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Abstract: A series of studies on controllability of the nonlinear dynamic mechanical
systems such as manipulators, aircraft, or water-craft was advanced. Earlier,
controllability was considered without regard for dynamics of the mechanical
system actuators. The present paper established a controllability criterion for the
mechanical systems where actuator dynamics was explicitly taken into account.
The established conditions for controllability have a clear physical sense. As before,
the controllability conditions are related with domination of the control forces
over other generalized forces of weight, environmental resistance, and so on. Now
domination is required in the rate of force variation, that is, in the derivative.
Stated differently, it is required that the actuator output may vary rather rapidly.
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1. INTRODUCTION

The Kalman controllability criterion is most
known. The criterion was established for linear
stationary dynamic systems. Consideration was
given also to the linear systems with controls
constrained in amplitude, power, or pulse (For-
mal’skii, 1974). Therefore these criteria may be
used only for linearized nonlinear mechanical sys-
tems.

For nonlinear systems the controllability condi-
tions ”in the small” were obtained in (Krasovskii,
1968; Kirillova and Gabasov, 1971). The control-
lability conditions for so-called driftless systems
were given in (Chow, 1939). These systems and
their analogues are intensively studied in the last

tens years (Brokket, 1983; Bloch et al., 1990; Mur-
ray and Sastry, 1991; Cortes et al., 2001).

Some mechanical systems may be reduced to the
chain form - analog of driftless systems (Murray
and Ortega, 1991). The conditions of reduction
are sufficiently strict. Under these conditions it is
difficult to take into account the external forces,
which exert influence upon mechanical systems.
These forces may be of the general form, i.e. are
not potential, may have dissipative sense (of dry
friction for example), or have nature of intensive
oscillations.

Such mechanical systems were studied in (Py-
atnitskii, 1996, 1997). The external forces with
bounded amplitude were considered as permissi-
ble ones. Permissible control forces were bounded
too. The sufficient controllability conditions were



obtained. The sense of conditions was the con-
trol force domination over the disturbing external
forces. Similar conditions were proved for nonholo-
nomic mechanical systems (Matyukhin, 2004).
The controllability conditions were obtained too
for the class of smooth disturbing forces and for
the class of smooth control forces (Matyukhin, and
Pyatnitskii, 2004).

Another problem is investigated in this paper.
The control forces are considered to be generated
by the controlling actuators of the mechanical
systems. In other words the dynamics of the
controlling actuators is taken into consideration
in explicit form.

1.1 Dynamic Systems under Consideration

The present paper discusses dynamic systems such
as

d

dt

∂T

∂q̇i

−
∂T

∂qi

= Qi + Mi, Ṁi = Fi + ui, i=1,n.

(1)
The first group of equations in (1) are the well-
known Lagrange equations of the second kind
which describe the motions of mechanical systems.
The second group includes equations describing
the actuator dynamics of this system. System (1)
makes use of the following standard notation: qi

and q̇i are, respectively, the generalized system
coordinate and velocities, n is the number of
system degrees of freedom, {Qi + Mi} are the
generalized forces, and T = 1

2

∑n

k,i=1
aik(q)q̇iq̇k

is the system kinetic energy. The first subsystem
of (1) has the following developed form:

n
∑

k=1

aik q̈k +

n
∑

k,s=1

biks q̇sq̇k = Qi(q, q̇, t) + Mi, (2)

biks(q) =
∂aik(q)

∂qs

−
1

2

∂aks(q)

∂qi

, i=1,n.

The inertial properties of the mechanical system
are characterized by aik(q) in (2) that are related
with the distribution of its masses. The compo-
nents of the generalized forces Qi(q, q̇, t) in (1) are
defined by the external forces (weight, resistance,
and so on) acting on the mechanical system. The
system actuators develop the controlling forces
Mi. In the general form, their dynamics is defined
by the second group of equations 1 of (1). The
values ui are regarded as the controls of system
(1).

1 These equations may be regarded, for example, as an

analog of the reduced equation γṀ = −rM + νq̇ + u of

the dc electric motor, where γ > 0 may be treated as a

characteristic of the rotor inductance, r as its resistance,

the function νq̇ as the counter-electromotive force, and u

as the control voltage.

We assume that for all qi, q̇k, Mj and t ≥ t0 system
(1) has the following formal properties

|aij(q)| ≤ d,

∣

∣

∣

∣

∂aij

∂qk

∣

∣

∣

∣

≤ d,

∣

∣

∣

∣

∂2aij

∂qk∂qs

∣

∣

∣

∣

≤ d, (3)

d = const > 0,

λ1

n
∑

p=1

q̇2

p ≤ T (q, q̇) ≤ λ2

n
∑

p=1

q̇2

p, (4)

0 < λ1 ≤ λ2 < ∞, λp = const,

|Qi| ≤ hi,

|
∂Qi

∂t
| ≤ l1i , |

∂Qi

∂qk

| ≤ l2i , |
∂Qi

∂q̇k

| ≤ l3i ,
(5)

hi, l
p
i = const ≥ 0,

|Fi(q, q̇, M, t)| ≤ F 1

i , (6)

F 1

i = const ≥ 0,

|ui(t)| ≤ Li, (7)

i,k,j,s=1,n, Li = const ≥ 0.

The above formal assumptions seem to be suf-
ficiently natural (Formal’skii, 1974; Pyatnitskii,
1996, 1997; Matyukhin, 2001).

1.2 Formulation of the Problem

The present paper is vectored at establishing the
controllability conditions for systems of the form
(1) in compliance with the following definition.

Definition 1. System (1) will be called the con-
trollable system in the class U of controls if for
arbitrary points Si = (qi, q̇i, M i) and Sf =
(qf , q̇f , Mf ) of the system state space P =
(q1, ..., qn, q̇1, ..., q̇n, M1, ..., Mn) there exists a con-
trol u ∈ U that drives the system from Si to Sf

in a finite time (R. Kalman).

The class U of permissible controls comprises
all possible vector functions of the form u(t) =
{u1(t), ..., un(t)} that satisfy constraints (7). This
class is defined by the constant parameters Li,
that is, U = U(Li).

The papers (Pyatnitskii, 1996, 1997; Matyukhin,
and Pyatnitskii, 2004; Matyukhin, 2004) are most
close in formulation of the problem. The papers
(Pyatnitskii, 1996, 1997; Matyukhin, 2004) estab-
lished a controllability criterion for purely me-
chanical systems, that is, systems without regard
for the actuator dynamics. The control forces
Mi of the form |Mi| ≤ Hi of the mechanical
system (1) were directly considered as controls,
and the problem of controllability was studied
only in the phase space of the mechanical system
P 1 = {q1, ..., qn, q̇1, ..., q̇n}.



In (Matyukhin and Pyatnitskii, 2004), a controlla-
bility criterion was established also for the purely
mechanical systems where the constraints on the
rate of increase, that is, |Mi| ≤ Hi, |Ṁi| ≤ Li,
were also taken into consideration. The present
study differs in that it explicitly takes into account
the equations describing motions of the mechan-
ical system actuators. This formulation seems to
be more natural, for example, from the applied
standpoint, and leads to the following distinctions.

Namely, Mi has the sense of the state of the
system of differential equations (1), and the initial
values |Mi(0)| = M0

i are introduced for them. In
the general case, they are given, but cannot be
freely assigned, for example, on the basis of the
purposes of control of the mechanical system as
it was admitted in (Matyukhin, and Pyatnitskii,
2004). This situation is natural from the applied
point of view. Namely, the variables Mi have the
sense of the generalized forces of the mechanical
subsystem (1), and it is not necessary that Mi(0)
be, for example, small in magnitude at the initial
time instant.

These considerations seem, on the one hand, nat-
ural, but on the other hand, they complicate solu-
tion of the controllability problem. For example,
one has to consider this problem in a wider state
space P = {q1, ..., qn, q̇1, ..., q̇n, M1, ..., Mn} of the
system (1).

2. CONTROLLABILITY CRITERION OF
THE SIMPLEST SYSTEM

Let us consider first the controllability criterion
for the simplistic systems (1) of the form

d

dt

∂T

∂q̇i

−
∂T

∂qi

= Qi + Mi,

Ṁi = Fi + ui, i=1,n, Qi = Fi = 0.

(8)

In distinction to the original system (1), system
(8) has no generalized forces Qi = 0 and takes into
account only the simplest equations of actuator
motion where Fi = 0.

Theorem 1. Let system (8) satisfy conditions (3)-
(6). Then, system (8) will be controllable in the
class of controls for any numbers Li = const > 0:

|ui(t)| ≤ Li, i=1,n. (9)

The scheme of proof of Theorem 1 is de-
scribed below. The sense of Theorem 1 lies
in that the mechanical system (8) can be
driven to any point of the state space P =
{q1, ..., qn, q̇1, ..., q̇n, M1, ..., Mn} of system (8). At
that, it is of no consequence where the system
was at the initial time instant. It suffices that the
controls have a nonzero resource Li > 0. This fact

is valid for any system of the form (8) for which
the above nonrestrictive constraints (3)–(6) are
satisfied.

A controllability criterion having the sense of the
condition for domination of the control forces Mi

over the disturbing forces Qi in the rate of growth
was obtained earlier (Matyukhin and Pyatnitskii,
2001). The same sense can be rendered formally
to criterion (9). Namely, there are no forces in
system (8), that is, Qi = 0. Therefore, by taking
into consideration (8), one can rearrange (9) in

|Ṁi| > |Q̇i|, (10)

|Ṁi| ≤ Li, Li > 0, |Q̇i| = 0.

Consequently, criterion (9) in the form (10) can
be regarded as the condition for domination of
the control forces Mi over the disturbing forces
Qi in the growth rate.

Scheme of proof of Theorem 1. Let an arbitrary
mechanical system (8) be given for which condi-
tions (3)-(6) are valid. Given are arbitrary points
Si = (qi, q̇i, M i) and Sf = (qf , q̇f , Mf ) (Fig. 1).
Let the class ui(t), |ui| ≤ Li of controls be given
where Li > 0 are arbitrarily defined constants. It
is desired to prove that in this class there exists
a control driving system (8) from Si to Sf in a
finite time.

ε

Si

SA

S0

Sf

q

q

M

-ε

Fig. 1. Translation of system (8) from the initial
point Si to the origin S0 and further to the
final point Sf .

The proof is based on the three basic properties
of the mechanical systems (8) under study. First,
system motion can be retarded, that is, it is
possible to provide small values of the velocities
and their derivatives (at the point SA in Fig. 1
where |q̇i| ≤ ε, |q̈i| ≤ ε, |

...
q i | ≤ ε). Second,

from such a point SA the system can be driven
to the origin S0. Third, the system can be driven
from S0 to an arbitrary given final point Sf . The
possibility of retarding system (8) is substantiated
by the following assertion.

Lemma 1. Let the conditions of Theorem 1 be
satisfied. Then, there exists a control uA of the



class (9) that drives system (8) in a finite time
from an arbitrary point Sf to a point SA where

|q̇A
i | ≤ ε, |q̈A

i | ≤ ε, |
...
q

A

i | ≤ ε, i=1,n. (11)

The concept of the proof of Lemma 1. The control
uA is as follows:

uA
i = −Lisign(Mi + kq̇i), k = const > 0, (12)

with sign(x) standing for the function of sign of
x. The lemma establishes that on the motion of
system (8), (12)

d

dt

∂T

∂q̇i

−
∂T

∂qi

= Mi, Ṁi = uA
i , (13)

relations (11) of the form

|q̇i(tA)| ≤ ε, |q̈i(tA)| ≤ ε, |
...
q i (tA)| ≤ ε, i=1,n

(14)
will be satisfied (at the point SA in Fig. 1). The
numbers tA and k exist.

Namely, it is proved that system (13) enters a
sliding mode of the form

Mi = −kq̇i, i=1,n, t ≥ τ, (15)

and starts moving along the trajectory of a system
of the form

d

dt

∂T

∂q̇i

−
∂T

∂qi

= −kq̇i, t ≥ τ. (16)

The kinetic energy of the system decreases be-
cause the relation

Ṫ =

n
∑

i=1

q̇iMi

is true. Really,

Ṫ (t) = −k

n
∑

i=1

q̇2

i ≤ −
kT

λ2

and

T (t) ≤ T (τ)exp
−k(t − τ)

λ2

are true for t ≥ τ . Therefore, the velocities of
system (16), that is, of system (13), decrease

q̇2

i (t) ≤ T (τ)exp
−k(t − τ)

λ2

/λ1

in compliance with (14).

The main problem lies in substantiating existence
in (12) of a coefficient k > 0 such that it gives rise
to the mode (15). It is demonstrated that such a
k can be constructed, for example, in the form

k = k(Ω, Si, Sf , Lj), (17)

Ω = (d, λ1, λ2, hj , l
p
j , n).

Definition 1 admits the dependence of a control
like (15),(17) on the system, that is, on the pa-
rameters Ω, the initial and final points, and the
parameters Lk of the control class U .

Namely, it was established that under the condi-
tion

|kq̈i(t)| ≤ 2Li, i=1,n (18)

the system (13) enters the sliding mode (15) where

τ = max(2|q̇j(0)|/Lj). (19)

Inequalities (18) involve the accelerations of the
system (13) for which there exist the estimates

2λ1|q̈i| ≤

n
∑

j=1

{

n
∑

k,s=1

(3d/2)|q̇k||q̇s| + |Mj |}. (20)

Inequalities (20) involve the velocities and control
forces of system (13) for which there exist the
estimates

|q̇2

i (t)| ≤ T (t)/λ1, t ≥ 0,

|Mi(t)| ≤ |Mi(0)| + Lit, 0 ≤ t ≤ τ,

|Mi(t)| ≤ k|q̇i(t)| ≤ k
√

T (t)/λ1, t > τ.

These inequalities involve the kinetic energy of the
system (13) which is bounded by

T (t) ≤ T 1, t > 0,

T 1 = const(T (0), λ1, Li, τ).

The above statements allow one to substantiate
existence of a coefficient k > 0 for condition (18)
under consideration.

3. CONTROLLABILITY CRITERION FOR
SYSTEMS WITH GENERALIZED FORCES

This section considers system (1)

d

dt

∂T

∂q̇i

−
∂T

∂qi

= Qi(q, q̇, t) + Mi, (21)

Ṁi = Fi + ui, i=1,n, Fi = 0,

where Fi = 0.

Theorem 2. Let system (21) satisfy conditions
(3)-(6). Then, there exists a number L∗ > 0 such
that system (21) is controllable in the following
class of controls:

|ui(t)| ≤ L∗, i=1,n. (22)

The proof is outlined below. We note that if the
disturbing forces Qi 6= 0 are taken into account,
then in system (21) — in distinction from system
(8) where Qi = 0 — the minimum control resource
with the constraint L∗ > 0 is evidently insuffi-
cient. We also note that the trivial compensation
of the forces Qi in (21) is impossible. This can be
readily seen if one rearranges system (21) and then
condition (22) with regard for (2), respectively, in

ui =
d

dt

〈

d

dt

∂T

∂q̇i

−
∂T

∂qi

〉

− Q̇i



and
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

k=1

(ȧik q̈k + aik

...
q k) +

n
∑

k,s=1

(ḃiks q̇sq̇k+

2biksq̈sq̇k) +
∂Qi

∂t
+

n
∑

k=1

(
∂Qi

∂qk

q̇k +
∂Qi

∂q̇k

q̈k)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ L∗.

(23)
No matter how great is the predefined constant
L∗, inequalities (23), obviously, cannot be satis-
fied. It is the case, for example, at the initial in-
stant because the initial values (q(0), q̇(0), M(0))
in system (21) are arbitrary and may be apprecia-
bly large. In this sense, the controllability condi-
tions (22) are not trivial.

It follows from the proof of Theorem 2 that the
value of the constant L∗ in (22) satisfies two con-
ditions. First, the controls |ui| ≤ L∗ allow one
to provide finite velocities and accelerations in
system (21). Second, if the velocities and acceler-
ations are finite, then the controls |ui| ≤ L∗ admit
explicit compensation of the disturbing forces Qi.

The first condition is satisfied if the inequality

h2/ν < L∗, (24)

|q̇i| ≤ ν, h = max(h1, ..., hn), ν = ν(Ω),

Ω = Ω(d, λ1, λ2, hj , l
p
j , n) is satisfied. Inequality

(24) shows that sufficiently small generalized sys-
tem velocities |q̇i| ≤ ν can be obtained only
through an appreciable resource of controls L∗.
We note that the theorem’s assumption (5) of the
form |Qi| ≤ hi is significant and, according to
(24), is necessary to provide finite velocities of the
mechanical system.

The second condition is representable as

|Q̇i| ||q̇k |≤ν, |q̈k |≤a< L∗, (25)

ν, a = const ≥ 0

with regard for (23), (24). This relation is the
necessary condition for the case of feasible explicit
compensation of the forces Qi at the expense
of the controls |ui| ≤ L∗. We note that the
theorem’s assumption (5) about boundedness of
the derivatives of the forces Qi is also essential
and, according (25), allows one to compensate
these forces.

We also note that the constant L∗ depends on all
dynamic parameters Ω = Ω(d, λ1, λ2, hj , l

p
j , n) of

system (21). For example, L∗ depends — in dis-
tinction to (Pyatnitskii, 1996, 1997; Matyukhin,
and Pyatnitskii, 2001: Matyukhin, 2001) — on
the system inertia characteristics d, λ1, λ2. Stated
differently, if the actuator dynamics is taken into
account, then the conditions for controllability of
a mechanical system are defined by its inertia
characteristics along with hj , l

p
j .

Scheme of proof of Theorem 2 follows that of The-
orem 1. It is based on the four basic properties of

the mechanical systems (21) under consideration.
The first property is the possibility of retarding
of system motion when its velocity and control
forces are finite (at the final point S1 in Fig. 2
where Si is an arbitrary initial point). The second
property is the possibility of providing a small
system velocities and its derivatives (point S2).
The third property is the possibility of driving
the system to the origin S0. Finally, the fourth
property is the possibility of driving the system
(21) from S0 to an arbitrary final point Sf .

S2

Si

S1

S0

Sf

q

M

ρ

-H

ε

Fig. 2. Translation of system (21) from the initial
point Si to the origin S0 and further to the
final point Sf .

4. CRITERION FOR SYSTEM
CONTROLLABILITY IN THE GENERAL

CASE

In this section, consideration is given to system
(1) in the original general form

d

dt

∂T

∂q̇i

−
∂T

∂qi

= Qi(q, q̇, t) + Mi,

Ṁi = Fi(q, q̇, M, t) + ui, i=1,n.

(26)

Theorem 3. Let system (26) satisfy conditions
(3)–(6). Then, there exists a number L∗∗ such that
system will be controllable in the following class
of controls:

|ui(t)| ≤ L∗∗, i=1,n. (27)

We note that in (27) the constant L∗∗ satisfies the
condition

L∗∗ ≥ L∗ + F 1

i , i=1,n, |Fi| ≤ F 1

i . (28)

Therefore, in distinction to (21) where Fi = 0,
in system (26) the additional resource of con-
trols must be used to counteract the disturbances
Fi(q, q̇, M, t).

The proof of Theorem 3 is concerned with explicit
compensation of the disturbances Fi in the actua-
tor motion equations. Namely, for Fi = 0, system



(26) becomes (21) which, according to Theorem 2,
is well controllable in the class (22). This means
that for arbitrary points Si and Sf of the phase
space of system (21) there exists a control u∗(t)
driving the system from Si to Sf in some finite
time. We denote by q∗(t) the trajectory of system
(21) from Si to Sf . Then, obviously, the control

ui(t) = −Fi(q
∗(t), q̇∗(t), t) + u∗

i (t)

will drive system (26) from Si to Sf in the same
time (along the same trajectory q∗(t)). This will
be the case if the class of control in system (26)
obeys the condition

|ui| ≤ L∗ + F 1

i

where assumption (6) of the form
|Fi(q

∗
i (t), q̇∗i (t), t)| ≤ F 1

i is taken into
consideration. Therefore, system (26) turns
out to be controllable in the class of controls (27).

We note that assumption |Fi| ≤ F 1

i of Theorem 3
is essential. Indeed, let us consider, for example,
the equation of motion of actuators in (26) of the
form Ṁ = −M + u. Let consideration be given
to the class |u(t)| ≤ L∗∗ with L∗∗ = const > 0.
This system is uncontrollable because it cannot be
driven from the point M(0) = 0 to, for example,
the point M = 2L∗∗, no matter how large is the
predefined number L∗∗. Therefore, in the general
case the condition |Fi| ≤ F 1

i is necessary for
controllability of system (26).

5. CONCLUSION

A criterion for controllability of mechanical sys-
tems was constructed with regard for dynamics
of the mechanical system actuators. The problem
was considered in the general nonlinear formu-
lation. The criterion has a simple physical sense
and can be expressed in terms of the controlling
and disturbing forces of the mechanical system.
For example, for the manipulation robot to be
controllable it is required that the control forces
dominate other generalized (weight, environmen-
tal resistance, and so on) forces. Domination is
required in the rate of force variation, that is, in
the derivative. In this sense, the criterion satisfies
the intuitive a priori considerations arising when
one deals with diverse problems of control of me-
chanical systems. Namely, the system actuators
must be sufficiently fast. Only in this case it be-
comes possible to counteract the intensive pulsat-
ing disturbances and freely control the mechanical
system.
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