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Abstract: The aim of this paper is to present an explicit parametrization of the
value set boundary for a model family consistent both with the process-control-
oriented a priori information about the class of candidate models and with one
experimentally obtained point of the process frequency response. More precisely, it
is assumed that the real process can be described by a multiple fractional order pole
model with or without a restriction on the total model order. The result obtained
is further extended to the case where more points of a process frequency response
are available. However, then only hard bounds of value sets can be computed. The
presented results have important applications in design of robust controllers, in
particular in the field of automatic tuning procedures. Copyright c©2005 IFAC
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1. INTRODUCTION

It is well known from the classical control theory
that process controllers can be designed on the
base of a few points of the process frequency
response. In this direction, the limit method is the
popular Ziegler-Nichols frequency method which
uses only one so called ultimate point. However,
these traditional methods are neither systematic
nor guarantee fulfillment of design specifications
for an exactly given class of process transfer
functions.

At present, when designing a robust controller in
the frequency domain, it is usually assumed that
the frequency response of the “true” system lies
for each frequency on regions of the complex plane
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(Rotstein et al. 1998). These regions, called value
sets, quantify the amount of model uncertainty at
a given frequency. The problem of obtaining hard
bounds of the value sets from experimental data
has been considered before, see e.g. (Helmicki et
al. 1991, Milanese et al. 1996). Although some of
these methods are very sophisticated and general,
none of them gives tight bounds for the case
where only one or two frequency response points
are available because of the minimum a priori
information assumed.

In this paper, a novel approach to the above
problem is presented. The key feature in the
problem formulation is a new form of a priori
information about the class of candidate models.
In accordance with the majority of works in the
process control field, it is assumed that the real
process can be described by a multiple fractional
order pole model (Charef et al. 1992, Podlubny
1999) in the form



P (s) =
K(

p−1∏
i=1

(τis + 1)ni

)
snp

, (1)

where p is an arbitrary integer and K, τi, i = 1,
2, . . . , p − 1, ni, i = 1, 2, . . . , p are non-negative
real numbers. It is important to note that the
class of all transfer functions (1) includes all in-
teger order lag/dead time processes because of no
restriction on the total order of (1). Moreover, it
follows from (Skogestad 2003) that any lag/dead
time transfer function with positive and/or neg-
ative numerator time constants may be also ap-
proximated (at least for the purpose of control
design) by a transfer function in the form (1).
Consequently, it is believed that the assumed class
(1) is sufficiently rich for the process control pur-
poses. Nevertheless, it should be explained, why
the fractional order systems are introduced and
preferred to common integer order transfer func-
tions. The reason is clear from the previous paper
(Schlegel 2002) on the same topics, where only the
integer order systems are assumed. In that case,
the characterization of the value set is much more
complex because of discontinuity in the pole or-
ders. Moreover, the fractional order systems seem
to be a more appropriate representation of reality.

The main result of this paper is an explicit
parametrization of the value set boundary for the
model family consistent with the a priori informa-
tion (1) and one experimentally obtained point
of the process frequency response. This result is
further extended to the case where more points of
the process frequency response are available. How-
ever, then only the hard bounds of the value set
instead of the exact boundary can be computed.
The presented results have important applications
in design of robust controllers and automatic tun-
ing procedures. For example, an exact revision of
all existing PID relay autotuners can be made as
outlined in Section 5.

The paper is organized as follows. The frequency
response interpolation problem is formulated in
Section 2. The main result of this paper dealing
with one point interpolation is given in Section 3.
Section 4 deals with the case where more points
of the process frequency response are available.
Applications to robust controller design are out-
lined in Section 5. A sketch of the proof of the
main theorem can be found in Section 6. Section
7 contains concluding remarks.

2. PROBLEM FORMULATION

In this paper, a class of fractional order systems in
the form (1) is considered, where K > 0; τi > 0,
ni ≥ m, i = 1, 2, . . . , p − 1, np is either 0 or
np ≥ m and

∑p
i=1 ni ≤ n. It is assumed that

m and n, 0 < m < n are given real numbers
specifying the minimum admissible order of a
fractional pole and the maximum admissible order
of the whole process, respectively. In the following,
this class will be denoted by Sn,m. Note that
the span of the class Sn,m may be controlled by
a proper choice of the real numbers m,n. For
example, if m = 1 and n → ∞, then the set
Sn,m contains all integer order lag systems with
dead time. Consequently, it is believed, that the
class Sn,m is suitable for description of the a priori
process knowledge.

A subset of Sn,m containing all transfer functions
P ∈ Sn,m which satisfy the interpolation condi-
tions

P (jωi) = pi,

0 > arg P (jωi) > −2π, i = 1, 2, . . . , l (2)

where pi ∈ C and 0 < ω1 < ω2 < · · · < ωl are
given, is denoted by Sn,m(Π), Π = {(pi, ωi)}l

i=1,
and called the unfalsified plant family. Similarly,
the transfer function P ∈ Sn,m(Π) is called unfal-
sified. For l = 1 the symbol Sn,m(p1, ω1) will be
used instead of Sn,m(Π). Thus, if P ∈ Sn,m(p1, ω1),
then the transfer function P must have the form
(1) with the above constraints and its Nyquist plot
P (jω) is required to pass through the given point
p1 at the frequency ω1 during the first circulation
around the origin of the complex plane. Point out
that the data Π are assumed to be obtained from
an identification experiment. In the following, the
key concept is the value set, which is defined for
any ω by

Vn,m
ω (Π) = {P (jω) : P ∈ Sn,m(Π)}. (3)

The boundary of the value set Vn,m
ω (Π) will be

denoted by ∂Vn,m
ω (Π). The main aim of this paper

is to present an exact description of the boundary
∂Vn,m

ω (Π) for the case l = 1 and give its not
very conservative estimate for the case l ≥ 2. For
this purpose, the concept of an ultimate transfer
function is introduced.

Definition 1. The unfalsified transfer function
P ∈ Sn,m(Π) is called ultimate if there exists
ω /∈ {ω1, ω2, . . . , ωl} such that P (jω) ∈ ∂Vn,m

ω (Π).

In other words, P ∈ Sn,m(Π) is ultimate if P (jω)
creates a boundary point of Vn,m

ω (Π) for at least
one frequency ω > 0 different from interpolating
frequencies ω1, ω2, . . . , ωl. It will be shown later
that if P generates a boundary point for one such
frequency, then P generates a boundary point for
all ω > 0. Thus, in our context, the concept of
an ultimate transfer function is independent of
the frequency. Consequently, the parametrization
of all ultimate transfer functions is sufficient for
exact description of the boundary ∂Vn,m

ω (Π).



3. ONE POINT INTERPOLATION

This section deals with the simplest case when
the experimental data contain only one sample of
the frequency response. The next theorem gives
an exact parametrization of all ultimate transfer
functions for this case.

Theorem 1. Let Π = {(p1, ω1)} , p1 = re−jϕ,
r > 0, 0 < ϕ < 2π, ω1 > 0 and ϕ ≤ (n − m)π

2 .
Then Sn,m(p1, ω1) 6= ∅ and the unfalsified transfer
function P ∈ Sn,m(Π) is ultimate if and only if it
can be expressed in one of the following forms

(i) P1(s, α) =
K(α)

(τ1(α)s + 1)n1(α)
, (4)

where

τ1(α) =
1
ω1

tan α,

n1(α) =
ϕ

α
,

K(α) = r
√

(τ2
1 (α)ω2

1 + 1)n1(α)

and α is sweeping the interval

I1 =
[ϕ

n
,min

{π

2
,

ϕ

m

}]

(ii) P2(s, α) =
K(α)

(τ1(α)s + 1)n−m(τ2(α)s + 1)m
, (5)

where

τ1(α) =
1
ω1

tan α,

τ2(α) =
1
ω1

tan
ϕ− (n−m)α

m
,

K(α) = r
√

(τ2
1 (α)ω2

1 + 1)n−m(τ2
2 (α)ω2

1 + 1)m

and α is sweeping the interval

I2 =
[
max

{
0,

ϕ−mπ
2

n−m

}
,
ϕ

n

]

(iii) P3(s, α) =
K(α)

(τ1(α)s + 1)n−n2(α)sn2(α)
, (6)

where

τ1(α) =
1
ω1

tan α,

n2(α) =
ϕ− nα
π
2 − α

,

K(α) = r
√

(τ2
1 (α)ω2

1 + 1)n−n2(α)

and α is sweeping the interval

I3 =
[
0,

ϕ−mπ
2

n−m

]
.

Moreover, the value set Vn,m
ω (p1, ω1), ω > 0,

ω 6= ω1 is a closed domain bounded by three arcs:
P1(jω, α), α ∈ I1; P2(jω, α), α ∈ I2 and P3(jω, α),
α ∈ I3. 2

Several remarks can be made regarding Theorem 1.

Remark 1. The version of the Theorem 1 for the
case where no a priori restriction on the process
order is considered, can be simply obtained by the
limiting process n →∞.

Remark 2. For the detail analysis of the value set
Vn,m

ω (re−jϕ, ω1), we can restrict ourselves without
loss of generality to the case r = 1 and ω1 = 1
because of the normalization in gain and time.
Consequently, all illustrating figures given below
will be for this case (Fig. 1, 2 and 3).

Remark 3. Hereafter, the endpoints of the arcs
Pi(jω, α), α ∈ I, i = 1, 2, 3, are called vertices of
the value set Vn,m

ω (p1, ω1) (see Fig. 1). It follows
from Theorem 1 that they are generated by the
transfer functions

V1(s) = lim
α→α−1

P1(s, α) = lim
α→α+

2

P2(s, α),

V2(s) = lim
α→α+

1

P1(s, α) = lim
α→α−3

P3(s, α),

V3(s) = lim
α→α−2

P2(s, α) = lim
α→α+

3

P3(s, α),

where α−i is the begin and α+
i end point of the

interval Ii, i = 1, 2, 3. Particularly interesting
forms of the vertex transfer functions are obtained
in the limit case n →∞, ϕ ≥ mπ

2 , r = 1, ω1 = 1.
Here

V1(s) = e−ϕs, (7)

V2(s) =
1

s
2ϕ
π

, (8)

V3(s) =
e−(ϕ−m π

2 )s

sm
. (9)

Thus, the vertices are generated by a dead time,
fractional order integrator and a fractional order
integrator plus dead time. A challenging question
arises. Does there exist a robust controller with
a satisfactory performance for all three vertex
systems (7-9), where m is e. g. 1 and ϕ is appro-
priately chosen? In Section 5, we give an answer
for the special case of the PI controller.

Remark 4. The span of the admissible plant fam-
ily Sn,m(e−jϕ, 1), 0 < ϕ < 2π can be controlled
by a proper choice of the real numbers m and n.
For example, the value set Vn,m

ω (p1, ω1) enlarges
if n is increasing and m is decreasing (Fig. 3).

4. MULTIPLE POINT INTERPOLATION

In this section, it is shown that Theorem 1 can
be simply used for obtaining hard bounds of the
value set Vn,m

ω (Π) when Π contains two or more
frequency response samples.
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Fig. 1. The value set V5,1
0.5 (e−j5/6π, 1) - solid line;

the corresponding value set of all unfalsified
integer order models - dotted line.
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Fig. 2. The value sets V5,1
ω (e−j5/6π, 1) for several ω.
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Fig. 3. Shaping of the value set Vn,1
0.5 (e−j5/6π, 1) by

upper bound n of the model order.

Let Π = {(p1, ω1), (p2, ω2)} , ω1 < ω2, then from
the definition of the value set (3) it follows that
Sn,m(Π) 6= ∅ if and only if p1 ∈ Vn,m

ω1
(p2, ω2).

Thus, using Theorem 1, it can be simply checked
whether the experimental data Π are consistent
with the a priori assumption on the process trans-
fer function. Moreover, any point of Vn,m

ω (Π) must
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Fig. 4. Computing hard bounds of the value set
Vn,m

ω (Π) for the case l = 2, p1 = 0.5e−j π
2 ,

ω1 = 0.30, p2 = 0.07e−jπ, ω2 = 1.18,
ω = {0.40, 0.90}; Vn,m

ω (p1, ω1) - dotted line;
Vn,m

ω (p2, ω2) - solid line.

fall both into Vn,m
ω (p1, ω1) and Vn,m

ω (p2, ω2) for
any ω as follows again directly from the defini-
tions. Consequently, it holds that

Vn,m
ω (Π) ⊂ Vn,m

ω (p1, ω1) ∩ Vn,m
ω (p2, ω2). (10)

Since Theorem 1 gives an effective method for
computing the boundaries ∂Vn,m

ω (pi, ωi), i = 1, 2,
the boundary of the intersection involved in (10)
can be simply computed and the hard bounds
of the value set Vn,m

ω (Π) determined. Note that
(10) can be extended to an arbitrary number of
interpolation conditions (2).

Example 1. Consider the case where two fre-
quency response samples Π = {(0.5 e−j π

2 , 0.3),
(0.07e−jπ, 1.18)} are available. The intersection of
the value sets (10) is depicted in Fig. 4. for two
frequencies from the interval (ω1, ω2). Notice that
this intersection is much smaller than the value
sets for each individual point.

5. ROBUST CONTROLLER DESIGN

In this section, Theorem 1 and the robustness re-
gions method (Shafiei and Shenton 1997, Åström
and Hägglund 2001) will be employed in design
of the robust PI controller when only one point
(p1, ω1) of the process frequency response is avail-
able. Suppose that p1 = e−j π

2 and ω1 = 1. Then,
according to Theorem 1 and Remark 3, the value
set V∞,1

ω (e−j π
2 , 1) has only the two vertices gener-

ated by the transfer functions (7−9)

V1(s) = e−
π
2 s, (11)

V2(s) = V3(s) =
1
s
. (12)
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Fig. 5. The robustness regions for vertex processes
(11-12).
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Fig. 6. The value sets compensated by the de-
signed PI controller.

Further, the PI controller is assumed in the form

C(s) = k +
ki

s
. (13)

The first step is to design the parameters k, ki

such that the gain and phase margins are at least
2 and 60o, respectively, for both process transfer
functions (11−12). Corresponding robustness re-
gions in the parameter plane k − ki are depicted
in Fig. 5. Any point from their intersection (the
shaded region in Fig. 5) fulfills the above de-
sign specifications. Moreover, the point with the
maximum ki coordinate minimizes the criterion∫∞
0

e(t)dt (Astrom and Hagglund 2001). Choosing
this point, k = 0.49, ki = 0.16. To complete
the robust design procedure, it must be checked
whether all unfalsified transfer functions given by
Theorem 1 also fulfill the design specifications.
However, in our case this fact is apparent from
Fig. 6.

6. PROOF OF THEOREM 1

The most important tool in the proof of Theorem 1
is the Implicit Function Theorem, known from

calculus (Nijmeijer and Schaft 1990). Without loss
of generality the proof can be restricted to the case
r = 1, ω1 = 1.

Lemma 1. If an unfalsified transfer function P ∈
Sn,m(e−jϕ, 1) has at least three mutually different
negative poles, then P is not ultimate.

Proof. Firstly, let P ∈ Sn,m(e−jϕ, 1) have just
three mutually different negative poles, i.e.,

P (s) =
K

(τ1s + 1)n1(τ2s + 1)n2(τ3s + 1)n3
, (14)

where τi = ϑi, i = 1, 2, 3, 0 < ϑ1 < ϑ2 < ϑ3,

K > 0, ni ≥ m, i = 1, 2, 3, and
3∑

i=1

ni ≤ n. Define

h(τ1, τ2, τ3) =
3∑

i=1

ni arctan τi. (15)

By hypothesis

h(ϑ1, ϑ2, ϑ3) = ϕ (16)

and
∂

∂τ3
h(ϑ1, ϑ2, ϑ3) =

n3

1 + ϑ2
3

6= 0.

Thus, by the Implicit Function Theorem there
exists a unique smooth solution

τ3 = τ3(τ1, τ2) (17)

of h(τ1, τ2, τ3) = ϕ defined in some neighbor-
hood of the point (τ1, τ2) = (ϑ1, ϑ2). Note that
τ3(ϑ1, ϑ2) = ϑ3. Substituting (17) into (15) and
by differentiating the result we obtain

∂

∂τ1
τ3(τ1, τ2) = −n1

(
1 + τ3(τ1, τ2)2

)

n3(1 + τ1)2
(18)

and
∂

∂τ2
τ3(τ1, τ2) = −n2

(
1 + τ3(τ1, τ2)2

)

n3(1 + τ2)2
. (19)

Now define

f1(τ1, τ2) =− arg P (jω),

f2(τ1, τ2) = |P (jω)|2,
where P is given by (14). Note that the functions
f1, f2 unambiguously determine the point P (jω)
in the complex plane because they are its polar co-
ordinates. From (14), (17) and P ∈ Sn,m(e−jϕ, 1),
it follows that

f1(τ1, τ2) = n1 arctan(τ1ω) + n2 arctan(τ2ω) +

+n3 arctan(τ3(τ1, τ2)ω) (20)

and

f2(τ1, τ2) =
(

τ2
1 + 1

τ2
1 ω2 + 1

)n1 (
τ2
2 + 1

τ2
2 ω2 + 1

)n2

·

·
(

τ3(τ1, τ2)2 + 1
τ3(τ1, τ2)2ω2 + 1

)n3

. (21)



After tedious derivation, using (20), (21), (18) and
(19) we obtain

J(τ1, τ2) = det

∣∣∣∣∣∣∣

∂f1(τ1, τ2)
∂τ1

∂f1(τ1, τ2)
∂τ2

∂f2(τ1, τ2)
∂τ1

∂f2(τ1, τ2)
∂τ2

∣∣∣∣∣∣∣
=

=
2ω(ω2 − 1)2(τ1 − τ2)(τ1 − τ3)(τ2 − τ3)
(τ2

1 + 1)(τ2
1 ω2 + 1)(τ2

2 + 1)(τ2
2 ω2 + 1)

·

·n1n2|P (jω)|2
τ2
3 ω2 + 1

, (22)

where τ3 = τ3(τ1, τ2). Consequently, the Jacobian
J(τ1, τ2) is nonzero at the point (τ1, τ2) = (ϑ1, ϑ2)
for all frequencies ω > 0, ω 6= 1. Thus, by the
Implicit Function Theorem, the point P (jω) for
(τ1, τ2) = (ϑ1, ϑ2) is an interior point of the value
set Vn,m

ω (e−jϕ, 1) for all ω > 0, ω 6= 1 and the
transfer function (14) is not ultimate.

Now, assume that P is in the form

P (s) =
K

3∏
i=1

(τis + 1)ni

· 1(
p−1∏
i=4

(τis + 1)ni

)
snp

=

= P̄ (s)R(s), (23)

where τi = ϑi, i = 1, 2, 3, 0 < ϑ1 < ϑ2 < ϑ3.
From the assumption P (j) = e−jϕ it follows that
P̄ (j) = 1

R(j)e
−jϕ = p̄1. We know from the first part

of the proof that the point P̄ (jω) is an interior
point of Vn,m

ω (p̄1, 1). Thus also the point P (jω) is
an interior point of Vn,m

ω (e−jϕ, 1) because of (23).
Consequently, transfer function P in the form (23)
can not be ultimate. 2

Lemma 2. If an unfalsified transfer function
P ∈ Sn,m(e−jϕ, 1) is in the form

P (s) =
K

(τ1s + 1)n1(τ2s + 1)n2
, (24)

where K > 0, 0 < τ1 < τ2, n1 > m and
n1 + n2 < n, then P is not ultimate.

Lemma 3. If an unfalsified transfer function
P ∈ Sn,m(e−jϕ, 1) is in the form

P (s) =
K

(τ1s + 1)n−ν(τ2s + 1)ν
, (25)

where K > 0, τ1 > 0, τ2 > 0, τ1 6= τ2, ν > m,
then P is not ultimate.

Proofs of Lemma 2 and Lemma 3 are similar to
the proof of Lemma 1 and are omitted for brevity.
Using Lemmas 1-3, it is not difficult to complete
the proof of Theorem 1.

7. CONCLUSIONS

In this paper, an explicit parametrization of the
value set boundary for a multiple fractional order
pole model has been presented under the assump-
tion that only one point of the process frequency
response is available. In particular, it is shown
that the value sets are closed domains bounded
by at most three smooth arcs. Furthermore, it has
been demonstrated that this result can be simply
used for obtaining hard bounds of the value sets
if two or more points of the process frequency
response are given. The presented results have
important applications in design of robust con-
trollers, in particular for automatic tuning pro-
cedures based on one or two points of a process
frequency response. For more details, see Java
applet accessible on www.PIDlab.com.
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