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1. INTRODUCTION

Optimal control holds two vividly developing ori-
entations: one is the abstract theory and the
other the computational method. For the latter,
essentially speaking, there are three approaches
(Sargent, 2000). First one is that by the necessary
condition of optimality, such as the Pontryagin’s
maximum principle, to solve a two-point bound-
ary value problem mainly utilizing the multiple
shooting method. Second is to convert the orig-
inal problem into a finite-dimensional nonlinear
program by the discretization for the problem.
The last one is by the parameterization of the
control trajectory to get a nonlinear program
problem and then adopt proper steps to tackle
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it (von Stryk and Bulirsch, 1992). Unfortunately,
for above three methods, each one has its fatal
faults. The Pontryagin maximum principle pro-
vides only necessary conditions for the optimal
control and it is usually not in feedback form. The
big difficulty for shooting method is the “guess”
for the initial data to start the iterative numerical
process. It demands that the user understands the
essential of the problem well in physics, which is
often not a trivial task (Bryson, 1996). For other
two methods, the simplification for the original
problem leads to the fall of the reliability and ac-
curacy, and when the degree of discretization and
parameterization is very high, the work of com-
putation stands out and the solving process gives
rise to “curse of dimensionality” (Bryson, 1996).
In this paper, differing from any one of above three
numerical methods, a viscosity solution approach
is adopted to get the optimal feedback control
of a McKendrick type age-structured population



dynamic system based on the Chinese popula-
tion dynamics numerically. So, in some sense, our
method can be seen as the fourth computational
method to attack the optimal control problem.

The paper is organized as follows. In Section 2,
the dynamic programming principle (DPP, for
short) for the value function of the optimal control
problem is established. Some other properties of
the solution as well as the continuity of the value
function are presented. Section 3 is devoted to
show that the value function is just the viscosity
solution of the corresponding HJB equation. In
Section 4, the optimal feedback control is formu-
lated by the value function under the smooth as-
sumption. In Section 5, a finite difference scheme
is formulated to the HJB equation of the popula-
tion system with linear quadratic optimal control.
The numerical solution of optimal feedback con-
trol is presented. The validity of the optimality of
the obtained control is verified numerically in the
last section.

2. PROBLEM FORMULATIN AND DPP

A McKendrick type model of age-structured pop-
ulation dynamics developed in (Song and Yu,
1988) is a first order partial differential equation
with nonlocal boundary condition described by





∂p(r, t)
∂t

+
∂p(r, t)

∂r
= −µ(r)p(r, t),

0 < r < am, t > 0,

p(r, 0) = p0(r), 0 ≤ r ≤ am,

p(0, t) = β(t)

a2∫

a1

b(r)p(r, t)dr, t ≥ 0

(1)

where p(r, t) denotes the age density distribu-
tion at time t and age r for a closed popula-
tion. µ(r) is the relative mortality of the pop-
ulation, which satisfies

∫ r

0
µ(ρ)dρ < ∞ for r <

am and
∫ am

0
µ(ρ)dρ = ∞. am is the highest age

even attained by individuals of the population.
b(r) = k(r)h(r). k(r) is the ratio of females and
h(r) is the fertility pattern of females satisfying∫ a2

a1
h(r)dr = 1. Assume that b(r) is bounded

and measurable in [a1, a2], the fecundity period
of females, 0 < a1 < a2 < am. p0(r) is the initial
distribution. β(t) is the specific fertility rate of
the females at time t, which is considered to be
the birth control of the population in macro-level.

Let H = L2(0, am) be the state space with the
usual inner product 〈·, ·〉 and induced norm ‖ · ‖.
For any t > s ≥ 0, let

U [s, t] = {β(τ) ∈ [β0, β1] ⊂ R+ | τ ∈ [s, t],

β(τ) is measurable on [s, t]}.

Given T > 0 and p0 ∈ H, the optimal control
problem is to find an optimal control β∗(·) ∈
U [0, T ] such that





J(β∗) = inf
β(·)∈U [0,T ]

J(β),

J(β) =

T∫

0

am∫

0

L(p(r, t), β(t), r, t)drdt

+

am∫

0

f0(r, p(r, T ))dr

(2)

where p(r, t) is the solution of equation 1 corre-
sponding to β(·) and L, f0 satisfy





∣∣∣∣∣∣

am∫

0

f0(r, p(r))dr

∣∣∣∣∣∣
,

∣∣∣∣∣∣

am∫

0

L(p(r), β, r, t)dr

∣∣∣∣∣∣
≤ C1 + C2‖p‖,

∀(t, β) ∈ [0, T ]× [β0, β1], p ∈ H,
∣∣∣∣∣∣

am∫

0

[f0(r, p1(r))− f0(r, p2(r))]dr

∣∣∣∣∣∣
,

∣∣∣∣∣∣

am∫

0

[L(p1(r), β, r, t)− L(p2(r), β, r, t)]dr

∣∣∣∣∣∣
≤ C3‖p1 − p2‖,
∀ (t, β) ∈ [0, T ]× [β0, β1], p1, p2 ∈ H,

am∫

0

L(p(r), β, r, t)dr is continuous in

(t, p, β) ∈ R+ ×H× [β0, β1]

(3)

for some constants Ci, i = 1, 2, 3.

Define the time-dependent operators Aβ(t) as
follows:

Aβ(t)φ(r) = −φ′(r)− µ(r)φ(r),∀ φ ∈ D(Aβ(t)),

D(Aβ(t)) =
{

φ(r)
∣∣φ, Aβ(t)φ ∈ H,

φ(0) = β(t)

a2∫

a1

b(r)φ(r)dr
}

.

(4)

Then the equation 1 can be written as a first order
evolution equation in H:





∂p(r, t)
∂t

= Aβ(t)p(r, t),

p(r, 0) = p0(r).
(5)

From now on, use Aβ to denote the operator
Aβ(t) when β(t) ≡ β independent of time t, and
the semigroup generated by Aβ will be denoted
as Tβ(t). It is seen that Aβ(t) = Aβ(t).



Define a family of evolution operators T(t, s;β), 0 ≤
s ≤ t < ∞ by

T(t, s;β)φ(r)

=





φ(r − t + s)e
−

∫ r

r−t+s
µ(ρ)dρ

, r ≥ t− s,

β(t− r)

a2∫

a1

b(τ)φ(τ − t + s + r)

·e−
∫ τ

τ−t+s+r
µ(ρ)dρ

dτe
−

∫ r

0
µ(ρ)dρ

, r < t− s,

∀φ ∈ H, 0 ≤ t− s ≤ a1.

T(t, s;β) = T(t, s +
[
t− s

a1

]
a1;β)

·
[ t−s

a1
]∏

n=1

T(s + na1, s + (n− 1)a1;β), t− s > a1

(6)

where [x] denotes the maximal integer not ex-
ceeding x. T(t, s;β) is uniquely determined by
{β(τ) | τ ∈ [s, t]}.
Limited by the length, theorems in this paper are
given without proof.

Theorem 1. Let A∗
β be the adjoint operator of

Aβ in H. Then there exists an operator C on H
that is bounded, linear, self-adjoint and positive
definite such that for each β ∈ [β0, β1], A∗

βC is a
bounded linear operator on H and

sup
β∈[β0,β1]

‖A∗
βC‖ ≤ 1 + β1‖b‖√am. (7)

Furthermore, the set D∗ defined by

D∗ = D(A∗
β) =

{φ(r)
∣∣φ(r), φ′(r)− µ(r)φ(r) ∈ H, φ(am) = 0}

(8)

is independent of β ∈ [β0, β1] and dense in H.

Theorem 2. Let q(·) ∈ D∗. Then 〈q(·), p(·, t)〉 is
differentiable almost everywhere on [0, T ] and

d

dt
〈q(·), p(·, t)〉

= 〈A∗
β(t)q(·), p(·, t)〉, t ∈ [0, T ] a.e.

(9)

where p(r, t) = T(t, 0;β)p0(r) for any p0 ∈ H
and β(·) ∈ U [0, T ]. A∗

β(t) = A∗
β(t) is the adjoint

operator of Aβ(t).

By virtue of theorem 2, p(r, t) = T(t, 0;β)p0(r)
is considered as the (weak) solution of equation 1
in the sense of equation 9, which is obtained by
integrating equation 1 along the characteristics.

The value function V (t, p0) for the optimal control
problem is defined by

V (t, p0)

= inf
β(·)∈U [t,T ]

{ T∫

t

am∫

0

L(p(r, τ), β(τ), r, τ)drdτ

+

am∫

0

f0(r, p(r, T ))dr

}
(10)

where p(r, τ) = T(τ, t;β)p0(r) is the solution of
equation 1 corresponding to β(·) ∈ U [t, T ].

Theorem 3 [DPP]. For any 0 < δ < T − t,




V (t, p0) =

inf
β(·)∈U [t,t+δ]

{ t+δ∫

t

am∫

0

L(p(r, τ), β(τ), r, τ)drdτ

+V (t + δ, p(·, t + δ))
}

,

V (T, p0) =

am∫

0

f0(r, p0(r))dr

(11)

where p(r, τ) = T(τ, t;β)p0(r).

Theorem 4. With M and ω as in Lemma 1 of
(Guo and Yao, 1996) and constants Ci, i = 1, 2, 3
in equation 3, the following assertions are true:

(i). V (t, p0) ≤ (1+T )C1+MC2(1+ω−1) eωT ‖p0‖,
for all t ∈ [0, T ], p0 ∈ H.

(ii). |V (t, p1)−V (t, p2)| ≤ (1+Mω−1)C3 eωT ‖p1−
p2‖, for all t ∈ [0, T ], p1, p2 ∈ H.

(iii). For any fixed p0, V (t, p0) is continuous in t.

3. VISCOSITY SOLUTIN TO HJB EQUATION

For brevity in notation, rewrite equation 5 as




dP(t)
dt

= Aβ(t)P(t),

P(0) = P

(12)

where P(t) = p(·, t), P = p0(·). Let P(τ) =
T(τ, t;β)P , ψ(P(T )) =

∫ am

0
f0(r, p(r, T ))dr,

f(τ,P(τ), β(τ)) =
∫ am

0
L(p(r, τ), β(τ), r, τ)dr.

Theorem 5. If V (t, P ) ∈ C1([0, T ]×H), then V
satisfies the following HJB equation




Vt(t, P )+

inf
β∈[β0,β1]

{
〈Vp(t, P ),AβP 〉+f(t, P, β)

}
= 0,

V (T, P )=ψ(P ),

∀t ∈ [0, T ], P ∈
⋂

β∈[β0,β1]

D(Aβ).

(13)



From now on, always assume that Aβ(t) is dissi-
pative for all β ∈ [β0, β1]. First, give a definition
for the solution of the HJB equation 13 in the “vis-
cosity sense” (Bardi and Capuzzo-Dolcetta, 1997).
Let Ω be an open set of H and set USC([0, T ] ×
Ω) = {upper-semicontinuous mappings u : [0, T ]×
Ω → R},LSC([0, T ]×Ω) = {lower-semicontinuous
mappings u : [0, T ]× Ω → R}.

Definition 1. U(t, P ) ∈ USC([0, T ]×Ω) (respec-
tively U(t, P ) ∈ LSC([0, T ] × Ω)) is a subsolu-
tion (respectively, supersolution) of equation 13
on [0, T ] × Ω if for every test function Φ = ϕ +
g, ϕ, ϕp ∈ C([0, T ] × Ω;R), g ∈ C1(Ω;R)
satisfying equation 14 and equation 15 below:




Range(ϕp) ⊂ D∗, the mapping

(t, P ) → 〈A∗
βϕp(t, P ), P 〉from [0, T ]× Ω

to R is equicontinuous in β ∈ [β0, β1];

(14)





there exists a h̃ : [0,∞) → R such that

h̃ is nondecreasing, h̃′(0) = 0 and

g(P ) = h̃(‖P‖), ∀ P ∈ H

(15)

and for the local maximum point (respectively, the
minimum point) (t, P ) of U −Φ (respectively U +
Φ), there is

ϕt(t, P )+

inf
β∈[β0,β1]

{
〈A∗

βϕp(t, P ), P 〉+ f(t, P, β)
}
≥ 0.

(16)

(respectively,

−ϕt(t, P )+

inf
β∈[β0,β1]

{
− 〈A∗

βϕp(t, P ), P 〉+ f(t, P, β)
}
≤ 0.)

(17)

U(t, P ) ∈ C([0, T ] × Ω) is a viscosity solution
of equation 13 if it is both a subsolution and a
supersolution on [0, T ]× Ω.

Theorem 6. The value function V (t, P ) is a
viscosity solution of the HJB equation 13.

4. QUEST FOR OPTIMAL FEEDBACK
CONTROL

Theorem 7. Let V (t, P ) be the value function.
Then for any trajectory-control pair (P∗(t), β∗(t)),
P∗(t) = T(t, 0;β∗)P , the function

t → V (t,P∗(t))−
T∫

t

f(τ,P∗(τ), β∗(τ))dτ (18)

is nondecreasing in [0, T ]. Moreover, (P∗(·), β∗(·))
is an optimal pair if and only if the above

function is constant on [0, T ]. Consequently, if
V (t, P ) ∈ C1([0, T ] × H), β∗(·) ∈ C1[0, T ],
P∗(0) ∈ D(Aβ∗(0)), then (P∗(·), β∗(·)) is an opti-
mal pair if and only if




Vt(t,P∗(t)) + 〈Vp(t,P∗(t)),Aβ∗(t)P∗(t)〉
+f(t,P∗(t), β∗(t)) = 0,

V (T,P∗(T )) = ψ(P∗(T )), ∀ t ∈ [0, T ].

(19)

The last assertion of Theorem 7 will lead to the
classical verification theorem. Suppose the value
function V (t, P ) is smooth. Let

S(Z) :=

arg min
β∈[β0,β1]

{
〈Vz(t, Z),AβZ〉+ f(t, Z, β)

}

= {β ∈ [β0, β1] | H(Z, Vz(t, Z)) =

〈Vz(t, Z),AβZ〉+ f(t, Z, β)}.

(20)

Then equation 19 says that β∗(·) ∈ U [0, T ] is an
optimal control for the initial state p0 if and only
if

β∗(t) ∈ S(P∗(t)) for t ∈ [0, T ] a.e. (21)

where P∗(t) = T(t, 0;β∗)p0. Equation 21 is the
formula for finding the optimal feedback control.

5. ALGORITHM AND STIMULATION

In this section, one will be limited to the following
linear quadratic optimal control problem:

J(β∗) = inf
β(·)∈U [0,T ]

J(β)= inf
β(·)∈U [0,T ]

1
2

·




T∫

0

[β(t)− β̄(t)]2dt +

am∫

0

[p(r, T )− p̄(r)]2dr





(22)

where β̄(t) denotes the mean critical fertility rate
of females in an ideal society and p̄(r) denotes the
stable age density distribution of the population
with the zero increasing rate.

To solve the above equation numerically, let tj =
T + j∆t, j = 0, 1, 2, · · · , N in which ∆t = −T/N
and N is an integer. For given ε > 0, use the
following approximation:

〈Vp(t, p),Aβp〉 =
〈

Vp(t, p), ε
Aβp

‖Aβp‖
〉 ‖Aβp‖

ε

≈
[
V

(
t, p + ε

Aβp

‖Aβp‖
)
− V (t, p)

] ‖Aβp‖
ε

.

For the initial state p0 let pi = pi−1+
Aβpi−1
‖Aβpi−1‖ε, i =

1, 2, · · · ,M .



The following sufficient condition for the stability
of the difference scheme will be assumed:

|∆t|
ε

max
1≤i≤M

‖Aβpi‖ ≤ 1. (23)

Set αj
i = ∆t

ε ‖Aβj
i
pi‖. Although the convergence

of the described numerical algorithm has not
been sated theoretically, the algorithm for the
numerical solution of equation 19 is given as
follows.

Step 1: initialization. Set




V 0
i = V (T, pi) = ψ(pi),

pi = pi−1 +
Aβpi−1

‖Aβpi−1‖ε,

β0
i ∈ arg inf

β∈[β0,β1]

{
ψ(pi)− ψ(pi−1)

ε

·‖Aβpi‖+
am

2
[β − β̄0]2

}

:= arg inf
β∈[β0,β1]

{H(β, p)} , i = 1, 2, · · · ,M.

(24)

Step 2: iteration.




V j+1
i =

(1− αj
i )V

j
i + αj

i V
j
i−1 −

am

2
(βj

i − β̄j)2∆t,

βj+1
i ∈ arg inf

β∈[β0,β1]

{V j+1
i − V j+1

i−1

ε
‖Aβpi‖

+
am

2
[β − β̄j+1]2

}

(25)

for i = 1, 2, · · · ,M and j = 0, 1, 2, · · · , N − 1.

From equation 21, the optimal feedback control is

β∗p0
(t, p∗(·, t)) ∈ arg inf

β∈[β0,β1]

{
〈Vp(t, p∗(·, t)),

Aβp∗(·, t)〉+
am

2
[β − β̄(t)]2

} (26)

in which p∗(·, t) is the optimal trajectory of the
system. Because it involves the optimal trajectory
in equation 26, finding the solution of equation
1 is necessary. Utilize the difference scheme to
compute the approximate solution of the initial
value problem equation 1, see (Song and Yu,
1988). Adopt the equally spaced grid method, to
obtain





pi,j − pi−1,j

∆s
+

pi,j − pi,j−1

∆s
= −µipi,j ,

1 ≤ j ≤ J, 1 ≤ i ≤ 2K,

pi,0 = p0(i∆s), 0 ≤ i ≤ 2K,

p0,j = βj∆s

a2∑

i=a1

bipi,j , 1 ≤ j ≤ J

(27)

in which bi = b(i∆s), βj = β(j∆s), i =
a1, · · · , a2, 2K∆s = am, J∆s = T .

Next steps of finding the optimal feedback con-
trol are given in detail. It focuses on the solving
the difference scheme equation 27 to obtain the
optimal trajectory. Moreover, in the process, the
algorithm of solving the HJB equation will be
called frequently to get the corresponding feed-
back control function.

Algorithm of finding the optimal feedback
control.

• Step 1: Call the algorithm of solving the HJB
equation to get the feedback control function
β(t, p0). Substitute β(0, p0) into equation 27
to get the optimal trajectory p∗(·, s1), s1 =
∆s.

• Step 2: Take p∗(·, s1) as the initial data p0

as in the first step, and call the algorithm of
solving the HJB equation again to get the
feedback control β(s1, p

∗(·, s1)). Substitute
β(s1, p

∗(·, s1)) into equation 27 to get the
optimal trajectory p∗(·, s2), s2 = 2∆s.

• Step 3: Repeat the processes above, to get
all feedback control functions β(sj , p

∗(·, sj)),
sj = j∆s, j = 0, 1, · · · , J , that is to say,

β∗p0
(t, p∗(·, t)) =

{
β(0, p0(·)),

β(s1, p
∗(·, s1)), · · · , β(T, p∗(·, T ))

} (28)

that is the optimal feedback control.

Now it is the time to find the numerical solution
of linear quadratic optimal control for the Chi-
nese population based on the scheme equation 24,
25 and 27. The initial data are extracted from
the Chinese population sampling census in 1989
(DDC, 1990), which are plotted by MATLAB
6.1 as figure (3) (age-structure of females, the
age-structure of whole population, the relative
mortality); The age-structure of an ideal society
taken from (Song and Yu, 1988) are listed in table
1, which is used to get p̄(r) by multiplying the
proportion in the table with the total ideal pop-
ulation Nsum = 1, 400, 000. The fertility pattern
h(r) is approximated by the Gamma density dis-
tribution curve in statistics (Song and Yu, 1988)
in which the peak value of the fertility age is
assumed to be 24. Other parameters are listed as
follows: T = 25, β0 = 1, β1 = 3, β̄(t) = 2, a1 =
15, a2 = 49, am = 99, ε = 0.01. All computations
are performed in Visual C++ 6.0 and numerical
results are plotted by MATLAB 6.1. Figure (1)
is the value function V (t, p∗(·, t)) and the optimal
feedback control β∗p0

(t, p∗(·, t)).



Table 1 The age-structure of an ideal society

Age Proportion Age Proportion

0 0.013 46 - 50 0.063

1 - 5 0.065 51 - 55 0.062
6 - 10 0.065 56 - 60 0.061

11 - 15 0.065 61 - 65 0.057

16 - 20 0.065 66 - 70 0.053
21 - 25 0.065 71 - 75 0.047

26 - 30 0.065 76 - 80 0.037

31 - 35 0.065 81 - 85 0.024
36 - 40 0.064 > 85 0.003

41 - 45 0.064
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Fig. 1. The value function V (t, p∗(·, t))
and the optimal feedback control
β∗p0

(t, p∗(·, t)).

6. CONCLUSIONS

To end the paper, check the optimality of the
numerical solution of optimal feedback control is
necessary. This is done by comparing the cost
functional J(β∗p0

(t, p∗(·, t))) of obtained optimal
control-trajectory pair with that of arbitrarily
chosen control βp0(t), J(βp0(t)) under the same
initial condition, that is,

J(β∗p0
(t, p∗(·, t))) ≤ J(βp0(t)). (29)

Refer to figure (2), to compute these costs
J(βi) (i = 1, 2, · · · , 7) for seven different con-
trols βi ∈ U [0, T ] respectively. The cost value
J(β∗p0

(t, p∗(·, t))) is also computed. These re-
sults are listed in Table 2. It is seen that
for the optimal feedback control β∗p0

(t, p∗(·, t)),
J(β∗p0

(t, p∗(·, t))) = 11641607717, which is evi-
dently less than other costs J(βi), i = 1, 2, · · · , 7.
In other words, the numerical solution of optimal
birth feedback control for the Chinese population
from 1989-2014 is indeed got.

Table 2 Different β and its corresponding cost J(β).

β J(β) β J(β)

β1(t) 11641608005 β5(t) 11641608172

β2(t) 11641608005 β6(t) 11641608172

β3(t) 11641607901 β7(t) 11641608172
β4(t) 11641608172 β∗p0

(t, p∗(·, t)) 11641607717
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Fig. 2. Seven different arbitrarily chosen
control βi and the optimal feedback
control β∗p0

(t, p∗(·, t)).
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Fig. 3. Age-structures of females and
whole population plus the relative
mortality of Chinese population in
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