse free
and stochastically stable if there exist matrices
Pi ∈ Rn×n, i ∈ S, and a matrix Q ∈ Rn×n with
Q = QT > 0 such that the coupled LMIs

ET Pi = PT
i E ≥ 0






PT
i Ai + AT

i Pi

+Q +
s∑

j=1

πijE
T Pj


 PT

i A1i

AT
1iPi −Q


 < 0

hold for each i ∈ S.

Lemma 2. Given real matrices Q, E and H of
appropriate dimensions with Q = QT , then

Q + EF (t)H + (EF (t)H)T < 0

holds for all F (t) satisfying FT (t)F (t) ≤ I if and
only if there exists some real number λ > 0 such
that

Q + λHT H +
1
λ

EET < 0

3. MAIN RESULTS

In this section, we will develop results that assure
that the uncertain system (1) with u(t) ≡ 0 is
regular, impulse free and robustly stochastically
stable. We will also design a state feedback con-
troller of the form (4) that guarantees the same
goal.

The result which guarantees that the uncertain
singular system (1) with u(t) ≡ 0 is regular,
impulse free and robustly stochastically stable is
summarized by the following result.

Theorem 1. The uncertain singular Markovian
jump linear system (1) with u(t) ≡ 0 is regular,
impulse free and robustly stochastically stable if
there exist matrices Pi ∈ Rn×n, positive scalars
λi > 0, i ∈ S, and a matrix Q ∈ Rn×n with
Q = QT > 0 such that the coupled LMIs

ET Pi = PT
i E ≥ 0 (6)


Q1i PT

i A1i + λiH
T
aiHa1i PT

i Ei

AT
1iPi + λiH

T
a1iHai −Q + λiH

T
a1iHa1i 0

ET
i Pi 0 −λiI




< 0 (7)

hold for all i ∈ S, where

Q1i = PT
i Ai + AT

i Pi + Q +
s∑

j=1

πijE
T Pj + λiH

T
aiHai

PROOF. Based on Lemma 1, the uncertain sys-
tem (1) with u(t) ≡ 0 is regular, impulse free and
robustly stochastically stable if there exist matri-
ces Pi ∈ Rn×n, i ∈ S, and a matrix Q ∈ Rn×n

with Q = QT > 0 such that both LMI (6) and







PT
i Ai(t) + AT

i (t)Pi

+Q +
s∑

j=1

πijE
T Pj


 PT

i A1i(t)

AT
1i(t)Pi −Q


 < 0

hold for each i ∈ S. Noting that the form of
the uncertainties (3), the above inequality can be
rewritten as







PT
i Ai + AT

i Pi

+Q +
s∑

j=1

πijE
T Pj


 PT

i A1i

AT
1iPi −Q




+
[
PT

i Ei

0

]
Fi(t)

[
Hai Ha1i

]
+

[
HT

ai

HT
a1i

]
FT

i (t)
[
ET

i Pi 0
]

<0

According to Lemma 2, the above inequality holds
for all Fi(t) satisfying FT

i (t)Fi(t) ≤ I if and only
if there exists a real number λi > 0 such that









PT
i Ai + AT

i Pi

+Q +
s∑

j=1

πijE
T Pj


 PT

i A1i

AT
1iPi −Q




+
1
λi

[
PT

i EiE
T
i Pi 0

0 0

]
+ λi

[
HT

ai

HT
a1i

] [
Hai Ha1i

]

<0

In view of Schur complement equivalence, the
above inequality is equivalent to LMI (7). This
completes the proof. 2

To design the state feedback controller of the form
(4) which assures that the uncertain closed-loop
system (5) is regular, impulse free and robustly
stochastically stable, we have the following result.

Theorem 2. Consider uncertain singular Markov-
ian jump linear system (1), there exists a state-
feedback controller (4) such that the closed-loop
system (5) is regular, impulse free and robustly
stochastically stable if there exist matrices Xi ∈
Rn×n, Wi ∈ Rn×n with Wi = WT

i , positive scalars
αi > 0, i ∈ S, and a matrix Z ∈ Rn×n with
Z = ZT > 0 such that the coupled LMIs

0 ≤ (EXi)
T = EXi <Wi (8)


Q2i MT

1i XT
i M2i

M1i −αi + HaiZHT
ai 0 0

Xi 0 −Z 0

MT
2i 0 0 −Q3i


 <0 (9)

hold for each i ∈ S, where

Q2i = (AiXi + BiYi) + (AiXi + BiYi)
T

+ πiiX
T
i Ei + αiEiE

T
i + A1iZAT

1i

M1i = HaiXi + HbiYi + Ha1iZAT
1i

M2i =
[√

πi1XT
i · · · √

πi(i−1)X
T
i

√
πi(i+1)X

T
i

· · · √πisXT
i

]

Q3i = diag(X1 + XT
1 −W1, . . . , Xi−1 + XT

i−1 −Wi−1,

Xi+1 + XT
i+1 −Wi+1, . . . , Xs + XT

s −Ws)

In this case, a stabilizing controller (4) is given
by Ki = YiX

−1
i , i ∈ S.

PROOF. Similarly to the proof of Theorem 1,
the closed-loop system (5) is regular, impulse free
and robustly stochastically stable if there exist
matrices Pi ∈ Rn×n, i ∈ S, and a matrix Q ∈
Rn×n with Q = QT > 0 such that the coupled
LMIs

ET Pi = PT
i E ≥ 0 (10)


Q̄1i PT

i A1i + λiH̄
T
aiHa1i PT

i Ei

AT
1iPi + λiH

T
a1iH̄ai −Q + λiH

T
a1iHa1i 0

ET
i Pi 0 −λiI




< 0 (11)

hold for each i ∈ S, where

Q̄1i = PT
i Āi + ĀT

i Pi + Q +
s∑

j=1

πijE
T Pj + λiH̄

T
aiH̄ai

Āi = Ai + BiKi

H̄ai = Hai + HbiKi

Pre- and post-multiply both sides of the LMI (10)
by P−T

i and P−1
i , respectively, and define Xi ,

P−1
i , we have that LMI (10) is equivalent to

(EXi)T = EXi ≥ 0 (12)

Pre- and post-multiply both sides of the LMI (11),
respectively, by diag(P−T

i , I, I) and diag(P−1
i , I, I)

and define Yi , KiP
−1
i , we have that LMI (11) is

equivalent to



Q̃1i A1i + λi(HaiXi + HbiYi)T Ha1i Ei

∗ −Q + λiH
T
a1iHa1i 0

∗ ∗ −λiI


 < 0

where

Q̃1i = XT
i Q̄1iXi

= (AiXi + BiYi) + (AiXi + BiYi)T + XT
i QXi

+ πiiX
T
i ET +

s∑

j=1,j 6=i

πijX
T
i ET X−1

j Xi

+ λi(HaiXi + HbiYi)T (HaiXi + HbiYi)

Define αi , 1
λi

, and in view of Schur complement
equivalence, the above inequality is equivalent to




Q̂1i A1i (HaiXi + HbiYi)T

AT
1i −Q HT

a1i

HaiXi + HbiYi Ha1i −αiI


 < 0

where

Q̂1i = (AiXi + BiYi) + (AiXi + BiYi)T + XT
i QXi

+ πiiX
T
i ET +

s∑

j=1,j 6=i

πijX
T
i ET X−1

j Xi

+ αiEiE
T
i

Pre- and post-multiply both sides of the above
inequality by




I 0 0
0 0 I
0 I 0




we have


Q̂1i (HaiXi + HbiYi)T A1i

HaiXi + HbiYi −αiI Ha1i

AT
1i HT

a1i −Q


 < 0

Define Z , Q−1, the above inequality is equiva-
lent to[

Q̂1i + A1iZAT
1i MT

1i

M1i −αiI + Ha1iZHT
a1i

]
< 0 (13)

where M1i is given in Theorem 2. Note that for
each j ∈ S, from LMIs (8) and (9), we have

0 ≤ EXj = XT
j ET < Wj < Xj + XT

j

On the other hand, from the inequality

(XjW
− 1

2
j −W

1
2

j )(XjW
− 1

2
j −W

1
2

j )T ≥ 0



we conclude that

XjW
−1
j XT

j ≥ Xj + XT
j −Wj > 0

So we have

ET X−1
j ≤ X−T

j WjX
−1
j = (XjW

−1
j XT

j )−1

≤ (Xj + XT
j −Wj)−1

Therefore, for any i, j ∈ S, j 6= i, the following
inequality holds:

πijX
T
i ET X−1

j Xi ≤ πijX
T
i (Xj + XT

j −Wj)−1Xi

Hence, we obtain
s∑

j=1,j 6=i

πijX
T
i ET X−1

j Xi

≤
s∑

j=1,j 6=i

πijX
T
i (Xj + XT

j −Wj)−1Xi

=M2iQ
−1
3i MT

2i

In view of Schur complement equivalence, we
conclude that inequality (13) holds if the LMI (9).
This completes the proof. 2

Remark 1. The results we developed in this paper
extend those developed for the deterministic case
on stability and stabilizability. In fact, if we have
only one model, that is, s = 1, the results reduce
to those of deterministic singular linear systems
with time delays.

4. CONCLUSION

This paper dealt with the class of continuous-time
uncertain singular linear systems with Markovian
jumps and time-delays in the state vector. Re-
sults on stochastic stability and its robustness,
and stochastic stabilizability and its robustness
are developed. The LMI framework is used to
establish the sufficient conditions on stability and
stabilizability. The conditions we developed are
delay independent. The results we developed can
easily be solved using any LMI toolbox like the
one of Matlab or the one of Scilab.
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