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Abstract Based on the techniques of high gain observer and adaptive estimation,
an algorithm is proposed in this paper for sensor fault estimation in nonlinear
systems. It is essentially assumed that a high gain observer exists for the fault-free
system. A high gain adaptive observer is then designed for sensor fault estimation.
The convergence of the algorithm is established under a persistent excitation
condition. Copyright c©2005 IFAC
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1. INTRODUCTION

Fault detection and isolation (FDI) have been ex-
tensively studied for linear dynamic systems, see,
e.g., (Frank, 1990; Basseville and Nikiforov, 1993;
Gertler, 1998; Chen and Patton, 1999). Due to the
importance of nonlinearities in many applications,
nonlinear system FDI have recently become an
active research topic (Hammouri et al., 1998; De-
Persis and Isidori, 2001; Staroswiecki and Comtet-
Varga, 2001; Xu and Zhang, 2004). Most known
results on nonlinear system FDI deal with faults
affecting the state equation in the state space
model of a nonlinear system, typically actuator
faults. The present paper considers sensor fault
affecting the output equation.

More specifically, the considered class of nonlinear
systems subject to sensor fault is in the form of

˙̄x(t) = f̄(x̄(t)) + ḡ(x̄(t))u(t) (1a)
y(t) = h̄(x̄(t)) + q(t) (1b)

where x̄(t) ∈ R
n is the state, u(t) ∈ R

l the input,
y(t) ∈ R the output, q(t) ∈ R represents the
sensor fault eventually affecting the system. It is
assumed that the nonlinear functions f̄ : R

n →
R

n, ḡ : R
n → R

n×l and h̄ : R
n → R are such

that a high gain observer exists for the fault-free

system (a short introduction to high gain observer
will be given in Section 2). The input u(t) is
assumed to ensure well-defined state trajectory for
t ∈ [t0,+∞). The term q(t) is equal to zero when
no fault is present. The purpose of this paper is to
propose a method for the estimation of the sensor
fault q(t). For this estimation to be possible, it
is assumed that q(t) can be modeled by a linear
regression

q(t) = θ1ψ1(t) + · · · + θpψp(t) (2)

with given regressor functions ψ1(t), . . . , ψp(t).
This model may come from some physical knowl-
edge about the possible fault. For example, some
disturbances with known frequencies may affect
the output measurement. It can also be consid-
ered as a generic approximator of the fault signal.
It is then assumed that the complexity of the
regressors ψ1(t), . . . , ψp(t) allows to reasonably
approximate q(t). Such a numerical example (ap-
proximating a chirp signal with a finite number of
sinusoid functions) will be presented in Section 4.

Only single output system is considered in this
paper. For a multi-output system, if a high gain
observer can be designed with each individual out-
put for which the sensor fault is to be estimated,
then the method of this paper can be applied



separately with each of these outputs. When this
condition is not satisfied, the result of this paper
can still be generalized to some particular multi-
output systems, in a way similar to (Besançon et
al., 2004), or based on some other recent results
on nonlinear observers (Hou et al., 2000; Gauthier
and Kupka, 2001).

If the fault-free output h̄(x(t)) can be correctly
predicted from the input signal u(t) only, then
the estimation of q(t) is trivial. However, due to
modeling uncertainty and possibly due to lack of
model stability, quite often such a simple predic-
tion is not sufficiently accurate. State observers
or Kalman filter-like algorithms are known to be
more reliable.

With the above formulation, the problem of sensor
fault estimation amounts to the estimation of the
parameters θ1, . . . , θp. A similar problem, with
faults affecting the state equation, has been stud-
ied in (Xu and Zhang, 2004). Some related adap-
tive observer algorithms also consider unknown
parameters in state equation only, as in (Bastin
and Gevers, 1988; Marino and Tomei, 1995; Cho
and Rajamani, 1997; Besançon, 2000).

Remark that it is possible to move the parameters
θ1, . . . , θp from the output equation into the state
equation in the following way. Introduce a new
state variable x∗(t) (corresponding to the integral
of y(t)) in addition to the state vector x̄(t), with
the extra state equation

ẋ∗(t) = h̄(x̄(t)) + θ1ψ1(t) + · · · + θpψp(t)

Replace the output variable y(t) by its inte-
gral y∗(t), so that the new output equation be-
comes simply y∗(t) = x∗(t). Then the parame-
ters θ1, . . . , θp are moved into the state equation.
However, with this method, the state vector is
unnecessarily increased, and it may be difficult to
put the new system model into the form required
by (Xu and Zhang, 2004). In the present paper,
the main result is a nonlinear adaptive observer
which allows to directly estimate the fault param-
eters in the output equation, and incidentally to
estimate the state vector. The global exponential
convergence of the algorithm is established under
appropriate assumptions.

Compared to the result of (Xu and Zhang, 2004),
in addition to the already mentioned difference
about the location of the considered faults, this
paper presents an important algorithm simplifica-
tion which is now also known to be applicable to
the algorithm of (Xu and Zhang, 2004).

This paper is organized as follows. Section 2
recalls the basic high gain observer. The proposed
algorithm is presented in Section 3. A numerical
example is given in Section 4. Some conclusions
are drawn in Section 5.

2. THE BASIC HIGH GAIN OBSERVER

In order to introduce some technical elements used
in this paper, let us recall the basic high gain ob-
server, essentially following (Deza, 1991; Gauthier
et al., 1992). See also (Gauthier and Kupka, 2001)
for some more advanced developments.

It is shown in (Gauthier et al., 1992) that, in the
fault-free case (q(t) ≡ 0), if the nonlinear sys-
tem (1) is observable for all inputs, the coordinate
change 1

x(t) = [h(x̄(t)), Lfh(x̄(t)), . . . , Ln−1
f h(x̄(t))]T (3)

transforms the system into the form

ẋ(t) = Aox(t) + f(x(t)) + g(x(t))u(t) (4a)
y(t) = cox(t) (4b)

where

Ao =



0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0


 , co =

[
1 0 · · · 0

]
(5)

f : R
n → R

n and g : R
n → R

n×l are two nonlinear
functions in the triangular form:

f(x)=




f1(x1)
f2(x1, x2)

...
fn(x1 . . . xn)


 , g(x)=




g1(x1)
g2(x1, x2)

...
gn(x1 . . . xn)


 (6)

For a positive real number ρ, define the diagonal
matrix

∆ =



ρ 0 · · · 0

0 ρ2
...

...
. . . 0

0 · · · 0 ρn


 (7)

Let S be the solution of the matrix equation

AT
o S + SAo + S = cTo co (8)

It is known that S is a positive definite matrix
(see Appendix B of (Xu and Zhang, 2004)).

Define also
κo =

1
2
S−1cTo (9)

Theorem 1. Consider system (4) with Ao, co, f(x)
and g(x) as defined in (5) and (6). If the functions
f(x) and g(x) are globally Lipschitz, and if the
input u(t) is bounded, then, for sufficiently large
ρ, the ordinary differential equation (ODE)

˙̂x(t) = Aox̂(t) + f(x̂(t)) + g(x̂(t))u(t)
+ ∆κo[y(t) − cox̂(t)] (10)

with ∆ and κo as defined in (7) and (9) is a global
exponential observer for system (4), i.e., for all

1 Lfh(x) denotes the Lie derivative of h(x) along f(x).



initial conditions x(t0) and x̂(t0), the estimation
error x̂(t) − x(t) tends to zero exponentially fast
when t→ ∞. 2

Intuitively, after the state transformation z =
∆−1x and ẑ = ∆−1x̂, for large ρ, the nonlinear
terms in the error system are dominated by the
linear terms. It is thus not surprising that the high
gain observer is similar to the linear Luenberger
observer. See (Deza, 1991; Gauthier et al., 1992)
for formal proofs.

3. SENSOR FAULT ADAPTIVE ESTIMATION

Let us rewrite the linear regression (2) as

q(t) = ψ(t)θ

with the row vector

ψ(t) = [ψ1(t), . . . , ψp(t)]

and the column vector

θ = [θ1, . . . , θp]T

Now with the sensor fault present in system (1),
the coordinate change (3) transforms it into the
form

ẋ(t) = Aox(t) + f(x(t)) + g(x(t))u(t) (11a)
y(t) = cox(t) + ψ(t)θ (11b)

where Ao, co are as defined in (5), and f, g as
in (6). The sensor fault estimation problem then
amounts to the estimation of the parameter vector
θ.

The same problem for linear time varying systems
is considered in (Zhang, 2005). A similar problem,
with ψ(t)θ affecting the state equation instead of
the output equation, has been considered in (Xu
and Zhang, 2004). Inspired by these results, the
following adaptive observer is proposed for recur-
sive joint estimation of x(t) and θ.

Υ̇(t) = ρ(Ao − κoco)Υ(t) − ρκoψ(t) (12a)
˙̂x(t) = Aox̂(t) + f(x̂(t)) + g(x̂(t))u(t)

+ ∆
{
κo + ρ−1Υ(t)Γ [coΥ(t) + ψ(t)]T

}
· [y(t) − cox̂(t) − ψ(t)θ̂(t)] (12b)

˙̂
θ(t) = Γ [coΥ(t) + ψ(t)]T

· [y(t) − cox̂(t) − ψ(t)θ̂(t)] (12c)

where Υ(t) ∈ R
n×p is a matrix of signals gen-

erated by linearly filtering ψ(t), x̂(t) ∈ R
n is

the state estimate, θ̂(t) ∈ R
p is the parameter

estimate, ρ is a positive real number, ∆ is as
defined in (7), κo as in (9), and Γ ∈ R

p×p is a
positive definite gain matrix.

The state estimation equation (12b) is clearly
related to the high gain observer (10). Besides

the basic observer gain κo, extra terms have been
introduced so that this equation can be written as

˙̂x(t) = Aox̂(t) + f(x̂(t)) + g(x̂(t))u(t)

+ ∆κo[y(t) − cox̂(t) − ψ(t)θ̂(t)]

+ ρ−1∆Υ(t) ˙̂
θ(t) (13)

where the term ρ−1∆Υ(t) ˙̂
θ(t) is needed due to

the fact that the prediction error y(t) − cox̂(t) −
ψ(t)θ̂(t) is computed with the parameter estimate
θ̂(t) instead of the true parameter θ. The term

ρ−1∆Υ(t) ˙̂
θ(t) will play an important role in the

convergence analysis of the proposed adaptive
observer (12).

Like all parameter estimation problem, the esti-
mation of θ requires some persistent excitation
condition.

Assumption 1. Assume that ψ(t) is persistently
exciting, so that, for any ρ > 0 sufficiently large,
the row vector of signals φ(t) ∈ R

p obtained by
linearly filtering ψ(t) with the filter defined by the
state space equations

Υ̇(t) = ρ(Ao − κoco)Υ(t) − ρκoψ(t)
φ(t) = coΥ(t) + ψ(t) (14)

satisfies, for some positive constants α, T and for
all t ≥ t0, the following inequality∫ t+T

t

φT (τ)φ(τ)dτ ≥ αIp (15)

2

Notice that φ(τ) is a row vector and that
φT (τ)φ(τ) is a p × p matrix. For each instant τ ,
the rank of the matrix φT (τ)φ(τ) is equal to one,
however, its integral can be positive definite if ψ(t)
is sufficiently rich.

Theorem 2. Let Γ ∈ R
p×p be any symmetric pos-

itive definite matrix, the notations ∆ and κo as in
(7) and (9). If f(x), g(x) are globally Lipschitz,
u(t) and ψ(t) are bounded, then, under Assump-
tion 1, for sufficiently large ρ > 0, the ordinary
differential equations (12) constitute a global ex-
ponential adaptive observer for system (11) i.e.,
for any initial conditions x(t0), x̂(t0), θ̂(t0) and for
all θ ∈ R

n, the errors x̂(t)−x(t) and θ̂(t)− θ tend
exponentially to zero when t→ ∞.
�

Proof. Remind that equation (13) has been de-
rived from (12b) and (12c). Define

x̃(t) = x̂(t) − x(t)

θ̃(t) = θ̂(t) − θ

Following (11), (13) and noticing that θ̇ = 0,



˙̃x(t) = Aox̃(t) + f(x̂(t)) − f(x(t))
+ g(x̂(t))u(t) − g(x(t))u(t)

− ∆κo[cox̃(t) + ψ(t)θ̃(t)]

+ ρ−1∆Υ(t) ˙̃
θ(t)

Now let us define the scale transformation

x(t) = ρ−1∆z(t)

x̂(t) = ρ−1∆ẑ(t)
x̃(t) = ρ−1∆z̃(t)

Due to the special forms of ∆, Ao, co, it is easy to
check the equalities

∆−1Ao∆ = ρAo

co∆ = ρ co

Then the scale transformation leads to

˙̃z(t) = ρ(Ao − κoco)z̃(t) + ξ(t) − ρκoψ(t)θ̃(t)

+ Υ(t) ˙̃θ(t)

with

ξ(t) = ρ∆−1[f(ρ−1∆ẑ(t)) − f(ρ−1∆z(t))]
+ ρ∆−1[g(ρ−1∆ẑ(t))

− g(ρ−1∆z(t))]u(t) (16)

Now define the linear combination of the estima-
tion errors

η(t) = z̃(t) − Υ(t)θ̃(t) (17)

then

η̇(t) = ρ(Ao − κoco)[η(t) + Υ(t)θ̃(t)] + ξ(t)

− ρκoψ(t)θ̃(t) + Υ(t) ˙̃
θ(t)

− [Υ̇(t)θ̃(t) + Υ(t) ˙̃
θ(t)]

= ρ(Ao − κoco)η(t) + ξ(t)
+ [ρ(Ao − κoco)Υ(t) − ρκoψ(t)

− Υ̇(t)]θ̃(t) (18)

Remind that Υ(t) is generated by (12a), therefore
equation (18) simply becomes

η̇(t) = ρ(Ao − κoco)η(t) + ξ(t) (19)

Though the matrix Ao − κoco is asymptotically
stable (see Appendix B of (Xu and Zhang, 2004)),
it is still not clear if η(t) tends to zero, because of
the nonlinear term ξ(t) depending on θ̃(t). So the
behavior of η(t) has to be analyzed together with
θ̃(t).

Now following (12c), (11b) and the equality θ̇ = 0,
the equation of θ̃(t) is derived:

˙̃
θ(t) = −Γ [coΥ(t) + ψ(t)]T [coz̃(t) + ψ(t)θ̃(t)]

Notice that z̃(t) = η(t) + Υ(t)θ̃(t) following the
definition of η(t) in (17), then

˙̃
θ(t) = −Γ [coΥ(t) + ψ(t)]T coη(t)

− Γ [coΥ(t) + ψ(t)]T [coΥ(t) + ψ(t)] θ̃(t)

= −ΓφT (t)coη(t) − ΓφT (t)φ(t)θ̃(t)

where φ(t) is as defined in (14)

Now the problem is to study the stability of the
joint error system

η̇(t) = ρ(Ao − κoco)η(t) + ξ(t) (20a)
˙̃θ(t) = −ΓφT (t)coη(t) − ΓφT (t)φ(t)θ̃(t) (20b)

A similar problem has been encountered in (Xu
and Zhang, 2004). Because of the difficulty of
the stability analysis, the solution of (Xu and
Zhang, 2004) was to modify their algorithm by
considering a collection of systems corresponding
to different delayed versions of the original sys-
tem. It allowed to overcome the main difficulty
of the error stability analysis, but also consider-
ably increased the numerical complexity of the
algorithm. In this paper, for the analysis of the
error system (20), a different method is used in
the following. This method, similar to the one
used in (Zhang et al., 2003), allows to preserve
the simplicity of the algorithm (12).

Let us first consider the homogeneous part of the
differential equation (20b), namely, the linear time
varying system

ė(t) = −ΓφT (t)φ(t)e(t) (21)

Based on the persistent excitation condition (15)
and a classical result on linear time varying sys-
tem stability, system (21) is exponentially sta-
ble (Narendra and Annaswamy, 1989, page 72).
This stability implies that, for any symmetric pos-
itive definite matrix Q(t) ∈ R

p×p, in particular,
for Q(t) = Ip, there exists a symmetric positive
definite matrix P (t) ∈ R

p×p satisfying the equa-
tion

Ṗ (t) = [ΓφT (t)φ(t)]TP (t)

+ P (t)[ΓφT (t)φ(t)] − Ip (22)

The matrix P (t) is known to have positive lower
and upper bounds.

Now it is ready to study the stability of the er-
ror system (20). Consider the Lyapunov function
candidate:

V (t) = ηT (t)Sη(t) + θ̃(t)TP (t)θ̃(t)

with S being the (positive definite) solution of (8)
and P (t) the solution of (22). Then



V̇ (t) = −ρηT (t)Sη(t) + 2ηT (t)Sξ(t) + ˙̃θT (t)P (t)θ̃(t)

+ θ̃T (t)Ṗ (t)θ̃(t) + θ̃T (t)P (t) ˙̃θ(t)

= −ρηT (t)Sη(t) + 2ηT (t)Sξ(t)

− ηT (t)[P (t)ΓφT (t)co]T θ̃(t)

− θ̃T (t)[P (t)ΓφT (t)co]η(t) − θ̃T (t)θ̃(t)

where, for the first equality, the equations (8) and
(9) have been used with (20a).

Because f and g are globally Lipschitz and are
triangular, the nonlinear term ξ(t) as defined
in (16) satisfies the inequality

‖ξ(t)‖ ≤ µ(ρ−1)‖z̃(t)‖
= µ(ρ−1)‖η(t) + Υ(t)θ̃(t)‖

with µ(ρ−1) > 0, a polynomial in ρ−1 depending
on the Lipschitz constants of f and g and on the
upper bound of u(t). Therefore, there exist two
polynomials µ1(ρ−1) and µ2(ρ−1) such that

2ηT (t)Sξ(t) ≤ µ1(ρ−1)‖η(t)‖2

+ µ2(ρ−1)‖η(t)‖ · ‖θ̃(t)‖

Because P (t) and Υ(t) have upper bounds, there
exists a constant c > 0 such that

2‖P (t)ΓφT (t)co‖ ≤ c

The inequality ab ≤ 1
2

(
a2 + b2

)
with a =

[µ2(ρ−1) + c]‖η‖ and b = ‖θ̃‖ leads to

V̇ (t) ≤ −ηT (t)[ρS − µ1(ρ−1)I]η(t) − ‖θ̃‖2

+ [µ2(ρ−1) + c]‖θ̃‖ · ‖η‖
≤ −ηT (t)[ρS − µ1(ρ−1)I]η(t) − ‖θ̃‖2

+
(µ2(ρ−1) + c)2

2
‖η(t)‖2 +

1
2
‖θ̃‖2

= −ηT (t)
[
ρS − µ1(ρ−1)I − (µ2(ρ−1) + c)2

2
I

]

· η(t) − 1
2
‖θ̃‖2

Let us choose a value of ρ sufficiently large, such
that

ρS − µ1(ρ−1)I − (µ2(ρ−1) + c)2

2
I >

1
2
I

then

V̇ (t) ≤ −1
2
‖η‖2 − 1

2
‖θ̃‖2

≤ −1
2

[
ηT S

λmax(S)
η + θ̃T P (t)

λmax(P (t))
θ̃

]

≤ −1
2

min
(

1
λmax(S)

,
1

λmax(P (t))

)
V

with λmax(S) being the largest eigenvalue of S.

Then it is concluded that η(t) and θ̃(t) tend
exponentially to zero, so do z̃(t) = η(t)+Υ(t)θ̃(t)
and x̃(t) = ρ−1∆z̃(t).
�

4. NUMERICAL EXAMPLE

Let us illustrate the proposed algorithm with
a simple bio-reactor simulated with the Contois
model (Contois, 1959) which has been used in
(Gauthier et al., 1992) as an example of high
gain observer application. Denoting by x′1 and x′2
the concentrations of micro-organisms and sub-
strate, the evolution of the two concentrations is
described by the equations

ẋ′1 =
a1x

′
1x

′
2

a2x′1 + x′2
− ux′1

ẋ′2 =− a3a1x
′
1x

′
2

a2x′1 + x′2
− ux′2 + a4u

where u is the dilution rate and a1, a2, a3, a4 are
model parameters.

After the state transformation

x1 = x′1

x2 =
a1x

′
1x

′
2

a2x′1 + x′2
the system equation becomes

ẋ1 = x2 − ux1

ẋ2 =
a2x2(x2

2 − a1ux
2
1) + (a1x1 − x2)2(a4u− a3x2)

a1a2x2
1

As in (Gauthier et al., 1992), the parameter values
used in the simulation are: a1 = a2 = a3 = 1, a4 =
0.1, the initial states x1(0) = 0.05, x2(0) = 0.025,
and the input signal used in the simulation

u(t) =




0.08 for 0 ≤ t < 10
0.02 for 10 ≤ t < 20
0.08 for t ≥ 20

Assume that the sensor measuring x1 is affected
by a fault

y(t) = x1(t) + q(t)
where the fault q(t) is simulated as a chirp signal

q(t) =

{
0 for t < 20
0.01 sin(0.06t2 − 0.4t) for t ≥ 20

In the adaptive observer, the fault q(t) is approxi-
mated with the Fourier expansion

θ1 cos 4t+ θ2 cos 8t+ θ3 cos 16t+ θ4 cos 32t
+ θ5 sin 4t+ θ6 sin 8t+ θ7 sin 16t+ θ8 sin 32t

The algorithm parameters ρ = 1 and Γ = 400I8
with I8 being the 8×8 identity matrix. In figure 1
are plotted the simulated fault (top), its estima-
tion given by the adaptive observer (middle) and
their difference (bottom).

5. CONCLUSION

An adaptive observer is proposed in this paper for
sensor fault estimation. The convergence analysis
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Figure 1. Sensor fault signal (top), its estimation
(middle) and their difference (bottom)

of the proposed algorithm has been made under
the assumption of perfect modeling, In practice,
modeling and measurement uncertainties are in-
evitable, implying estimation errors. Though sim-
ulations show the robustness of the proposed algo-
rithm to such errors, as in the numerical example
of this paper, the theoretic study of such impact
on nonlinear observer based approaches remains a
challenging problem.
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d’observateurs exponentiels – application à
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