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Abstract: Different methods for change detection of signal features are compared for a
residual generated at a hydraulic servo axis. The residual is based on a physical model of
the pressure buildup inside the hydraulic cylinder. Nevertheless, it is augmented with an
observer to counteract slight model impurities even over prolonged periods of operation.
Different sensor faults are introduced, which affect the mean and/or the variance of
the residual. Methods have been implemented, which allow to detect changes in the
mean and variance of a signal. These methods are compared in terms of the size of the
smallest detectable fault, time-to-detection and computational expense. All results have
been verified experimentallZopyright®2005 IFAC
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1. INTRODUCTION tion and diagnosis (Isermann, 1997; Gertler, 1998; Is-
ermann, 2005).
Today, hydraulics are used in manifold areas of ap-
plications, ranging from shipbuilding and aeronautics
to industrial machines and process automation. Many
of these areas of applications are safety-critical (e. g.
aeronautics) and thus have an ever-thriving demand

for fault detection and fault diagnosis methods as to stantly monitored. In the fault free case, both outputs

detect possibly severe faults early enough in ordershould match and thus the arithmetic difference be-

to initiate counter-measures or to reach a safe state
. tween them should be close to zero. In the faulty case,
before the faulty system comes into danger.

the two outputs will depart from each other and thus
For a long time, fault detection in hydraulic systems their difference will deviate perceivably from zero.
was based on relatively simple methods such as mon-The models used can e. g. be analytical models or
itoring the hydraulic fluid for debris or mounting ex- neural nets (Ramdén, 1998; Ramadiral., 1995). In
pensive flow meters to monitor the hydraulic flow in this paper, the residuals will be generated using parity
and out of components (Watton, 1992). equations. Another approach is to extract parameters

With the advent of mechatronic systems (Isermann,?crom the input-output behavior of the process, €. g. us-

2003), i. e. the spatial and functional integration of ing an Extended Kalman Filter (Kress, 2002; Kazemi-
electric, electronic, mechanic and information pro- Moghaddam, 1999).

cessing components, it is now possible to augment theThe residual must then be monitored for changes.
system functionality with advanced fault detection and These change detection methodgpically monitor
diagnosis methods, such as model-based fault deteceharacteristic statistical properties of the signal, such

Two typical model-based fault detection methods are
parity equationsand parameter estimatiorfHofling,

1996). For parity equations, a model of the process is
run in parallel to the process and e. g. the deviation
between the model output and the plant output is con-



as the mean and variance. There are different ap- 1

proches to monitor changes in the mean and variance /(K = ix(k= 1)+ { (x(k) —p(k=1)) - (4)
of signals as e. g. reported in (Basseville and Niki- 2 k-2 , 1 2
forov, 1993; Basseville, 2003; Moseler, 2001: Fiis- x(K) = k_1gx(k*1)+i(x(k)*ﬂx(k*1)) ®)
sel, 2001). The paper at hand will examine these

dr:ffer_ent n]IEtthdS alrlld c%mpareglhe;n vlwthhres_pect to Furthermore, the mean and variance can be calcu-
the size of the smallest detectable fault, the ime-t0- 5.4 oyer aime windowof finite lengthN, see e.qg.

detection and their computational expense. This Com'(MoseIer 2001). At the discrete tinie these quanti-
parison will be based on experimental data obtained atias can t’)e caICl'JIated as

a hydraulic servo-axis.

The paper is divided as follows: In Section 2, the 1k

algorithms will be shortly introduced. This is then fol- px(K) = = Z x(i) (6)
lowed by a description of the testbed and the examined N i=K—N-+1

residual. Section 4 is concerned with the sensitivity K

of the proposed methods. It is examined which mini- g’)%(k) - 1 Z (x(i) 7,ux(k))2_ (7)
mal fault size can be detected by the different meth- N— 1i:k,N+1

ods. Next, the time-to-detection is discussed, which is

gnsthtgr |mpotr;ar;t q:f‘mﬁy Itnh the evall:[lgtlor; of fault Time-Window Average and Variance The formula-
etection methods. Finally, the computional EXpense ;, \« i, Eq. 6 and Eq. 7 are computationally expensive.

IS Iool;eo! at |n"Se|ct|0_r;h6. TE'S |stanothe_r |mp|0:_tant An alternative is to apply recursive calculations. The
aspect since all algorithms have to run in real-time. .o b coiculated as

The reaction of the residual to a fault will be shown in 1
Section 7. Conclusions (Section 8) end this paper. fix(K) = pix(k— 1) + 5 (x(kK) —x(k—N))  (8)

and the recusive equation for the variance is given as
2. INTRODUCTION TO THE ALGORITHMS g 9

200 _ 2 B 2
The simplest way to monitor changes in a signialto ox(K) = oy (k—1) + N—1 ((X(k) px(k))

constantly compare the signal values against an upper > 1 2 ©)
and a lower threshold, — (x(k=N) = pux(k))"+ N (x(k) —x(k—=N)) )
X< Xupper, X > Xiower- @) The performance of these two algorithms can be tuned

This is termedimit checkingand is a computationally by changing the window lengti. Changes in the sig-
quite inexpensive technique. However, many signals, nal can now be monitored by comparing the estimates
such as e. g. a residual, are noisy due to model im-of the mean and variance against fixed thresholds.
purities, process and sensor noise, etc. Therefore, the ) .
thresholds have to be increased to avoid false alarms. Nere €xists a couple of other well-known algorithms,

However, increasing the thresholds means that smallWhich can detect changes in the mean and variance

changes in the signal might not be detected. of a signal. _A descrlpt_lon of thgs_e methods can e.
g. be found in (Basseville and Nikiforov, 1993). The

More advanced methods monitor statistically charac- key concepts generatirngst quantitiesill shortly be

teristic quantities of the signal, such as theanand summarized in the following:

variance The mean of a discrete time signal of length

N is defined as (Papoulis, 1991) Shewart Control Chart: This test, as all following
N tests can discern between two hypotheses. These hy-
[y = 1 Z x(i) @) potheses state that the variaBileas the valuéy (Hy-
N = pothesis 0) of; (Hypothesis 1). In the following, it

is assumed, that the signal samples under scrutiny are

Gaussian-distributed with mean valueand variance

o?.

and the variance is given as

N
1 .
% = mZ(X(')—Mx)Z- 3)
i=1 The Shewart control chart is now implemented to test
for a change in the mean fropy to 1. Thedecision

These calculations are only suitable for the offline cal- e
functionis given as

culation of time invariant statistical quantities. How-

ever, fault detection algorithms are typically imple- 11— 1o N 11— 1o
mented online and furthermore, the statistical quan- S = =2 = (x. —pg— 2 5 ) (10)
tities are time-varying. The fault will come into ex- g i=1

istence at some unspecified time instgntthus the

mean and variance will change around this time in-
stant. This will lead to the recursive versions of Eq. 2
and Eq. 3, S > h. (11)

This decision function is tested against a conveniently
chosen threshold. Hypothesis 1 is true, if



v

case ispug = 0 will be utilized. This allows a few >

Now, the assumption that the mean in the fault free x ] E{x}
simplifications,

\ Low Pass Filter v

N
§1\‘ = ZX| (12) 2 2
i=1

u u

which is tested against a new threshbld

Geometric Moving Average Control Chart: This x2 R i}
method is based on the idea of using higher weights " X2
on recent observations and lower weights on past Low Pass Filter

observations, which is also known under the term _ _
exponential forgettingFor a change in the mean of Fig. 1. Calculation of Mean and Variance by Low Pass
a Gaussian sequence, the decision function is givenas  Filtering

gk) = (1—a)g(k—1) +a(x(K) — o). (13) 3. DESCRIPTION OF THE RESIDUAL OF A

Once again, fopg = 0, the equation can be rewritten PARITY EQUATION

as . . .
At a testbed consisting of a linear hydraulic servo-
g(k) = (1— a)g(k— 1) + ax(K). (14) 9 y

) i axis, the parity equation described in the following
The starting value can conveniently be chosen aspag heen implemented. In the evaluation, the parity

9(0)=0. equation governing the hydraulics of the cylinder will
For a change in the variance froﬁﬁ to g%’ the be examined. The behavior of the system is highly
decision function is given as nonlinear. The pressure buildup in chamber A of the
hydraulic cylinder amounts to
oK) = (1-gk-D+a (K —p? @5 YInaer amor
Since the meap once again is zero, this equation can Pa = E(Pa) (VA= AnX— Chg(Pa—Pa)) (20)

be rewritten as Voa+AnX
1 _ 2 Here,E is the pressure dependent bulk modulds.
9(k) = (1—a)g(k—1) +ax(k)" (16) is the cross-sectional area aMia the volume at
with the starting valug(0) = 0. x = 0. Gpg is the coefficient of laminar leakage flow
Finite Moving Average Control Charts: Now, a between chamberAand B. This flow depends on the
finite memory is utilized with arbitrarely chosen PresSuré difference between chamberph, and B,

weights. For a change in the mean, the decision func-Pe- All measured variables are also depicted in Fig. 2,
which displays the schematic cross-sectional drawing

tion reads

N1 of a proportional valve and cylinder as used at the

hydraulic servo-axis.
9(k) = > % (%i — o) 17) y

i=0
The major disadvantage of this algorithm is the large ikng il g
number of parameters, since gl must be tuned to @
achieve optimal performance of the algorithm. Since ' |
all other algorithms are much easier to tune and de- A ::@
pend on one parameter only, this Finite Moving Aver-
age Control Chart will be left out of the comparison. ©) Q)

Cumulative Sum (CUSUM): For an increase in the  Fig. 2. Schematic View of a Hydraulic Servo-Axis
mean, the algorithm is given as

B + + The displacement of the valve spool and the thereby
g(k) = {g(k 1)+ e 2M0 <x(k) - M)] , determined opening of the control edges determines
g 2 (18) the flow into chamber AV,, given by
L i _ _
where the functioly = [x]* is defined as Va = By1 (xv) /\pp — palSign(pe — pa) o1
xif x>0 i
y= { 0 otherwise (19) —Bv2(xv)y/ Ipa—pr(sign(pa—pr),
A decrease in the mean can be detected by a straightwhere By; and By, are the spool displacemery
forward extension of Eq. 18. dependent coefficients of turbulent flow across the

control edgespp is the pressure at the pump apd
is the pressure in the return line, whose influence is
typically neglectedggr = 0).

Low Pass Filtering: Approximate estimations of the
mean and variance can also be calculated by low
pass filtering, see (Ho6fling, 1996). The corresponding
block diagram is shown in Fig. 1. All the described For the observer, Eq. 20 will be solved foinstead of
methods will now be compared. Pa



VOA+AAX) 22) 4. SMALLEST DETECTABLE FAULT

. 1/. )
X=A<VA—GAB(DA—DB)—DA £

] o The following methods have been compared:
In the literature, it is normally reported that Eq. 20 o '
is implemented. However, the model governed by (1) Limitchecking, Eq.1 _
Eq. 22 is proposed as a basis for parity equations and (2) Time-window average with parameter window

observers, since the dynamicssirare much slower lengthN, Eq. 8
than those inpa. The high fidelity of this model ~ (3) CUSUM test for increase in mean with parame-
allows to run the model in parallel to the plant without ter thresholdh, Eqg. 18
the need for an observer-based feedback scheme for(4) CUSUM test for decrease in mean with parame-
the output error over a short time period. Figure 3 ter thresholdh, analog to Eq. 18
shows the open |Oop_response of the model to an (5) Shewart Control Chart with parameter window
APRBS input. An equation similar to Eq. 22 can lengthN, Eq. 12
(6) GMA for mean with parameter forgetting factor
e ‘ ‘ a, Eq. 14

it —— Measurement

i - Simuation | (7) GMA for variance with parameter forgetting fac-

i ) etpoint

| tor o, EQq.16

| (8) Estimation of mean with one low-pass filter of
first order with parameter time constantFig. 1

(9) Estimation of variance with two low-pass filters
of first order with parameter time constant
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Fig. 1
el (10) Estimation of mean with one low-pass filter of
0 - : second order with parameter time constant
007 5 1 15 Fig. 1
tlsed] (11) Estimation of variance with two low-pass filters

] ) of second order with parameter time constant
Fig. 3. Comparison of Open Loop Model and System Fig. 1

Response

All methods have at most one parameter. Offset faults
be implemented for chambeB of the differential for all sensors have been investigated. For the dis-
cylinder. placement sensox, an offset fault will only lead to

a temporary deflection of the residual, because of the
To avoid that the model output departs from the systemfeed-back structure. Therefore, this fault has not been
output over extended time periods, an observer will considered in the comparison. Faults in sermspdo
now be introduced into the system. The output error is barely affect the residual and can much more easily
fed back amplified by an observer giriThe observer  be detected by reformulating Eg. 22 for chamBer
block diagram is shown in Fig. 4. The output error, Therefore, this fault has also been neglected for a com-

parison. The other three faults have been numbered as

X * follows:
i D

(1) Faultinpp

Pe & (2) Faultinpa
Pa 3) Faultinx
) v

Table 1 shows the sensititvity to the individual faults.
The bold number denotes the overall smallest de-
tectable fault. The different methods have been tested
with ten data sets recorded at the testbed. First, the re-

Pa E action of the different methods to the fault free signals

| has been determined. Then, the thresholds for raising
an alarm have been determined by adding a safety
margin of 10%. In Fig. 5, the minimum detectable
fault as a function of the tunebale parameter has been
plotted. This diagramm illustrates that for all methods
in fact the minimum has been found.

%

P

Fig. 4. Block Diagramm of the Observer for Correct-
ing the Model Outputk(t) of the servo-axis

r=%X-—x (23)

will now be used as a residual. In the fault free case,

the residual should have zero mean. In the presence 5. TIME-TO-DETECTION

of the faults, the observer has to constantly adapt

the model output to the process output and thus theNext, the time-to-detection is considered. This is an-
variance and/or the mean of the residual will change. other important quantity, since faults should be de-



Table 1. Smallest Detectable Fault of the Table 2. Computational expense
Different Methods

Method  Sum of Operations

Method Faultl Fault2 Fault3 1 1
1 164% 1.68% 052% 2 5
2 1.03% 091% 0.33% 3 4
3 1.02 % —  031% 4 4
4 —  0.89% — 5 3
5 089% 0.78% 0.28% 6 4
6 1.06% 0.82% 0.34% 7 5
7 159% 0.90% 0.48% 8 4
8 1.06% 0.82% 0.34% 9 10
9 172% 1.03% 0.50% 10 11
10 1.07% 089% 0.36% 11 24
11 1.80% 1.06% 0.60% ) i . .
computational expense for the different algorithms is
—— Method 1 listed. In determining the computational expense, it
2.6 —&— Method 2
ol - 27 Method 3 has been assumed that the residual has zero mean.
' Y 7 Method s Otherwise, one subtraction has to be added to each
2.2 He o Method 7 . .
o — Method 8 algorithm for subtracting the (non-zero) mean from
L g . ! +] —+- Method 9 .
z b, e[+ Method 10 the actual value and thereby generating a zero mean
18 e L] sequence. Since multiplications are typically less ex-

=
)

pensive than divisions, all division with a constant
divisor have been counted as multiplications. All tests
have been implemented as one-sided tests.

Minimum Detectable Fault [%]
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Fig. 5. Minimum Detectable Faultsize as a Function |n this section, the high sensitivity of the residual to
of Parameter Variation of the Tuneable Parameter 5 its will be shown. In Fig. 7, a 2% sensor offset for

for Sensor Faulpp sensorxy has been inserted after tinhe= 4 sec. One

tected near to their time-origin. The minimum de- ¢&n see from the upper subplot that this small change
tectable fault as a function of the final time is shown in iS barely visible in the signal from the sensor. In the
Fig. 6. One can clearly see the trade-off between faultlower subplot, a time-window average with a window
size and time-to-detection. It is difficult to compare the 'ength of 1500 samples is shown. One can see the
individual methods by the time to detect a certain fault clear reaction to the inserted sensor fault. The time-of-
size, since the individual methods differ quite much in 0rigin of the fault is marked by the thick vertical line
their performance and their ability to detect a certain att = 4sec. The upper and lower threshold are denoted

fault size. by thick horizontal lines.
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Fig. 7. Response of the Residual to a Sensor Offset in

Fig. 6. Minimum Detectable Faultsize as a Function of Xy

Time-to-Detection for Sensor Fault 3

8. CONCLUSIONS
6. COMPUTATIONAL EXPENSE
The individual algorithms will now be rated. This
Another important aspect is the computational ex- is shown in Tab. 3. The table evaluates the sensitiv-
pense, since in on-line fault detection applications, ity (sens), time-to-detection (t-to-d) and the computa-
these algorithms must run in real-time. In Tab. 2, the tional expense (comp exp).



Table 3. Rating of the Methods (+ + best, proaches to monitoring. INProceedings of the
- - worst) Safeprocess 2003Vashington, DC (USA).
Basseville, Michéle and Igor V. Nikiforov (1993pe-
tection of Abrupt Changes: Theory and Applica-

Method Sens. T-to-D Comp. Exp.

; + 8 +0+ tion. Prentice Hall. Englewood Cliffs, NJ.

3 + 0 + Fissel, Dominik (2001)Fault Diagnosis with Tree-
4+ 0 + Structured Neuro-Fuzzy Systems, Nummer 957 in
5 4 t + Fortschritt-Berichte VDI Reihe .8VDI-Verlag.

g * 8 8 Dusseldorf.

8 " 0 0 Gertler, J. (1998)Fault Detection and Diagnosis in

9 + Engineering Systemblarcel Dekker. New York.
10+ -- Hofling, T. (1996). Methoden zur Fehlererkennung
11 +

mit Parameterschatzung und Paritatsgleichun-

Based on this table, method 5 performs best, whichis ~ gen, Nummer 546 in Fortschritt-Berichte VDI
the Shewart Control Chart. Methods 3 and 4 perform Reihe 8 VDI-Verlag. Dusseldorf.

well both in the sensitivity as well as the computa- Isermann, Rolf (1997). Supervision, fault-detection
tional expense. These methods represent the CUSUM  and fault-diagnosis method€.ontrol Engineer-

algorithm. Method 2, 6, and 8 perform well with re- ing Practice5(5), 639 — 652.

spect to the sensitivity. These are the Moving Average Isermann, Rolf (2003Mechatronic Systems : Funda-
and the GMA for mean, as well as the estimation of mentals Springer Verlag. UK.

mean with a low-pass filter of first order. SLightly Isermann, Rolf (2005)Fault Diagnosis and Fault
worse performance is shown by the low-pass of sec-  Tolerance Springer Verlag. Berlin.

ond order and the low-pass filter estimation of the vari- Kazemi-Moghaddam, Abbas (1999). Fehlerfriihiden-
ance. This illustrates that the sensor faults considered tifikation und -diagnose eines elektrohydraulis-

change mainly the mean of the residuum and not so ~ chen Linearantriebssys-
much the variance. tems. PhD thesis. TU Darmstadt, Fachbereich

) i i Maschinenbau. Darmstadt. URL: http://elib.tu-
In Summary, it should first be mentioned that a new darmstadt.de/diss/000025.

parity equation was proposed for the supervision of \oqq  Richard (2002). Robuste Fehlerdiagnosever-
a linear-hydraulic servo axis. The high fidelity of the fahren zur Wartung und Serienabnahme elektro-
model allows to detect sensor faults as small as 2% or hydraulischer Aktuatoren. PhD thesis. TU Darm-
less reliably. stadt, Fachbereich Maschinenbau. Darmstadt.
Then different methods have been compared which URL: http://elib.tu-darmstadt.de/diss/000336/.
allow to detect changes in a residuum. These changedMoseler, Olaf (2001). Mikrocontrollerbasierte
can stem from sensor and/or process faults. A total of Fehlererkennung flir mechatronische Komponen-
eleven different methods has shortly been introduced ~ ten am Beispiel eines elektromechanischen Stel-

and then compared with respect to the sensititviy, lanrtiebs, Nummer 908 in Fortschritt-Berichte
time-to-detection and the computational expense. Al- VDI Reihe 8 VDI-Verlag. Dusseldorf.

though the Shewart Control Chart algorithm per- Papoulis, Athanasios (1991). Probabil-
formed best, there exist a couple of well-performing ity, Random Variables and Stochastic Processes
methods to detect changes in the mean and/or variance =~ WCB McGraw-Hill. Boston.

of a signal. Ramdén, Teresia (1998). Condition Monitoring and

Fault Diagnosis of Fluid Power Systems : Disser-
tation No 514. PhD thesis. Link6ping University,
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