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Abstract: 11C-acetate uptake in hepatocellular carcinoma (HCC) was reported and the 
modeling study has been conducted, in which the weighted nonlinear least squares (NLS) 
algorithm was used to estimate all of the parameters. However, the computational time-
complexity of NLS method is high and some estimates are not quite reliable. Due to the 
hepatic dual blood supply, the current developed fast algorithms could not be used 
directly. In this paper, two new estimation approaches were presented: Patlak-NLS and 
Patlak-dual-input-generalized linear least squares. The estimation results demonstrated 
that these two methods could provide better and practical ways for dual-input 11C-acetate 
liver kinetic modeling. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Application of the tracer kinetic modeling technique 
in positron emission tomography (PET) could 
provide significant diagnostic information for 
various kinds of disease detection. Quantitative PET 
using labeled 11C-acetate provides the ability to 
evaluate non-18F-fluorodeoxyglucose (FDG)-avid 
hepatocellular carcinoma (HCC) (Ho, et al., 2003; 
Chen, et al., 2004; Chen and Feng, 2004), a highly 
malignant tumor. A three-compartment model 
describing 11C-acetate liver kinetics with an extra 
parameter (relative portal venous contribution to the 
hepatic blood supply) included in the model input 
function to account for the dual source of liver blood 
supply has been proposed and validated by Chen and 
Feng (2004). In the previous modeling studies, all of 
the parameters were estimated by using the weighted 
nonlinear least squares (NLS) algorithm. However, 
due to the relative large number of parameters to be 
estimated, the computational time-complexity is 
high, the fitting results are a bit more sensitive to the 
initial guess, and some estimates are not quite 

reliable, which limits its routing application in the 
clinical environments. 
 
With the development of high spatial and temporal 
resolution PET, a variety of rapid parameter 
estimation methodologies have been developed 
(Huang, et al., 1982; Patlak, et al., 1983; Carson, et 
al., 1986; Feng, et al., 1996; Chen, et al., 1998). All 
these computationally efficient techniques are to 
identify single input systems, and could not provide 
solutions for dual-input biomedical systems directly. 
Therefore, practical algorithms are needed to be 
developed for the parameter estimation of dual-input 
11C-acetate liver kinetic model to detect HCC. 
 
In this study, two novel parameter estimation 
approaches for 11C-acetate kinetic model of dual-
input liver system were presented: Patlak-NLS and 
Patlak- dual-input-generalized linear least squares 
(Patlak-D-I-GLLS) algorithms. The performance in 
terms of the estimation reliability and accuracy of 
Patlak-NLS and Patlak-D-I-GLLS techniques were 

      



evaluated by the clinical datasets and computer 
simulation respectively.  
 
 

2. METHODS 
 

2.1 Human studies. 
 
The study population comprised six subjects with 
two suffered from HCC. Dynamic PET images were 
recorded for 10 min after injection of 11C-acetate as 
25 frames with the following scan durations: 10×4, 
8×10, 2×30, 3×60 and 2×120 sec. Time-activity 
curve (TAC) was generated by placing a region of 
interest (ROI) on single transverse slice of the full set 
of dynamic PET images. Eight ROIs were extracted 
from nontumor liver tissue of the six patients and 
two HCC regions were extracted from the two 
patients suffered from HCC. The TAC in blood 
(BTAC) consisting of the hepatic artery (HA) and 
portal vein (PV), whose TACs were image derived, 
was used as the model input function. As suggested 
by Munk et al. (2001) that after some time the TACs 
of HA and PV are virtually identical, to avoid the 
radioactivity spillover from the surrounding tissue to 
the PV, the last five measurements of the PV were 
replaced by the corresponding HA data in this study.  
 
 
2.2 11C-acetate kinetic model in liver. 
 
The dual-input 11C-acetate liver kinetic model was 
proposed by Chen and Feng (2004), which consists 
of three compartments (Fig. 1), corresponding to the 
intravascular 11C-acetate concentration, the 
intracellular free 11C-acetate and the intracellular 
11C-acetate products/metabolites converted from 11C-
acetate (acetyl-CoA, and metabolites of fatty acid 
synthesis). HBV (hepatic blood volume) is to account 
for the contribution of 11C-acetate within 
vascular/sinus space of liver tissue to the observed 
total tissue activity. The differential equations 
describing the kinetics of 11C-acetate in liver are 
given by  
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where K1-k3 are the rate constants, cb(t) and ce(t) are 
the 11C-acetate concentration in intravascular and 
intracellular space respectively, cm(t) is the 
intracellular products/metabolites concentration. The 
observed total tissue activity cT(t), is given by 
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The dual-input function cb(t)  is calculated by 
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where ca(t) and cv(t) are the tracer concentration in 
the HA and PV respectively, and av is to account for 

the relative portal venous contribution to the hepatic 
blood supply.  
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Fig. 1. The three-compartment 11C-acetate liver 
kinetic model with the dual-input function. e(t) 
denotes the PET measurement noise.  

 
               
2.3 Patlak-nonlinear least squares algorithm. 
 
The parameter estimation procedure of this Patlak-
NLS technique has the following three steps. 

1. Linear Patlak method is applied to estimate 
the HCC indicator “local hepatic metabolic 
rate-constant of acetate (LHMRAct)” 
formulated as K1*k3/(k2+k3) (the forward 
clearance K) (Chen, et al., 2004; Chen and 
Feng, 2004). The data to be fitted are from 3 
min to 10 min, when the two TACs of HA 
and PV are almost virtually identical. To 
calculate the dual-input function, av was 
fixed as 0.8 for the first iteration. 

2. Since K1*k3/(k2+k3) is one of the macro-
parameters of the 11C-acetate model, the 
weighted NLS algorithm is utilized to 
estimate HBV, av and the other two 
macroparameters: K1*k2/(k2+k3) and (k2+k3). 
This fitting procedure is to minimize the 
weighted residual sum of squares (WRSS). 
The weights used are proportional to the 
frame duration divided by the concentration 
value of that time point. If the difference 
between the estimated av by this NLS 
regression and the av value utilized in step 1 
is greater than 0.2, which may generally 
indicate the tumor case, steps 1 and 2 would 
be performed again. The estimated av would 
be used to calculate the dual-input function 
in step 1. For nontumor cases, the iteration 
generally would not be repeated since the av 
value obtained by the previous quantitative 
study (Chen and Feng, 2004) is 0.7935 ± 
0.1040; for tumor cases, one more iteration 
is generally needed.  

3. Parameter K would be estimated by Patlak 
method with the updated av value in step 2 
to calculate the dual-input function. 
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The fitting results by Patlak-NLS approach were 
compared with those obtained from NLS method. 
The coefficient of variation (CV) was adopted as the 
statistical criterion to access the reliability of the 
parameter estimation.  
 
 
2.4 Patlak-dual-input-generalized linear least 

squares algorithm. 
 
The Patlak-D-I-GLLS technique is a novel fast 
estimation algorithm consisting of four steps. The 
first step estimation is the same as that involved in 
the Patlak-NLS algorithm. The second step 
estimation is Patlak-dual-input-linear least squares 
(Patlak-D-I-LLS) proposed in this paper. The 
second-order differential equation of the 11C-acetate 
liver kinetic model could be expressed as 
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Substitute K1k3 in eq. (6) by , where )(ˆ
32 kkK + K̂  is 

the estimation value in step one. Let P0=HBV, 
P1=K1+(k2+k3)HBV, and P2=k2+k3, then, 
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To formulate the Patlak-D-I-LLS solution, substitute 
cb(t) in the first term of eq. (7) with eq. (5) and 
assume the initial conditions were all zeros, the 
observed total tissue activity cT(t), is 
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where P3=HBV*av. Digitalize eq. (8) at the sampling 
time t0, t1, … , and tm, and include the equation noise 
ξ , the linear equation in matrix form is 
 
                          ξθ += Xy                                     (9) 
 
where y=[cT(t0), cT(t1), … , cT(tm)]T are the PET 
measurements at the sampling time, θ=[P0, P1, P2, 
P3]T are the parameters to be estimated and X is the 
coefficient matrix. The initial guess of av is needed to 
calculate the dual-input function in the third and 
fourth terms of eq. (8). The value used in this study 
is 0.8 as well. The Patlak-D-I-LLS solution for θ is 
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where  represents the estimated θ in this 
Patlak-D-I-LLS step. 

LLSIDP −−−θ̂

 
The second step estimation results would be used as 
the initial values of the third step estimation aiming 
to refine the results by Patlak-D-I-LLS. Substitute all 
the dual-input function terms in eq. (7) with eq. (5), 
then 
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where K̂

(ss

 is the estimate in step one, P  
represent the most updated estimates. Take the 
Laplace transform of eq. (11) with the assumption 
that the initial conditions were all zeros, whiten the 
correlated equation errors with an autoregressive 
filter , and then take the inverse Laplace 
transform, the time domain output function is 
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Digitalize eq. (12) at the sampling time, then 
 
                                r                               (13) ζθ += Z
  
where r is the filtered PET measurements at the 
sampling time, ζ is the filtered equation errors, θ=[P0, 
P1, P2, av]T are the parameters to be estimated, and Z 
is the coefficient matrix. The solution of the Patlak-
D-I-GLLS is 
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where  represents the estimated θ in 
Patlak-D-I-GLLS sense. Eq. (14) would be repeated 
until the termination criteria are satisfied. In this 
study, the termination criteria are either maximum 
iteration of twenty was reached or the Euclidean 
norm of difference of parameter estimates between 
two successive iterations was less than 0.0001. In the 
fourth step estimation, Parameter K would be 
estimated by Patlak method with the estimated a

GLLSIDP −−−θ̂

v in 
step three to calculate the dual-input function.  
 
 
2.5 Simulation studies. 
 
Computer simulation was conducted to both NLS and 
Patlak-D-I-GLLS algorithms. There were two sets of 
computer simulated data including one representing 
HCC with two image-derived dual-input functions 
acquired from two patients recruited in this study. 
The sampling sequences were the same as those of 
clinical data acquisition. A pseudorandom number 
generator was used to generate the Gaussian noise 
added to the calculated tissue TAC (TTAC) and the 
noise level (the proportional constant in the variance 
of the generated noise) was set to 0.1, 0.5 and 1.0 
respectively. The estimation accuracy and reliability 
were evaluated by bias and CV respectively. 
 

 
 

      



3. RESULTS AND CONCLUSION 
 

In Patlak-NLS fitting, the estimation of LHMRAct 
(the forward clearance K) is by linear Gjedde-Patlak 
analysis, it is generally accepted that the fitting 
results are very robust. The estimation reliability in 
terms of the CV of another two macroparameters is 
satisfactory as well. The CVs of all the 
macroparameters are generally less than the CV of 
the most reliably estimated K1 by NLS method. 
Therefore, the model rate constant parameters K1, k2, 
k3 could be much more reliably estimated by the 
proposed Patlak-NLS technique. 

 
The fitting results of av and HBV by NLS and Patlak-
NLS methods were summarized in Table 1. As could 
be seen, the two sets of estimated av values are 
approximately the same except region 8. For the 
eight nontumor liver tissue regions, the estimated av 
values are 0.8174 ± 0.0898 and 0.7935 ± 0.1040 by 
Patlak-NLS and NLS methods respectively. The 
estimation of av by Patlak-NLS is reliable, since half 
of the CVs are less than 10% and most of them are 
less than 20%. Majority CVs of the estimated av by 
Patlak-NLS are less than those by NLS, and the 
estimated av of region 10 is considerably more 
reliable. All these findings suggest that Patlak-NLS 
method could provide accurate and reliable fitting 
results for the potential HCC indicator: Parameter av. 
The estimates of HBV by the two methods are nearly 
the same except regions 1 and 8. The estimation of 
HBV tends to be slightly less reliable than that by 
NLS in some cases. However, the estimation of HBV 
of region 10 is significantly more reliable, the 
average CV is a little bit smaller and all the CVs of 
the estimated HBV are generally acceptable. The 
fitted curves of the generated TACs of HCC and 
nontumor liver tissue ROIs by using patlak-NLS and 
NLS methods were demonstrated in Fig. 2. As 
shown in Fig. 2, the two fitted curves for HCC by the 
two methods are identical to each other; for the 
nontumor liver tissue data, the curve fitted by Patlak-
NLS demonstrates better results.  
 
Table 1 The parameter estimates of clinical datasets 
by NLS and Patlak-NLS methods. CVa and CVH are 
the CVs of the estimated av and HBV respectively.  

 
 NLS 

     av       CVa(%)    HBV   CVH(%) 
Patlak-NLS 

     av       CVa(%)    HBV   CVH(%)
1 0.9128 6.62 0.0965 47.91 0.9110 7.85 0.0644 69.01
2 0.7002 19.72 0.0419 65.81 0.7175 19.25 0.0430 71.75
3 0.8634 8.46 0.0547 54.03 0.8897 7.57 0.0538 59.22
4 0.7174 3.30 0.3277 5.50 0.7127 5.49 0.3101 9.26 
5 0.6744 8.59 0.2948 13.08 0.7238 8.65 0.3144 14.81
6 0.8989 4.20 0.4749 11.50 0.8983 3.72 0.4735 9.23 
7* 0.3632 65.46 0.1758 52.26 0.3756 67.39 0.2054 53.31
8 0.6987 16.32 0.0873 58.06 0.7937 14.02 0.1671 58.36
9 0.8819 12.55 0.0810 98.77 0.8929 10.04 0.0850 99.01

10* 0.5908 45.88 0.1602 76.07 0.5610 17.19 0.1411 35.60
*Regions 7 and 10 represent HCC. 
 
During the Patlak-NLS fitting procedure, the number 
of parameters to be estimated by the recursive NLS 
procedure is reduced, therefore, the fitting results are 
less affected by the initial guess and the 
computational time-complexity is considerably 
reduced.  
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Fig. 2. The fitting results of the generated TACs of 

HCC and nontumor liver tissue ROIs from one 
clinical dataset. Asterisk represents HCC data, 
while diamond represents nontumor liver tissue 
data. The fitted curves by using patlak-NLS and 
NLS methods were drawn by solid and dash dot 
dot lines respectively.  

 
The Patlak-D-I-GLLS method was tested by 
computer simulation. The estimation results of the 
mean values, biases, and CVs of K1-k3, HBV, av and 
K calculated from 200 simulation runs by NLS and 
Patlak-D-I-GLLS were presented in Table 2. As seen 
in Table 2, the estimation quality in terms of CV and 
bias of the estimated av and HBV by Patlak-D-I-
GLLS is comparable with that by NLS method. 
Parameter av could be reliably and accurately 
identified by using Patlak-D-I-GLLS.  More reliable 
estimates of K could be provided by Patlak-D-I-
GLLS than by NLS and the rate constant parameters 
K1-k3 could be considerably more reliably estimated 
as well. The estimation accuracy of K and K1-k3 is 
satisfactory. The accuracy of the estimated K1-k3 is 
less sensitive to the noise level and the accuracy of 
the two HCC indicators: av and LHMRAct (the 
forward clearance K) is not sensitive to the noise 
level at all. Furthermore, since all of the parameters 
could be estimated by linear fitting and calculated 
analytically, the Patlak-D-I-GLLS procedure is 
significantly faster. Therefore, Patlak-D-I-GLLS is 
particularly valuable for noisy clinical environments.  
 
Two novel parameter estimation techniques for dual-
input 11C-acetate kinetic model with dynamic PET 
images were presented in this study. When compared 
with NLS method, the computational time-
complexity of Patlak-NLS technique is reduced, the 
fitting results are less affected by the initial guess and 
more reliable estimates could be provided. Patlak-D-
I-GLLS algorithm could generally identify all the 
parameters more reliably including the parameter in 
the dual-input function and the fitting procedure is 
significantly faster. The estimation accuracy and 
reliability of the two HCC indicators are satisfactory 
by both presented methods. Therefore, the proposed 
approaches suggest better ways for the evaluation of 
HCC, and are potentially applicable for other dual-
input biomedical systems. 

      



 
Table 2 Estimation results of K1-k3, HBV, av and K from two sets of simulation. The second set of data represent 

HCC. The estimated parameters represent their mean values. The mean values, biases (percentage value) and CVs 
were calculated from 200 simulation runs. “Pat-G” is the abbreviation of “Patlak-D-I-GLLS”. 

 
Method K1 bias1 CV1(%) k2 bias2 CV2(%) k3 bias3 CV3(%) HBV biasH CVH(%) av biasa CVa(%) K biasK CVK(%)

P1-true 0.65 --- --- 0.40 --- --- 0.15 --- --- 0.30 --- --- 0.72 --- --- 0.1773 --- ---
 Noise level α=0.1 

NLS 0.6504 0.06 0.70 0.4004 0.09 1.49 0.1500 0.03 1.41 0.3001 0.03 1.99 0.7204 0.05 1.11 0.1772 0.03 0.55 
Pat-G 0.6484 0.24 0.51 0.4063 1.58 0.84 0.1560 3.98 0.78 0.3048 1.61 1.81 0.7214 0.20 1.14 0.1787 0.83 0.33 

 Noise level α=0.5 
NLS 0.6511 0.17 3.61 0.4012 0.31 7.59 0.1495 0.35 7.04 0.3009 0.28 9.97 0.7208 0.11 5.46 0.1767 0.33 2.78 
Pat-G 0.6494 0.10 2.61 0.4069 1.72 4.16 0.1557 3.78 3.85 0.3035 1.17 9.15 0.7161 0.54 5.92 0.1784 0.65 1.63 

 Noise level α=1 
NLS 0.6513 0.20 7.45 0.4022 0.56 15.50 0.1483 1.16 14.28 0.3027 0.89 19.69 0.7194 0.08 10.82 0.1753 1.12 5.88 
Pat-G 0.6479 0.32 5.67 0.4064 1.60 10.01 0.1555 3.68 7.94 0.3061 2.02 17.81 0.7142 0.81 11.81 0.1779 0.38 3.14 
P2-true 1.30 --- --- 0.35 --- --- 0.10 --- --- 0.30 --- --- 0.36 --- --- 0.2889 --- --- 

 Noise level α=0.1 
NLS 1.3006 0.04 1.30 0.3501 0.04 2.15 0.0999 0.13 1.70 0.3008 0.27 5.04 0.3612 0.33 8.18 0.2887 0.08 0.82 
Pat-G 1.2800 1.54 0.96 0.3412 2.52 1.39 0.0974 2.59 0.87 0.3209 6.97 5.82 0.3629 0.80 8.88 0.2772 4.04 0.50 

 Noise level α=0.5 
NLS 1.2940 0.46 6.27 0.3478 0.64 10.51 0.0987 1.34 8.66 0.3111 3.69 26.20 0.3583 0.47 40.59 0.2860 1.02 4.34 
Pat-G 1.2743 1.98 4.71 0.3400 2.86 6.73 0.0974 2.62 4.38 0.3321 10.71 28.08 0.3611 0.31 42.44 0.2766 4.25 2.47 

 Noise level α=1 
NLS 1.2829 1.31 11.12 0.3453 1.33 19.23 0.0970 2.99 17.57 0.3384 12.81 49.72 0.3590 0.27 70.14 0.2808 2.80 9.48 
Pat-G 1.2555 3.42 10.43 0.3354 4.16 15.05 0.0976 2.43 9.06 0.3525 17.50 49.88 0.3504 2.68 84.23 0.2754 4.65 4.91 
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