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Abstract: This paper deals with the strong stabilization problem of a class of nonlinear
time-varying control systems with state delays. Under appropriate growth conditions
on the nonlinear perturbation, new sufficient conditions for the strong stabilizability
are established based on the global null-controllability of the nominal linear system.
These conditions are presented in terms of the solution of a standard Riccati differ-
ential equation. A constructive procedure for finding feedback stabilizing controls is
also given. Copyright©2005 IFAC
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1 INTRODUCTION The standard stability problem is to find a control func-
tion u(t) = h(x(t)) in order to keep the zero solution of the
closed-loop system

Consider a nonlinear time-varying control system with state )
delays of the form X(t) = f(t,x(t),x(t —h),h(x(t)))

exponentially stable in the Lyapunov sense, i.e., the solution
Xt) = ftx(),xt-h)ut)), t=0, X(t, @) of the closed-loop system satisfies the condition

xt) = o), te[—h,0], (1) IN>0,5>0: |Ix(t,9)| <Ne¥|q|, Wt>0,

where||@|| = sup¢_p g [|9(s)[|. In this case one says that the
whereh > 0,x(t) € X— the stateu(t) € U— the control, ~ Systemis stabilizable by the feedback contrd) = h(x(t))
f(t,%Y,u): [0,00) x X x X x U — X, @(t) : [~h,0] — X— is and this control is called a stabilizing feedback control of
a given function. the system. The positive numbé&r> 0 depending on the
, . stabilizing control is commonly called a Lyapunov stabil-

T_he topic of Lyapunqv Stab'_“ty of C(_)ntro_l syst_ems de_- ity exponent. In the literature on control theory of dynami-
scribed byasy_stem of differential equapons is an interesting | systems the stabilizability is one of the important qual-
research area in the past decades. Anintegral part of the Stag,ye properties and the investigation of the stabilizabil-
bility analysis of differential equations is the existence of in- ity has attracted the attention of many researchers, see; e.g.
herent time delays. Time delays are frequently encounteredCurtain 1995, Phat 1996, 1996, 2002, Son 1999, Zabczyk
in many physical and chemical processes as well as in the)gg5 | practice various stabilizability concepts have been
models of hereditary systems, Lotka-Volterra SySt_emS'_Con'defined to improve the efficiency of the stability of control
trol of the growth of global economy, control of epidemics, gy s1ems. One of the extended stability properties of control
etc. Therefore, stability problems of tlme—QeIay c;ont_rol sys- systems is the concept of the strong (or complete) stabiliz-
tems have been the subject of numerous investigations, Se&ability, originally introduced by Wonham 1967, which plays
e.g. Ahmed 1990, Chukwu 1992, Niumsup etal. 2000, IDh""tan important role in many mechanical and control engineer-
2002, Sun et al. 1996). ing problems (see, Ahmed 1990, Zabczyk 1992). This prop-
_ erty relates to a strong exponential stability of the control



system, namely, control system (1) is strongly stabilizable with the case of finite-dimensional control systems. Then,
if for every given numbe® > 0O, there exists a feedback the results are directed to infinite-dimensional control sys-

control functionu(t) = h(x(t)) such that the solutiok(t, @) tems by extending the relationship between the global null-
of the closed-loop system satisfies the condition controllability and the existence of the solution of a Riccati
operator equation. A constructive algorithm to find feed-
IN>0: [x(t@)| <Ne¥|qg|, vt>0. 2 back stabilizing controls via the controllability and the solu-

) ) N tion of curtain Riccati equations is also given. The stability
This means that for any given positive numider- 0, the  ¢onditions obtained in this paper are even new in the con-
system zero-input response of the closed-loop system derext of linear time-varying control systems, and they can be
cays faster thae ™. In other words, for any given in ad-  ¢onsidered as further extensions of Ikeda et al. 1972, Megan

vance Lyapunov stability exponedit- 0, the system canbe 1975 phat Linh 2002, Slemrod 1974, Wonham 1967 to non-
d—exponentially stabilizable. Such definition may arise be- |inear and time-delayed systems.

cause of controlling of the speed of the real models in many

mechanical and physical control systems (see Benssousan

et al. 1992, Chukwu 1992). First results on the strong sta-

bilizability of linear time-invariant control systems in finite- 2 FINITE-DIMENSIONA SYSTEMS
dimensional spaces can be found in Wonham 1967, where

by studying the spectrum of the system matrices or by solv-

ing a modified algebraic Riccati equation it was proved that

the global-null controllability (see Kalman 1960) implies The following standard notation is adapted throughout this
the strong stabilizability. Further extensions on the relation- Paper.R"™ denotes the set of all real non-negative numbers;
ship between the strong stabilizability and controllability R" denotesn finite-dimensional Euclidean space, with the
of infinite-dimensional time-invariant control systems are Euclidean nornj|.|| and the scalar product of two vectors
given in Megan 1975, Phat et al. 2000, Slemrod 1974. How-X'Y; | denotes the transpose of the vector/maffik;™ de-
ever, the strong stabilizability and control design problems hotes the set of al{n x m)-matrices; A matrixA is sym-

for time-varying control systems have not been examined metric if A= AT; A matrix A is called non-negative def-
fully in the literature, which are more complicated and given inite (A > 0) if xXTAx> 0, for all x € R";A is positive
results are lacking. The difficulties increase to the same ex-definite @ > 0) if xTAx > 0 for all x # 0; M(R?) de-
tent as passing from undelayed to delayed time-varying con-notes the set of all symmetric non-negative definite ma-
trol systems as well as from linear to nonlinear time-varying trix functions inR™" continuous int € R"; X,U denote
de|ay Systems_ The aim of this paper is to Study the Stronginﬁnite'dimenSional real Hilbert spaces with inner prOd'
stabilizability problem for the following time-varying con-  Uct(.,.); L(X) (respectivelyL (U, X) ) denotes the Banach

trol delay system space of all linear bounded operators mappirigto X (re-
spectively,U into X ); L([0,t],X) denotes the set of all

X(t) = A{M)X()+A(t)x(t —h)+B(t)ut) (3) Lo—integrable an-valued functions or0,t]; C([0,t],X)
t>0, denotes the set of alK—valued continuous function on

—|—f(t,X(t),X(t—h),U(t)), . .
0 = o).t ho [0,t]; D(A) andA* denotes the domain and the adjoint of the
Xt) = @b, te[-h0], operatorA, respectively;cIM denotes the closure of a set
} } ; M; | denotes the identity operator; An opera@i L(X)
whereA(t),A1(t) : X — X,B(t) : U — X— are linear ma- . ) e .
trix/operator functions and the given nonlinear perturbation IS calllled n0|.’1—negat|ve C.jeﬂmltle%(z ?) Ifd'<' Q)gx >2 9_’
term f(t,x,y,u) : [0,00) x X x X x U — X could result from for all x € X; Q € L(X) is called self-adjoint ifQ = Q";

+ i _
errors in modelling the general linear system (1), adding LO([0, +00), X™) denotes the set of all linear bounded set

parameters, or uncertainties and disturbances which exisﬁdjomt_non—negatlve definite opera?or-valued functions in
continuous int € [0,+). Consider the control de-

in any realistic systems. A common approach is to treat PR :
o . : lay system (3) in finite-dimensional spaces:= R"\U =
the stability of the nominal linear control system. Then, ’
y y R™n>mA({t) e R™", A(t) e R™", B(t) e R™™M, ¢(s) €

when the nonlinearities satisfy some appropriate growth . . A
conditions, one can use the Lyapunov direct method to de-C([_h’O]’Rn)'. T_hroughout this section we consider the
class of admissible controlgt) € L,([0,T],R™) for every

sign a stabilizing feedback control. Based on the global T < 0. Furth ' tee th - fih |
null-controllability assumption of the nominal linear time- ~ ©. Furthermore, 1o guarantee the existence ot the sofu-
tion of the control system, the following conditions will be

varying control system, sufficient conditions for the strong 4 .
stabilizability are established by solving a standard Riccati mage throughout this section:
differential equation. These conditions depending on the
size of the delay do not involve any spectrum of the evolu-
tion operator/matrix, and hence are easy to verify and con-
struct. For a systematic exposition of the results, we startA.2. There are non-negative continuous functions

Al AGX Aa(L)y, B(O)u, f(.,xy,u) are continuous func-

tiononR* forallxe R",ye R",uc R™.



a(t),ay(t),b(t) : R* — Rt such that

It y, W] < at)[[x]| +aa(t)[lyll +b(t) [ul],

for all (t,x,y,u) € R" x X x X x U.

Definition 2.1. Let & > O be a positive number. Control

system (3) is said to b&- stabilizable if there is a feedback
controlu = h(x) such that the solution of the closed-loop
system satisfies the condition (2).

Definition 2.2. Control system (3) is said to be strongly
stabilizable if it isd—stabilizable for everp > 0.

In order to study the strong stabilizability problem, it is
important to introduce the global null-controllability defini-
tion given by Kalman 1960. Consider the nominal linear
time-varying control systerfA(t), B(t)] of system (3):

X(t) 4)

Definition 2.3. Linear control system (4) is globally null-
controllable (GNC) in finite time if for every statec R",
there exist a finite tim& > 0 and an admissible control
u(t) € L»([0,T],R™) such that

A()x(t) +B(t)u(t), teR"'.

T
U(T,0)x+ / U(T,9)B(s)u(s)ds=0,
0
whereU (t,s) is the fundamental matrix of the linear system
X(t) = A(t)x(t).

The following well-known controllability criteria will be
used later.

Proposition 2.1. (Klamka 1991)Linear time-varying con-
trol system (4) is GNC in finite time if and only if one of the
following conditions holds:
() 3T >0: The matrix [y U(T,s)B(s)BT (U (T,s)ds
is positive definite
(i) 3to > 0 : rank [Mo(to),M1(to), ...,Mn_1(to)] = n, where
Mo(t) = B(t) and

d

+ *Mk(t)a

Mk+1(t) = _A<t)Mk(t) dt

for k=0,1,2,...n—1 and A(t),B(t) are assumed to be
analytical functions o0, c).

In the sequel, the solution to the stabilizability problem
involves a Riccati differential equation (RDE) of the form

(6)

whereP(t) is an unknown matrix function. Before proceed-

P+ATP+PA-PBB'P+Q=0, P(0)=P

of non-negative positive solution of the RDE (5) is provided
in the following proposition.

Proposition 2.2.(Kalman 1960Assume that linear control
systenfA(t), B(t)] is GNC, then for every no-negative posi-
tive definite bounded functid@(t) > 0 and for every initial
matrix Py > 0, the RDE (5) has a solutioR(t) € M(R),
which is a bounded function df, «).

For everyd > 0, we denoteA(t) = A(t)+3l, and consider
the following RDE

P+ATP+PA-PBB'P+1=0.

Let us seb = sup{t € R"b(t),

p=sup|[P(t)[|, a = supa(t), Ay= sup|Aa(t).
teR* teR* teR*

(6)
B = supcr+ [|B(t)[, and

The following theorem gives sufficient conditions for
o0—stabilizability of the nonlinear control delay system (3).

Theorem 2.1.Assume that the conditions A.1, A.2 hold and
linear control systenpA(t), B(t)] is GNC in finite time. Non-
linear control delay system (3) & stabilizable if

1

O<b< BR (7)

\/1—2p?bB
A< V—f— 8
a+A1 < 2peh (8)
supa(t) < 1 }pbB— p(ag+Ar)? 9)

teRt ap 2 s

and the stabilizing feedback control is given by

uit) = 3BT (OP(OX(), (10

whereP(t) € M(R]) is the solution of the RDE (6) with any
initial condition Py > 0.

Note that ifA1(t) =0, f(t,x,y,u) =0, i.e.,a(t) = ay(t) =
b(t) = 0, the conditions (7)- (9) automatically hold and then
Theorem 2.1 can be applied to the linear control system
[A(t),B(t)] in finite-dimensional spaces as follows.

Corollary 2.1. The finite-dimensional linear control system
[A(t),B(t)] is strongly stabilizable if it is GNC in finite time.

Remark 2.1. Corollary 2.1 extends a result of Wonham
1967 to time-varying case and it improves a result of lkeda
et al. 1972, where the controllability assumption was as-
sumed to be more strict: the uniform global controllability.

From the proof of Theorem 2.1, the following procedure
of finding stabilizing feedback control can be applied:

Step 1.Verify the GNC of linear control systeifd\(t), B(t)]

ing to the main result, a sufficient condition for the existence by Proposition 2.1.



Step 2.For givend > 0, find the solutiorP(t) € M(R) of
RDE (6).

Step 3.Compute the numberg,b,B,A;,a; and check the
conditions (7)-(9).

Step 4. The stabilizing feedback contrel(t) is given by
(10).

Example 2.1. Consider the nonlinear control delay system
(3)inR2, whereh = },5 =2 and

Le st — 5e 0
_ (2
A ( 0 Zloe‘“cos’-t—Se‘“)’
_ 1 .
e 2'sint 0 sint O
Aalt) = ( 0 e%‘cost> Bl = ( 0 COS)’

£(t, %, X(t — h), u) = xsirPt + e~ 2tx(t — h) + e~ 2tu.

We havea(t) = sirft, ay(t) =e 2, b(t) = e 2. We
can easily verify the GNC of the linear control system
[A(t),B(t)] by Proposition 3.1 (i), rankMo(t2),M1(t2)] =

2, withto = 3. On the other hand, fa¥ = 2, and for the de-
fined matricesA(t), B(t),upon some computations we can
find that the solutiorP(t) of the RDE (6) is given by

P(t):( )

Thus, computing the numbebsB, p,a;, A1, we verify the
conditions (7)-(9). The system is th@n-stabilizable with
the feedback control

g
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We now consider the system (3) in infinite-dimensional
spacesx € X,u e U; X,U— are real Hilbert spaces, for ev-
eryt e RT,A(t) : X — X,t € Rt is alinear operatoh (t) €
L(X),B(t) € L(U,X), f(t,x,y,u) : R" x X x X x U — X.
Throughout this section we consider the class of admissi-
ble controlsu(t) € L»([0,T],U) for everyT > 0. As in [2,

7], for guarantying the existence of the solution of infinite-
dimensional control system (3), throughout this section we
assume that

B.1. The operator functions(.)x,As(.)x € L(X),B(.)u €
L(U,X), f(.,xy,u),t € Rt are continuous ofD, «) for ev-
eryxe X,ye X,ue U.

B.2. The linear operator functionA(t) : X — X,

cl(D(A(t))) = X, generates an evolution semigroup oper-
atorU(t,s) (see Pazy 1983).

B.3. The nonlinear functionf(t,x,y,u) satisfies the
condition: there exist non-negative continuous functions
a(t),a(t),b(t) : R" — R* such that

Ity W)l <a) x| +aa )yl +b®)ull,

for all (t,x,y,u) € R x X x X x U. In this case, the mild so-
lution of the nonlinear system (1) in Hilbert space is given

by
X(t,@) = U(t,0)q(t) + /0t U (t,7) [Acx(t—h) + B(T)u(T)

+f(1,X(1),x(T— h), u(1)) ] d.

Before proceeding further, we state the following well-
known infinite-dimensional controllability criterion, which
will be used later.

Proposition 3.1. (Conti 1982)Infinite-dimensional linear
control systemA(t), B(t)] is GNC iff exisfT > 0,c > 0such
that

.
[ 181 (91U* (T, )¢ [%ds> | u* (T,0x |,
0

for all x* € X*.

Associated with the infinite-dimensional linear control
system[A(t), B(t)], we consider a Riccati operator equation
(ROE) described formally by the form

P+A‘P+PA—PBBP+Q=0. (11)
SinceA(t),t € R" is an unbounded operator, the solution of
ROE will be defined as follows.

Definition 3.1. The solution of ROE (13) is a linear opera-
tor functionP(t) € L(X) satisfying the following two con-
ditions: (i) The scalar functiodP(-)x,y) is continuously
differentiabe o0, ) for everyx,y € D(A(.)). (i) For all
X,y € D(At)),t e R™:

dt<P>9y> + (Px Ay) + (PAxy) — (PBB'PX,y)

+(Qxy) =0.

The existence problem of the solution of ROE (13) in
infinite-dimensional case was studied (see; e.g. Boyd 1994,
Bittanti et al. 1991, Ginson 1983, Lion 1971, Ootstveen et
al. 1998). We first state the following sufficient condition
guaranteed the existence of a bounded solwRighof ROE
(13), which is given in Prato et al. 1990 as follows.

Proposition 3.2. Let Q(t) € LO([0,),X ™) be a bounded
operator function. If linear control systemd\(t),B(t)] is
Q(t)—stabilizable in the sense that for every initial stage



there is an admissible contral(t) € L2([0,+),U) such
that the cost function

3 = [IuOI+ QX)) (12)

exists and is finite, then the ROE (13) with any initial con-
dition Py > 0 has the solutioP(t) € LO([0, ), X "), which
is also a bounded oR™ function.

The following proposition will play a key role in the
derivation of the existence of the solution of ROE (13) from
the global null-controllability of the systefA(t), B(t)].

Proposition 3.3. If linear control systemA(t),B(t)] is
GNC in finite time, then for any bounded operator func-
tion Q(t) € LO([0,»),X ™), the ROE (13) with > O has a
bounded solutio(t) € LO([0, ), X ™).

Theorem 3.1.Assume the conditions B.1- B.3. Assume that

linear control systenfA(t), B(t)] is GNC in finite time. The
infinite-dimensional nonlinear control delay system (3) is
o—stabilizable if the following conditions hold:

1 \/1-2p?bB
supa(t) < ER }pbe p(ag +A1)2. (14)
teRt 4p 2
The stabilizing feedback control is given by
17
u(t) = — 5B (OPLX(). (15)

whereP(t) is the solution of the ROE (15) with any initial
conditionPy > 0.

Remark 3.1. It is worth noticing that Theorem 3.1 im-
proves a result of Phat Linh 2003, where the growth condi-
tion on the nonlinear perturbatioiv{.) without state delays
was strictly assumed that:

for all (t,x,y,u) € R" x X x X x U.

FE %y, u)ll < at)[|x]| +b(t),

Note that if f (t,x,y,u) =0, i.e.a=b=a; = 0, we have
the following obvious consequence.

Corollary 3.1. Assume that the infinite-dimensional linear
control systemA(t),B(t)] is GNC in finite time. The linear
control delay system

%(t)

is 0— stabilizable if0 < A1 <

ALX(t) +Aa(t)x(t —h) +B(t)u(t),

_1_
2pedh”

In the case ifA1(.) = 0, f(t,x,y,u) = O, the conditions
(16), (17) automatically hold and then we have the follow-
ing subsequence for the strong stabilizability of linear con-
trol system, which extends the result of Megan 1975, Slem-
rod 1974 to the time-varying case.

Corollary 3.2. The infinite-dimensional linear control sys-
tem

X(t)

is strongly stabilizable if the system is GNC in finite time.

A(t)x(t) +B(t)u(t),

Example 3.1.Consider system (3) in the Hilbert spadgs
where

1
Alt): (X1,%,...) €Elp — (ée*4t —26")(x1, %2, ...) € Iz,

1
Ai(t): (X1,X%2,...) Elp — € % (Xq,Xg,...) € Iy,

B(t) : (Ug,Up,...) €l — e 2 (ug,up,...) €y,

1 . 1 4
f(t,X,y,u) = =xsirft+ fe*%ter —e*%tu7 vt > 0.
3 3 5
We have
1. 1 1 4 o
i — e 2 = _e 2
a(t) 3S|r12t, a(t) = ge 2, b(t)=ge 2

To verify the GNC of the systerfA(t), B(t)] we first find
the evolution operatdd (t,s). Upon some computations we
find thatU (t, 7) = [uj], where

un(tT) = e &R
Uat,T) = @ B R
Un(t,T) = @ B R

Therefore, definingU*(T,0)x*||?, and||B* (T)U*(T,1)x*||?,
and applying Proposition 3.1, whece= 0.08 T = 1, we
can verify the GNC of the systefA(t), B(t)]. On the other
hand, we havé\(t)x = ($e~* — 2e* + 2)x, the ROE

0,

P(t) +A*(t)P(t) + P(t)A(t) — P(t)B(t)B* (t)P(t) + 1
has the solution

P~ ).

and all the conditions (16),(17) are satisfied with

1.4t
ze

0

0
Lot
7€

b=4/5, p=1/4, a=1/3, A =1

By Theorem 3.1, the system2s- stabilizable.



4 CONCLUSIONS Megan, G., On the stabilizability and controllability of lin-
ear dissipative systems in Hilbert space<;.F ., Universi-
tate din Timisoara32(1975), 123-131.

In this paper, based on the controllability of the nominal lin- Njumsup, P. and Phat, V.N., Asymptotic stability of nonlin-
ear control system, sufficient conditions depending on the ear control systems descibed by differential equations with

size of the delay for the strong stabilizability have been myitiple delaysFlect. J. of Diff. Equations]1(2000), 1-17.
established by solving a standard Riccati matrix/operator

equation. A constructive procedure for finding the stabiliz- - . :
ing feedback control and illustrative examples of the results strongly stabilizable boumded linear syatematomatica,
are given. Itis worth mentioning that the results presented in 34(1998), 953-967.

this paper do not involve multiple delays as well as the con- Pazy, A.,Semigroup of Linear Operators and Applications
straints on both the state and control of the system. Thesdo Partial Diffferential Equations,Springer-Verlag, New
issues will be the subject of the future investigations. York, 1983.

Oostveen, J.C. and Curtain,R.F., Riccati equations for

_ Phat, V.N.,Constrained Control Problems of Discrete Pro-
ACkhOWledgement. This work was Supported by the Na- CessesWor'd ScientiﬁC, Singapore, 1996.

tional Basic Program in Natural Sciences. . R . .
9 Phat, V.N., Weak asymptotic stabilizability of discrete-time

inclusions given by set-valued operatods,of Math . Anal.
Appl. 202(1996), 353-369.

Ahmed N. U.,Elements of Finite-dimensional Systems and Phat, V.N., Park, J.Y. and Jung, I.H., Stability and con-
Control Theory.Pitman SPAM, Longman Sci. Tech. Publ., strained controllability of linear control systems in Banach
vol. 37. 1990. spaces). Korean Math . So87(2000), 593-611.

Bensoussan, A., Prato, G.D., Delfour, M.C. and Miter, S.K., Phat, V.N. and Linh N.M., On the stabilization of nonlinear

Representation and Control of Infinite-Dimensional SystemsC0ntinuous time systems in Hilbert spacBsptheast Asian
(VOl |,||), Birkhauser, 1992. Bull. of Math,27(2003), 135-142.

Boyd S., L. Ghaodi and V. Balakrishnainear Matrix In- Phat, V.N. and Linh N.M., On the exponential stability

equalities in Systems and Control Thed®yAM Studies in of nonlinear differential equations via non-smooth time-
Appl. Math., SIAM PA, vol. 15, 1994. varying Lyapunov functions, In:Differential Equantions

. . i _ i and Applications,Ed. JY Cho, Nova Sci. Publ. Corp.,
Bittanti S., A.J. Laub and J.C. Willem%he Riccati Equa- Huntington, N, USA, vol. 2, 2002, 159-167.

tions. Springer-Verlag, Berlin, 1991.

REFERENCES

Phat V.N., New stabilization criteria for linear time-varying

Conti R..,Inf_inite-dimensi.onal linear controllabilityMath. systems with state delay and normed bounded uncertainties.
Reports, Universuty of Minnesota, USA)(1982), 82-127. IEEE Trans. Auto. Conté7(2002), 2095-2098.

Chukwu  E.N., Stability and Time-Optimal Control of & pa prato and A. Ichikawa, Quadratic control for linear
Hereditary Systemg\cademic Press, New York, 1992 time-varying systems.SIAM J. Contr. Optim.2(1990),

, R.F. and Zwart, H.,An Introduction to Infinite- 359-381.
Dimensional Linear Systems ThedBpringer-Verlag, New g N.K. and Ngoc Pham H.A., Stability of linear infinite-

York, 1995. dimensional systems under affine and fractional perturba-
Gibson, J.S., Infinite-dimensional Riccati equations and nu- tions. Vietnam J. Math.27(1999), 153-167.

merical approximationsSIAM J. Contr. Optim.21(1983),  glemrod, M., A note on complete controllability and stabi-

95-139.. lizability for linear control sustems in Hilbert spacglAM
Ikeda, M., Maeda, H., Kodama, S., Stabilization of linear J. on Control,12(1974), 500-508.

systemsSIAM J. on Coltrol 10(1972), 716-729.. Y.J. Sun, J.G. Hsieh and Y.C. Hsieh, Exonential stability
Kalman, R.E., Contribution to the theory of optimal control, criterion for uncertain retarded systems with multiple time-
Boll. Soc. Math.5(1960), 102-119. varying delays. J. Math. Anal. Appl201(1996), 430-446.
Klamka J.Controllability of Dynamical Systemsluwer Wonham, W.M., On pole assignment in multi-input control-
Publisher, London, 1991. lable linear systemd3EEE Trans. AC12(1967), 660-665.

Lion, J.L.Optimal Control of Systems Described by Partial Zabzyk, J. Mathematical Control Theory: An Introduction,
Differential EquationsSpringer-Verlag, Berlin, 1971. Birkhauzer, Boston, 1992.



