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Abstract: This paper presents the design of a reliable decentralized state feedback
control for a class of uncertain interconnected polytopic continous systems. A
model of failures in actuators is adopted which considers outages or partial
degradation in independent actuators. The control is developed using the concept
of guaranteed cost control and a new LMI characterization using polytopic
Lyapunov functions. Copyright© 2005 IFAC
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1. INTRODUCTION

The decentralized control of interconnected sys-
tems in the presence of uncertainties has attracted
considerable attention in the last years. With the
aim of stabilizing the overall system while en-
suring a satisfactory performance, the guaranteed
cost control approach (GCC) has been recently
considered (see (Gong et al., 1996), (Mukaidini
et al., 2002), (Xie et al., 1999) and (Yang et
al., 2000)). The guaranteed cost control is con-
cerned with the design of a state feedback con-
troller such that the closed-loop system is stable
and an upper bound of a quadratic cost function
is minimized.

Another important issue when dealing with inter-
connected systems is the design of fault-tolerant
control systems. Reliable control is concerned with
the design of a closed-loop system to maintain key
properties, in spite of sensor or actuator outage or
partial degradation. Two main approaches have
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been proposed in the literature. One uses mul-
tiple controllers in a redundant control scheme
((Siljak, 1980), (Yang et al., 1998)). The other
approach seeks a reliable control design with-
out redundancy by ensuring stability and some
performance bounds for specified class of admis-
sible failures of particular control components
(Veillette, 1995). Within this approach, the class
of failures have been usually modelled as outages.
This model considers that the control set can be
partitioned into two subsets: one subset includes
the actuators whose failures are admissible in
the control design; and the complementary subset
with the actuators that are assumed to keep a
normal operation (see (Liao et al., 2002)). A more
general failure scheme is considered in (Yang et
al., 2000), where the authors present a model
of actuator failures which takes into account the
outage case and also the possibility of partial
failures. In (Yang et al., 2000) a centralized re-
liable control is designed for a class of uncertain
nonlinear systems without subsystem interconnec-
tions. In the present paper, we adopt this failure
model extended within a reliable decentralized
control scheme for uncertain interconnected linear
systems. Linear matrix inequalities (LMI) tech-



niques have been used in the context of guaran-
teed cost control problems and reliable control
design ((Yang et al., 2001), (Liao et al., 2002)).
The currently known LMI characterizations are
potentially conservative in the sense that they use
a common Lyapunov function regardless of the
parameter values. In order to reduce conservatism
in the case of constant parameters, the notion
of parameter-dependent function was introduced
(Barmish, 1989). The Lyapunov conditions leads
to nonconvex optimization problem which does
not seem tractable in general. In (Apkarian et
al., 2000) and (Tuan et al., 2003), this weakness
is overcome using auxiliary variables, as well as
replacing the functions of singular Lyapunov for
multiple functions to obtain more robust tools
and to reduce the conservatism in the control
problems, and provides additional flexibility in a
wide range of problems. In (Tuan et al., 2003),
a way to ”convexifying” the general affine Lya-
punov problem has been proposed, leading to a
parametric linear matrix inequality.

This paper has two objectives. One is related to
the decentralized reliable guaranteed cost con-
trol problem for interconnected continous sys-
tems. To our knowledge, there are not available
results dealing with reliable control for uncertain
interconnected systems with guaranteed cost. We
present a control design that allows to consider
reliability and guaranteed cost. This reliable con-
trol shows that the admission of control failures
imposes some restriction in the control weighting
matrices in the performance criterion. Thus the
designer can take some trade-off between control
performance and admitted reliability. The second
objective is to give a new LMI characterization
and its relation with polytopic systems and poly-
topic Lyapunov functions. In the centralized con-
trol design of uncertain systems with guaranteed
cost and reability, matrix inequalities are obtained
which lead to LMI’s through a linealization pro-
cess. When dealing with decentralized control of
interconnected systems this process needs to be
extended. In this paper, we obtain a general re-
sult that can be applied to different classes of
problems, such as guaranteed cost, Hs or H,
control design. We apply this result in the design
of decentralized reliable control of uncertain inter-
connected systems with guaranteed performance.

The notation throughout the paper is fairly stan-
dard. In symmetric block matrices or long matrix
expressions, we use * as an ellipsis for terms that
are induced by symmetry, e.g.

S+(x) x\_ (S+ST MT
M Q) M Q )
We use bold to denote dependence on the param-

eter a, e.g. A = A(a); I denotes the identity
matrix.

2. PROBLEM STATEMENT

Consider a class of large-scale interconnected sys-
tem composed of N polytopic subsystems de-
scribed by the following state equations:

;= Ai(@)a; + Bi(a)ui + Y Gijgij(t, ;)
J#i
.'L'q/(O) :$i07 Z: 17...,N-
(1)
We define:

x; € R™ state of the ith subsystem

u; € R% control of the ith subsystem

Ai(a) € R™*™ parametric state matrix
Bi(a) € R™*% parametric control matrix
gij(t,xj) € R unknown interconnection vec-
tor function

e G;j € R"*li constant interconnection ma-
trix

It is assumed that the unknown vectors g;;(t, ;)
are continuous and sufficiently smooth in z; and
piecewise continuous in .

Uncertain model
The parameter uncertainties considered here are
assumed to be of the following form:

L L
Aila) = ardi, , Bi(a) =Y aBi, . (2)
k=1 k=1

The parameter vector « is in the simplex II
defined by

L
I ={acRE, Zakzl, ap>0,k=1,...,L}.

k=1
(3)
That is, A;(a) € co{4;,,...,4;, } and B;(a) €
co{B;,, ..., B;, } are convex combinations of the
matrix Ay and By, respectively.

Interconnection assumptions

Assumption 1. There exist known constant ma-
trices W;; such that, for all z; € R™,

1gij(t, z;)|| < [[Wij ;]| (4)

for all 4, j and for all t > 0, where || || denotes the
Euclidean norm.

N
Assumption 2. Foralli, W, .= > W;‘g W;i > 0.
j=1j#i
The Assumption 1 allows some linear structure to
the interconnection vector g;; in terms of the state
vector x;. The Assumption 2 ensure that almost
two subsystems must be interconnected, because
at least one W;; must be nonzero, for each .

Cost function
Consider the following cost function associated
with system (1):

N o
J(x,u) = Z/o (szQla:, + ulTR,uz) dt (5)
i=1



where @; € R"*™ and R; € R%*% are given
constant symmetric positive definite matrices, for
all 4.

Failure model

Let uf” denote the vectors with the signals from
the s; actuators which control the ith subsystem.
Here we consider the following failure model:

uiF:Aiui—i-(éi(ui), i=1,...,N (6)
where A;=diag(\i1, ..., \is,)€ R% %5 is a diago-
nal positive definite matrix. The uncertain func-

tion qbi (uz) = (¢i1(ui1)7 sy ¢’i8i (ui 81)) SatiSﬁeS7
for each i,

0 (i) S v ul, j=1,...,8 (7)
where 7;; > 0. If (7) holds, then
I6sdl? < Dl i=1...N (8

where I'; =diag(vi1, ..., Vs, )€ R%*% is a diago-
nal positive semidefinite matrix.

The value of A;; represents the percentage of fail-
ure in the jth actuator of the controller of the
ith subsystem. Each actuator can fail indepen-
dently. If X\;; = 1 and ~;; = 0, it corresponds
to the normal case for the jth actuator of the
ith subsystem (uf; = w;;). When this is true
for all j, we have A; = I, and I'; = 0 and it
corresponds to the normal case in the i¢th canal
(uf" = u;). When X\;; = 7;5, (6) and (7) cover
the outage case (uf; = 0) because ¢;; = —Xij Uij
verify (7). The case ¢;(u;) = —A;u; corresponds
to the outage of the whole controller of the ith
system. Other cases correspond to partial failures

or partial degradations of the actuators.

Control objective (Reliable guaranteed cost con-
trol)
The objective of this paper is to design a set
of decentralized feedback control laws w;(t) =
K;z;(t) (i = 1,...,N) and obtain a Lyapunov
function defined by X;, for the interconnected
systems (1) with uncertainties model (2)-(3) and
Assumptions 1 and 2, in such a way that, in the
presence of the failures described by (6) and (7),
the following property is satisfied:
Y d
Z (axZTXIxz + 27 Qi + (uf)TRluf> <0.
i=1

(9)
This inequality leads to a bound for the cost
function (5) in the form J(x,u%) < J, where J
is some specified constant, and to ensure that the
closed-loop system

N
T; = Ai(a)xi + Bi(a)uf + Z Gij Gij
j=1,j#i
ul = N + ¢i(uy)

u; = Kz

is asymptotically stable.

Definition 3. The set of above feedback control
laws w; is said to be a reliable guaranteed cost
control.

3. MAIN RESULTS
3.1 Instrumental tools

Lemma 4. (Projection lemma). For a symmetric
matrix ¥ and matrices P, ) with appropriate
dimensions, there exists a matrix X such that:

Ng\I/NP <0
NS‘IINQ <0

with Mp and Ng any matrices whose columns
form bases of P and () respectively.

U+ PIXTQ+QTXP<0<

Lemma 5. (Schur Complement). Consider a sym-

(PP
metric matrix M = (PQT Py > Then,
P — PPy Pl <0
M<0& ' 2 02
P; <0 invertible.

3.2 LMI characterization

Here we give a general theorem that allows a LMI
characterization. The subindex ¢ is omitted be-
cause the results can be applied to interconnected
systems but also to a single system.

Theorem 6. The following statements, involving
symmetric positive definite matrix variables X,
Y and general matrix variables V, N, K, are
equivalent.

(i) There exist X, K such that
(A+BE)TX +(x) = =«
GTx Qu * | <0 (11)
c Q21 Q22

(ii) There exist Y, V and N such that

7(V+VT) * * *
AV4+Y +BN =Y

* ¥ * *

0 GT Qi1 <0 (12)
cv 0 Q21 Q22
1% 0 0 0 -Y
-Y % *
(GT Qu * ) <0 (13)
0 Q21 Q22

(iii) Consider A = A(a), B = B(a), X = X(«)
as in (2). There exist Y = Y(«), V and N
such that

—(V + VT) * * *
AkV—FYk-‘erN —Yk * *

* X ¥ X

0 GT Qi1 = <0
cv 0 Q21 Q22
1% 0 0 0 -Y
(14)
7Yk * *
(GT Q11 = > <0. (15)
0 Q21 Q22



The matrix Q = ( Qn

* has to be a negative
Q21 Q22 &

defined matrix.

PROOF. Taking into account that Z£=1 o =
1, the inequality (12) is true when it holds in
the vertices of the simplex II, so (ii) and (iii)
are equivalent. To see the equivalence between
(i) and (ii), consider a new variable N; := K;V;
and apply Projection Lemma 4 to (12). Con-
sider A = A + BK, P = (Id,0,0,0,0), @ =

(—Id, AT o, T, Id) and

0 = * * *
Y -Y = * *
w = 0 GT Qll * *
0 0 Q21 Qa2 *

0o 0 0 0 -Y

The null spaces bases of P and @ are

0000 AT o T 1d
1000 I 00 0
Np=[o0100]|, Ng= 0 I 0 0
0070 001 0
0007 000 I
By NZ4¥Np < 0, we have
-Y % * *
T
GO Qu x| (16)

0 Q21 Q22 =
0 0 0 -Y

By Schur complement, (16) is equivalent to (13).
From N5¢NQ < 0, we have

AY+YAT—Y * * *

T
G Qu * % | o,
cY Q21 Q22 *
Y 0 0 -Y

By Schur complement,

AY +YAT * *
GT Qu * |<o0. (17)
2

cYy QZI QQ

Consider Q = (QH ¥

. Applying Sch
Q21 Q22> PPIYIRG Sehut

complement again,

T
AY+YAT — (@ YCT)Q ! (gy) <0.

Using now that Y = X!, we have

T
XA +ATX - (XG Q! (GCX) <o,

which is equivalent to (11). O

3.8 Stability problem

In this subsection, we apply Theorem 6 to sta-
bility characterization. We introduce an alter-
native characterization of the fundamental Lya-
punov stability theorem for linear interconnected

systems. It introduces a new transformation on
the Lyapunov variables which helps to reduce the
typical degree of conservatism in some problems.
The obtained result will be the base of the devel-
opment of the reliable guaranteed control in the
next section.

Consider the polytopic Lyapunov function:
N
V(z,a) = Zx?xil‘i, (18)
i=1

where X; = Z£=1 apX;,, a € I and X;, > 0,
forallk=1,...,L and for all i = 1,..., N. This
function has to satisfy:

(i) V(z, @) >0,
(i) V(z,a) <O0.

Let us evaluate condition (ii). From (18),

N

i=1

By using the feedback controls u; = K;xz; in (1),

N
V=> 2l (Ai+Bi)K) X+ X, (A+BiK,)) i+
i=1

N
+Z Zgg(t,arj) G5X1$1+$?X1Gl] gij(t,l‘j) <0.
=1 j£i

Now, using (4), this inequality leads to

GTX; QY <0 (19)

G Q51 Qb

with Gl = (Gﬂ,...,GiN), Cl = Id, Qlll ==
diag(—Id, ,...,~Id), Qy = 0, Qb = —W;".
This step involves tedious manipulations. The
details are omitted here, but can be found in
(Pujol, 2004). So that, if (19) holds for each ¢ =
1,...,N, then V < 0 and the system is stable. In
order to obtain an efficient LMI condition, we now
use Theorem 6 to characterize the stability.

Theorem 7. Under assumptions 1 and 2, consider
the system (1) with uncertain model (2) and (3),
and consider the state-feedback controls uw; =
K;x;. Assume that there exist symmetric positive
definite matrices {Y;, }, and matrices V; and N;
such that the LMI system

—(Vi +ViT) * * * *
A, Vi+ Y, + By N; =Y;, * *
0 GT @i, * <0
CiVi 0 Q3 Q3 =
Vi 0 0 0 -V,
(20)

*Yik *
; <0
( Gi Qh)

is feasible for all k = 1,..., L and ¢ =1,...,N.
Then, the system is stable with Lyapunov func-
tion (18) and



K; = N;v;*

L
Xi(@) =Y vyt
k=1

PROOF. The proof is an immediate application
of Theorem 6, for each k. O

If we use a Lyapunov function parameter inde-
pendent, we can consider Y; instead of Y;, and
the same expression is obtained.

3.4 Reliable guaranteed cost control

By Definition 3, the system (10) has reliable
guaranteed cost control u; = K;x; if there exist
symmetric variable matrices X; and gain matrices
K; such that the following inequality

= * *
GTx; - <0, (21)
BYX;+ RiANK;, O R —1

is feasible, where
2 = (A +BiMK) X5 + X(A; + B K )+
Wi + Qi + KIT?K; + K \i R\ K
This characterization involves tedious manipula-
tions where (4) and (8) are used. The details are
omitted here, but can be found in (Pujol, 2004).

By Schur complement, inequality (21) is equiva-
lent to (22), defined in figure 1.

In order to obtain an LMI characterization, it
is necessary to separate the terms in X; and
K; in Z; from (21) to be linear. After some
manipulations, we obtain that this is possible if
R;—1d is a negative definite matrix and invertible.
In this way, we obtain a restriction on the cost
function. This means that we may loose some
freedom in prescribing the control performance
to achieve a reliable control. In accordance with
this result, we introduce the following assumption
before constructing the reliable guaranteed cost
control.

Assumption 8. The cost control matrix R; must
be invertible and verify R; — Id < 0.

Taking this assumption into account, we obtain
that (22) is equivalent to:

EzTXi Qlﬁ * *
, <0 (23)
C; 0 Q5 =
FK; 0 0 Qi

where

B; =B;(I+ (Id— R;)) "' R)A;
Fy = (A, T4, RiNy) , E; = (G4,By) , C; = (I, DT

. -1 ) —_o!
Qﬁl:(o Ri*1>’ %2:( % —V;1>

_ —R;l * *
0 0 R, —1

We present now the main result.

Theorem 8. Under Assumptions 1, 2 and 3, con-
sider the system (10) with the polytopic structure
(2) and (3). Suppose that, for each i = 1,..., N,
there exist symmetric positive definite matrices
{Yi, }p—1 o and matrices V; and N; that make
the LMI system

—(V; +Vh) * * k% *
A Vi+Yi, + B N; —Y;, ook ox o ox
0 EZI; 11 * * * <0
C;V; 0 0 Q5 = *
FTN; 0 0 0 Qi =
Vi 0 0 0 0 -Y;
(24)

-Y;, * >
; <0
(% q,

feasible for all k = 1,...,Land all i = 1,...,N.
Then, the set of state feedback controls u; =
K;x; is a reliable guaranteed cost control with
Lyapunov function V(z,a) = Zf\il 2T X (o),
where

Ki =NV, "

2 (25)
XZ(Oé) = Z akY—iZI.
k=1

Moreover, for any z;(0) = x;9, the cost function
satisfies

N
J < Zx% XZ‘(OZ) Zi0 - (26)
=1

PROOF. Applying the Theorem 6, we obtain
(23) from (24). O

The cost bound (26) depends on the initial condi-
tions. In order to eliminate this dependence, the
mean value of the cost function is sought over all
possible values x;y. This is equivalent to:

N N L
EC) <D tr(Xi(a) =YY tr(Xi,)ax,
i=1 i=1 k=1
where tr denotes the trace of a matrix. This equa-
tion allows to find an optimum value. Consider-

ing J := maxy, (Zfil tr(Xik)), we have the cost
function bounded by £(J) < J.

4. CONCLUSIONS

In this work, a solution for a reliable decentral-
ized guaranteed cost control problem for inter-
connected systems with polytopic uncertainties
has been presented. Failures are described by a
model which considers possible outage or partial
failures in every actuator of each decentralized



(A +BAK)TX 4 (x) =

GTx; —I
BTX,; + RiAK; 0 R —1I

MK 0

K 0

I 0

I 0

* * * *
* * * *
* * * *

SRS« e x| <. (22)
0 -1 * *
0 0 -Q'
o o o -—-w1!

Fig. 1.

controller. The control design involves two steps.
First, an LMI characterization is presented. Sec-
ond, a sufficient condition is given for the exis-
tence of a decentralized reliable guaranteed cost
control set. A key point in the control design has
been the formulation of a new LMI characteriza-
tion, which uses parameter-dependent Lyapunov
functions and slack variables. The obtained LMI
separates the unknown variables from the sys-
tem parameter data, which smoothes the numeri-
cal solution. This characterization can be useful
for different class of problems, such as guaran-
teed cost control, Hs or H,, control design. In
the paper, this type of LMI has been exploited
to proof that the proposed decentralized control
scheme guarantees the quadratic stability and a
cost bound for a class of failure model which
considers outage or partial degradation of any in-
dependent specific actuator. The design presented
in this paper shows that the admission of control
failures imposes some restrictions in the definition
of the cost function to be bounded. Specifically,
some freedom is lost in the selection of the control
weighting matrices.
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