
RELATIVELY OPTIMAL CONTROL: THE

STATIC SOLUTION

Franco Blanchini ∗,1 Felice Andrea Pellegrino ∗

∗ Dipartimento di Matematica e Informatica

Università di Udine
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Abstract: A relatively optimal control is a stabilizing controller that, without
initialization nor feedforwarding and tracking the optimal trajectory, produces
the optimal (constrained) behavior for the nominal initial condition of the plant.
In a previous work, a linear dynamic relatively optimal control, for discrete–time
linear systems, was presented. Here a static solution is shown, namely a dead–beat
piecewise affine state–feedback controller based on a suitable partition of the state
space into polyhedral sets. The vertices of the polyhedrons are the states of the
optimal trajectory, hence a bound for the complexity of the controller is known
in advance. It is also shown how to obtain a controller that is not dead–beat by
removing the zero terminal constraint while guaranteeing stability. Finally, the
proposed static compensator is compared with the dynamic one.
Copyright c© 2005 IFAC
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1. INTRODUCTION

It is known that, unless for very special cases, de-
termining an optimal control in a feedback form,
under output or input constraints is a computa-
tionally hard task. The problem can be addressed
in a receding horizon fashion but in this case an
optimization problem must be solved on–line at
each time interval. Explicit (piecewise affine) so-
lutions exist (Bemporad et al., 2002b; Bemporad
et al., 2002a) but are limited to quadratic or 1–
norm cost and linear constraints. However, for
those systems which are explicitly built to perform
specific operation through a specific trajectory
with known initial and final states, the request of
optimality from any initial state can be relaxed,
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requiring optimality only from a specific initial
condition. The Relatively Optimal Control (ROC)
(Blanchini and Pellegrino, 2003) is a stabilizing
controller that guarantees optimality of the tra-
jectory and constraint satisfaction from a given
(or a set of given) initial condition(s). The ROC
does not require any initialization nor the feed-
forward and tracking of the optimal trajectory.
In (Blanchini and Pellegrino, 2003) it has been
proved that a controller enjoying these properties
is linear dynamic and its order is equal to the
length of the optimal trajectory minus the order of
the plant. In (Blanchini and Pellegrino, 2004) the
zero terminal constraint was removed in order to
assign a characteristic polynomial to the closed–
loop system and the problem of output feedback
was addressed. Here, a static ROC is constructed
by partitioning the state space into polyhedral



sets whose vertices are the states of the optimal
trajectory and their opposite.

The main contribution of the present paper can
be summarized in the following points.

• It is shown that for discrete–time linear sys-
tems with convex constraints and cost, it is
always possible to construct a static ROC by
means of a proper partition of the state space
into polyhedral sets (a procedure to construct
it is provided).

• If the constraints and/or the cost are not
convex, a sufficient condition on the optimal
trajectory that guarantees that the static
ROC can be constructed is provided.

• The proposed controller is a dead–beat piece-
wise affine state–feedback controller. The
vertices of each of these polyhedral sets are
the states of the optimal trajectory and
their opposite. The control at each vertex is
the corresponding control of the optimal se-
quence while the control at a generic state is
given by a convex combination of the control
vectors corresponding to the vertices of the
polyhedron the state belongs to.

• An upper bound on the number of polyhedral
sets as a function of the order of the system
and the length of the optimal trajectory is
provided.

• Removing the zero state terminal constraint
and requiring the final state of the optimal
trajectory to belong to a controlled invariant
set it is possible to obtain a non dead–beat
controller.

2. PROBLEM STATEMENT

Given the discrete–time reachable system

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

(1)

where x(k) ∈ IRn, u(k) ∈ IRm, y(k) ∈ IRp

and A, B, C, D are matrices of appropriate
dimensions. Consider the locally bounded convex
cost functions of the output

g(y), li(y), i = 1, 2, . . . , s

with assigned initial condition

x̄ 6= 0

and the constraint

y(k) ∈ Y, (2)

where Y is a convex and closed set. Then consider
the following problem (where k = 1 is the initial
time)

Jopt(x̄) = min

N
∑

k=1

g(y(k)) (3)

s.t. (4)

x(k + 1) = Ax(k) + Bu(k), k = 1 . . .N(5)

y(k) = Cx(k) + Du(k), k = 1 . . .N(6)
N

∑

k=1

li(y(k)) ≤ µi, i = 1, 2, . . . , s (7)

y(k) ∈ Y, k = 1, . . . , N (8)

x(1) = x̄ (9)

x(N + 1) = 0 (10)

N ≥ 0, assigned (or free). (11)

Finding an open–loop solution for the above prob-
lem is well–known to be a convex problem which
can be solved by means of efficient algorithms.
Here, the aim is a feedback static solution. Con-
sider the following problem.

Problem 1. Find a static state–feedback compen-
sator of the form u = Φ(x) which is (locally)
stabilizing and such that for x(1) = x̄ the control
and state trajectories are the optimal ones.
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Fig. 1. Example of the set Sn (gray area) in a two
dimensional space. Sn is the convex hull of
the last two states of the optimal trajectory
(connected by the continuous line) and their
opposite (connected by the dash line).

3. MAIN RESULTS

Denoting by X̄ = [x̄(1) . . . x̄(N)] the optimal state
trajectory from the initial condition x̄ = x̄(1),
the following assumption is introduced (in the
following it will be shown how the assumption can
be removed).



Assumption 1. The last n states of the optimal
trajectory are linearly independent, namely the
matrix Sn = [x̄(N −n + 1) x̄(N −n + 2) . . . x̄(N)]
is invertible.

Let us consider the polyhedral set Sn = {x : x =
Snα, ‖α‖

1
≤ 1}. Such a set is the convex hull of

the last n states of the optimal trajectory and
their opposite. It contains the origin in its interior
and is zero-symmetric. An example for n = 2 is
shown in Fig.1. Thanks to Assumption 1 the next
lemma holds.

Lemma 3.1. The linear control

u(x) = UnS−1
n x, (12)

where Un = [ū(N −n + 1) ū(N −n + 2) . . . ū(N)],
renders positively invariant the set Sn satisfying
the constraints for all initial conditions inside the
set. In particular it is dead–beat and steers the
state to zero in at most n steps.

Proof The control law u(x) = UnS−1
n x is a

control–at–the–vertices strategy. All x ∈ Sn can
be written in a unique way as a (convex) combi-
nation of the columns of Sn, namely the last n
states of the optimal trajectory:

x = Snα.

Since Sn is invertible, it follows that

α(x) = S−1
n x,

hence the control law u(x) = UnS−1
n x is a linear

combination of the control vectors at the vertices
of Sn according to the coefficients α(x). Positive
invariance is a consequence of the fact that, by
construction, the control at each vertex keeps
the state inside the set (Blanchini, 1999). The
satisfaction of the constraints is guaranteed for all
initial conditions inside the set, being the input
and state constraints convex. To prove that the
control is dead–beat, let xi be the state of the
optimal trajectory which is i steps far from the
origin (i.e. x1 = x̄(N), x2 = x̄(N − 1) and so on)
and ui the corresponding control. If, at time k,

x(k) = xnαn + · · · + x2α2 + x1α1,

then the computed control will be

u(x(k)) = unαn + · · · + u2α2 + u1α1.

The state at time k + 1 is, by linearity,

x(k + 1) = xn−1αn + · · · + x1α2 + 0α1,

and so on. It is immediate to verify that after at
most n steps the system will reach the origin. 2

Now consider the state xn+1 = x̄(N − n) (corre-
sponding to the state x3 in the example of Fig.1).
It can be shown that xn+1 /∈ Sn: indeed, it is
well known that, for convex cost and constraints,

the cost–to–go is convex hence every point inside
Sn has a cost–to–go which is less or equal than
the cost from each vertex. If xn+1 ∈ Sn, the cost
from xn+1 would be less than the cost from any
of the subsequent points of the optimal trajectory
(vertices of Sn), which is impossible. A similar
argument holds when the problem (3)-(11) is a
minimum time problem, because the origin can
be reached from Sn in at most n steps hence xn+1

(which is n + 1 steps far from the origin along a
minimum time trajectory) must be outside Sn.
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Fig. 2. Considering x3 and its opposite, four
simplices can be constructed. The set Sn+1

is the union of Sn and such simplices (the
gray areas)

Since xn+1 and its opposite −xn+1 are outside
Sn, they can be connected to a certain number of
vertices of Sn without crossing such a set, thus
constructing some simplices (in the example of
Fig. 2, such simplices are the triangles (x3, x2, x

−

1 )
and (x3, x

−

1 , x−

2 ) and their symmetric). Denoting

with Sj
n+1, j = 1 . . .mn+1 the simplices having

xn+1 as vertex and with Sj
n+1, j = −mn+1 · · · − 1

those having −xn+1 as vertex, define the set Sn+1

as follows:

Sn+1 =
⋃

j=±1...mn+1

Sj
n+1 ∪ Sn.

The control–at–the–vertices strategy may be ex-
tended to the enlarged set Sn+1 as follows.

For each of the simplices Sj
n+1:

(1) Order (arbitrarily) the vertices.
(2) Associate a matrix Sj

n+1 whose columns are
the ordered vertices.

(3) Associate a matrix U j
n+1 whose columns are

the control vectors corresponding to the or-
dered vertices (if the vertex belongs to the
optimal trajectory, take the corresponding
control, if it belongs to the opposite of the



optimal trajectory, take the opposite of the
corresponding control).

Lemma 3.2. Consider the following control strat-
egy.

Given x ∈ Sn+1,

• if x ∈ Sn then u(x) = UnS−1
n x

• otherwise, if x ∈ Sj
n+1 then

u(x) = U j
n+1α

j , (13)

where αj is the (unique) vector such that
x = Sj

n+1α
j ,

∑

k αj
k = 1.

Such a control strategy renders positively invari-
ant the set Sn+1 and satisfies the constraints. In
particular from any point inside Sn+1 it steers the
system to zero in at most n + 1 steps.

Proof By construction, each of the simplices has
all the vertices but one belonging to Sn. The
vertices, which are points of the optimal trajectory
or their opposite, are mapped by the chosen
control to the subsequent points of the optimal
trajectory (or the opposite). Since the vertex that
does not belong to Sn is one step far from Sn along
the optimal trajectory, it follows that the images
of the vertices of all the simplices belong to Sn.
Hence, any convex combination of them, i.e. any
x = Sj

n+1α
j ,

∑

k αj
k = 1, will be mapped into

Sn. 2

The procedure outlined above can be extended
in order to include all the states of the optimal
trajectory.

Procedure 3.1. Given the system (1) and the op-
timal open–loop trajectory, computed by solving
(3)–(11), which satisfies Assumption 1.

(1) Let the set Sn = {x : x = Snα, ‖α‖
1

≤
1}, where Sn = [xn xn−1 . . . x1], be the
convex hull of the last n states of the optimal
trajectory and their opposite.

(2) Let Un = [un un−1 . . . u1] be the matrix
whose columns are the control vectors corre-
sponding to the last n states of the optimal
trajectory.

(3) Set i = n + 1.
(4) Construct the simplices Sj

i , j = ±1 . . .mi

by connecting xi and −xi to the vertices of
Si−1 without crossing such set. This is always
possible since xi,−xi /∈ Si−1.

(5) Let Sj
i be the matrix whose columns are the

vertices of Sj
i in an arbitrary order and U j

i

the control vectors corresponding to the ver-
tices in the same order. For vertices belonging
to the opposite of the optimal trajectory, take
the opposite of the control.

(6) Let Si =
⋃

j S
j
i ∪ Si−1.

(7) Increase i and go back to step 4 while i ≤ N .

Note that, by construction, the sets Si, i =
n, . . . , N are convex and zero symmetric and such
that Si ⊂ Si+1. Hence the sets Si are nested,
SN being the outermost set. The set Si+1 \ Si,
difference between Si+1 and Si, is composed of
simplices Sj

i each of whom has all vertices but
one belonging to Si.

The next theorem is a generalization of Lemma
3.2.

Theorem 3.1. Consider the following control strat-
egy.

Given x ∈ SN ,

• if x ∈ Sn then u(x) = UnS−1
n x

• otherwise, if x ∈ Sj
i then

u(x) = U j
i αj , (14)

where αj is the (unique) vector such that
x = Sj

i αj ,
∑

k αj
k = 1.

Such a control strategy renders positively invari-
ant the set SN and satisfies the constraints. In
particular from any point inside SN it steers the
system to zero in at most N steps.

Proof It follows by applying recursively the same
argument used in the proof of Lemma 3.2: by con-
struction, each point belonging to Si is mapped
into Si−1 and the control, being a convex combi-
nation of admissible control vectors, is admissible.
Hence, from SN , the system reaches the origin in
at most N steps. 2

For x ∈ SN , the controller described above is a
solution of Problem 1, hence it is a local stabilizing
controller that achieves the optimal trajectory for
the given initial condition. The control law is not
defined for x /∈ SN . A possible way to extend the
control outside SN is to “immerse” SN in the max-
imal invariant set Hmax (Blanchini, 1999) namely
the set of all states which can be steered to the
origin in finitely many steps without state or input
constraint violations (note that SN ⊆ Hmax).
Then, for x /∈ SN , one can apply the control law
derived from Hmax (many algorithms have been
proposed to find Hmax and an associated control
law, see for example (Gutman and Cwikel, 1987)).
Note that such a strategy allows to overcome a
limitation of the dynamic ROC, namely the fact
that the constraints may be violated for non–
nominal initial conditions: on the contrary, for
the static ROC extended as shown above, the
constraint satisfaction (and the convergence as
well) is guaranteed for all x̄ ∈ Hmax.

If Assumption 1 does not hold, the construction of
the regions is basically the same. The only differ-
ence is that now the first region to be constructed
is Sr, whose vertices are x̄(N − r + 1), x̄(N −
r + 2), . . . , x̄(N) where r < n is such that the



last r steps of the optimal trajectory are linearly
independent while the last r+1 are not. Note that
Sr (and, possibly, other subsequent regions) lives
in a proper subspace of IRn.

An important question is whether the complexity
of the controller (i.e. the number of simplices
obtained by partitioning the state space according
to Procedure 3.1) is known in advance. Since
such simplices form a triangulation (DeLoera et

al., n.d.) of a point set, their number Ns is
bounded according to the following expression
(Ziegler, 1994):

Ns ≤









2N + 2 −

⌈

n + 1

2

⌉

⌊

n + 1

2

⌋









+





2N + 1 −
⌈n

2

⌉

⌊n

2

⌋



 − (n + 1).

(15)

Table 1 reports such an upper bound for some
pairs of N and n.

Table 1. Upper bound for the number
of simplices given the number of steps
of the optimal trajectory (N) and the

order of the system (n)

N, n 3 4 8 12 16

4 33 39 - - -

8 133 207 1425 - -

12 297 503 11965 54257 -

16 525 927 47497 592013 2.1 106

20 817 1479 132085 3.2 106 2.8 107

Remark 3.1. As shown above, the convexity of the
constraints and the cost, guarantees that

xi /∈ Si−1, ∀i = n + 1, . . . , N. (16)

However, a ROC can be constructed indepen-
dently of the convexity of the optimization prob-
lem provided that (16) hold. In other words, in
order to construct the static ROC it is not nec-
essary for the optimization problem to be convex.
It is sufficient that each of the points of the op-
timal trajectory does not belong to the convex
hull of the subsequent points and their opposite
(condition that is automatically satisfied when the
optimization problem is convex). Obviously, the
satisfaction of the constraints for all the trajecto-
ries originating in SN , is guaranteed only if the
constraints are convex.

Remark 3.2. It can be shown that the number of
steps required to reach the origin from a specific
initial state depends on the simplex the initial
state belongs to. More precisely, it is equal to the
maximum number of steps among the vertices of
simplex.

4. OPTIMAL ARRIVAL TO A TARGET SET

Similarly to (Blanchini and Pellegrino, 2004), the
constraint (10) may be relaxed as follows:

x(N + 1) ∈ Xfin, (17)

where Xfin is a zero-symmetric controlled-invariant
polyhedron (that is there exists a local control
that renders Xfin positively invariant and such
that the constraints are satisfied for all initial con-
ditions inside the set). Then one can construct the
ROC by positing Sn = Xfin and following steps
(3)-(7) of Procedure 3.1. As a result, a dual control
strategy may be adopted: apply the control–at–
the–vertices for x(k) /∈ Xfin and switch to the
local control as soon as the condition x(k) ∈ Xfin

is satisfied.

5. COMPARISON WITH THE DYNAMIC
ROC

Some significant differences between the dynamic
Relatively Optimal Control (Blanchini and Pelle-
grino, 2003; Blanchini and Pellegrino, 2004) and
the static one described above are briefly high-
lighted in the following points.

(1) Since the static ROC is non–linear, the tra-
jectory originating from λx̄ is not (in general)
proportional to the one originating from x̄
as with the dynamic ROC. However, by con-
struction, opposite initial conditions generate
opposite trajectories.

(2) The dynamic ROC allows for the optimiza-
tion from a set of n linearly independent
initial conditions while the static version pro-
posed here is thought for a single initial con-
dition. Extending the results to more than
one initial conditions for the static ROC is a
matter of further investigation.

(3) The dynamic ROC can not guarantee the
satisfaction of the constraints for initial con-
ditions different from the nominal one. Hence
it is only suitable for dealing with soft con-
straints. On the contrary, by immersing the
set SN in the maximal invariant set as shown
in Section 3, the control proposed here can
deal effectively with hard constraints.

6. EXAMPLE

Consider the double integrator:

x(k + 1) =

[

1 1
0 1

]

x(k) +

[

0
1

]

u(k),

under the constraints |x(k)| ≤ 5, |u(k)| ≤ 3.
Given the initial state x(1) = [−2 5]T , the
horizon N = 5, the final state x(N + 1) =

0, and the cost function J =
∑N

i=1
u(k)2, the
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Fig. 3. The optimal trajectory

optimal (open–loop) control and trajectory, found
by solving a quadratic–programming problem, are
respectively:

Ū=
[

−3 −2.9 −1.3 0.3 1.9
]

and

X̄ =

[

−2 3 5 4.1 1.9
5 2 −0.9 −2.2 −1.9

]

.

The optimal trajectory is reported in Fig.3. By
means of Procedure 3.1, the triangulation re-
ported in Fig.4 is obtained; the number of trian-
gles is 12 (including the four triangles in which the
darkest region, i.e. S2, can be split). The piecewise
affine control law obtained by applying a control–
at–the–vertices strategy inside each of the trian-
gles, as stated above, is relatively optimal, hence is
optimal for the nominal initial condition and guar-
antees convergence and constraint satisfaction for
the other initial conditions. In Fig. 4, the trajec-
tories for three non–nominal initial conditions are
reported. Note that the number of steps required
to reach the origin depends on the triangle the
initial state belongs to. Note also that the control
law is not defined outside the convex hull of the
points of the optimal trajectory and their oppo-
site. There, a control derived by the maximal in-
variant set Hmax ⊇ SN (Blanchini, 1999; Gutman
and Cwikel, 1987) may be used.

7. CONCLUSIONS

In this paper, a static version of the Relatively
Optimal Control (Blanchini and Pellegrino, 2003;
Blanchini and Pellegrino, 2004) is proposed. The
controller is based on a triangulation of the points
of the optimal trajectory and their opposite (an
upper bound on the number of simplices is pro-
vided). The proposed control can deal effectively
with hard constraints (a significant advantage
with respect to the dynamic one previously in-
troduced). Further work includes extending the
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Fig. 4. The triangulation induced by the optimal
trajectory and the trajectories from three
non–nominal initial conditions

results to more than one initial condition and
exploiting the particular structure of the trian-
gulation in order to obtain a tighter bound on the
number of simplices.
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