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Abstract: This paper focus on the problem of passive robust fault detection using non-

linear models that include parameter uncertainty. The non-linear model considered here 

is described by a Group Method of Data Handling Neural Network (GMDHNN). The 

problem of passive robust fault detection using models including parameter uncertainty 

has been mainly addressed checking if the measured behaviour is inside the region of 

possible behaviours following what will be called in the following a forward test. In this 

paper, a backward test based on checking if there exists a parameter in the uncertain 

parameter set that is consistent with the measured behaviour is introduced. This test is 
implemented using interval constraint satisfaction algorithms which can perform 

efficiently in deciding if the measured state is consistent with the GMDHNN model and 

its associated uncertainty. Finally, this approach is tested on the servoactuator proposed 

as a FDI benchmark in the European Project DAMADICS. Copyright © 2005 IFAC 
 
Keywords: Fault Detection, Fault Diagnosis, Robustness, Adaptive Threshold, Neural 

Network.  
 
 
 

1. INTRODUCTION 
 
Model-based fault detection is based on the use of 

mathematical models of the monitored system. The 

better the model used to represent the dynamic 

behaviour of the system, the better will be the chance 

of improving the reliability and performance in 

detecting faults. However, modelling errors and 
disturbances in complex engineering systems are 

inevitable, and hence there is a need to develop robust 

fault detection algorithms. The robustness of a fault 

detection system means that it must be only sensitive 

to faults, even in the presence of model-reality 

differences (Chen, 1999). One of the approaches to 

robustness, known as passive, enhances the 

robustness of the fault detection system at the 

decision-making stage, mainly using an adaptive 

threshold. The passive approach based on adaptive 

thresholds is based not in avoiding the effect of 

uncertainty in the residual through perfect 
decoupling, but in propagating the uncertainty to the 

residual, and then bounding the residual uncertainty. 

Of course this approach has the drawback that faults 

that produce a residual deviation smaller than the 

residual uncertainty due to parameter uncertainty will 

be missed.  

 

This paper focus on the problem of passive robust 

fault detection using Artificial Neural Networks 

(ANNs) (Korbicz et al., 2004). The attractiveness of 

the ANNs in the robust passive fault detection 

schemes follows from the fact that they are useful 

when there are no phenomenological models 
available, i.e. the models, which are built with the 

physical consideration of the underlying system of 

interest. Such a situation causes that the models, 

which merely approximate the observed behaviour, 

should be employed. Unfortunately, there are no 

efficient algorithms for selecting structures of 

classical ANNs and hence many experiments should 

be carried out to obtain an appropriate configuration 

of the neural model. The appropriate quality of the 

model settles about the reliability and performance of 

the fault detection system. To tackle this problem the 
GMDH approach can be employed (Ivakhnenko and 



Mueller, 1995). The concept of the synthesis of the 

GMDHNN is based on the iterative processing of a 

defined sequence of operations leading to the 

evolution of the resulting structure, which generates 

the best possible approximation of the real system 

output. Furthermore, the GMDH approach make 

possible to determine not only the structure and 

parameters of the neural network but also associated 

parameter’s uncertainty (Mrugalski, 2004; Witczak 

and Mrugalski, 2003). The problem of passive robust 

fault detection using models including parameter 
uncertainty has been mainly addressed checking if the 

measured behaviour is inside the region of possible 

behaviours following what will be called in the 

following a forward test (Armengol et al., 2001; 

Travé-Massuyès and Milne, 1997; Puig et al., 2002; 

Patton and Korbicz, 1999; Escobet et al., 2001; Ploix 

et al., 2000; Witczak et al., 2005). In this paper, a 

backward test based on checking if there exists a 

parameter in the uncertain parameter set that is 

consistent with the measured behaviour is introduced. 

This test is implemented using interval constraint 
satisfaction algorithms, which can perform efficiently 

in deciding if the measurements are consistent with 

the GMDHNN model and associated uncertainty. 

Finally, this approach is tested on several real fault 

scenarios of a servo-actuator proposed as a FDI 

benchmark in the European Project DAMADICS. 

 

 

2. ROBUST MODEL BASED FAULT DETECTION 

USING BEA GMDHNN 

 
2.1 Model based fault detection principle 

 

Model-based fault detection is based on the 

generation of a discrepancy between the measured 

and estimated process behaviours using a model. This 

discrepancy is known as a residual. A residual 

generator can be constructed by 

 

)k(ŷ)k(y)k(r −= ,            (1) 

 
where: y(k) and )k(ŷ  are the measured and estimated 

outputs using a model, respectively. The residual 

signal should be normally close to zero in the fault 

free mode, otherwise it should be distinguishably 

different from zero when a fault occurs. The residual 

should ideally carry only fault information. 
 
2.2 Robustness issues 

 
However, the presence of disturbances, noise and 

modelling errors causes the residuals to become 

nonzero and interfering with the detection of faults. 
Therefore, the fault detection procedure has to be 

robust in the face of these undesired effects. 

Robustness can be achieved in the residual generation 

(active robustness) or in the decision making stage 

(passive robustness) (Chen and Patton, 1999). The 

passive approach, when considering the uncertainty 

described by a vector θθθθ of uncertain parameters of 

dimension np with their values bounded by a compact 

set Θ , is based not in avoiding the effect of 

uncertainty in the residual, but in propagating the 

effect of uncertainty to the estimated output such that 

 

[ ])k(ŷ),k(ŷ)k(y ∈ ,  (2) 

or equivalently to the residual: 
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where: ))k(ŷ)k(ŷ(
2

1
)k(ŷc +=  is the predicted 

output interval centre and ))k(ŷ)k(ŷ(
2

1
)k(ŷ −=∆  

the radius.  Then, the detection test can be translated 

to check if either condition (2) or (3) are satisfied. 
Otherwise, the fault should be indicated. This 

approach will be known in the following as the 

forward detection test. 

 
2.3  BEA GMDHNN 

 

In case of using a GMDHNN, (k)ŷ  can be written in 

the following form 

 

),,,,,(g),k(ŷ
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where )(g ⋅  stands for the neural network structure 
obtained using the approach proposed in (Mrugalski, 

2004; Witczak et al., 2005), L  is the number of 

layers of GMDHNN model and ln  is the number of 

neurons in the l -th layer. Each neuron has the 

following structure 
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where )k(ŷ
)l(

n  stands for the neuron output 

( L,...,1l =  is the layer number, lnn ,...,1=  is the 

neuron number in the l-layer) corresponding to the k-

th measurement of the input u(k) of the system, )( ⋅ξ  

denotes a non-linear invertible activation function, 

[ ] u
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= fϕϕϕϕ  are the 

regressor vectors with )( ⋅f  being an arbitrary 

bivariate vector function a and )l(
nθ  are the parameter 

vectors (Fig. 1). 
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Fig. 1 A GMDH neural network 

 
The structure and parameters of GMDHNN can be 

determined as well as the modelling uncertainty using 

algorithms proposed in (Mrugalski, 2004; Witczak et 

al., 2005). Parameters and its associated uncertainty 

will define a set of admissible parameter values 

(feasible parameter set) that should provide a 

confidence region for the estimation of model output 

such that all available measured output in non-faulty 

situation are included, i.e., [ ])k(ŷ),k(ŷ)k(y ∈ . 

Parameter uncertainty is determined using the 

Bounding Error Approach (BEA) to parameter 

estimation (Milanese et al., 1996). This is way such 

neural network will be called in the following as BEA 

GMDH. The bounding-error approach allows 

estimating parameter uncertainty without any 

assumption on statistical properties of the noise. The 

only assumption is that its value is 

bounded [ ])k(),k()k( εεε ∈ . These bounds are 

known a priori but can also be estimated (Witczak et 

al., 2005). The feasible parameter set is defined as 

 

{
}T

Tp

n,,1k

),k()k(y)k()k()k(y|

⋯=

−≤≤−ℜ∈= εθε ϕϕϕϕθΘ
  (6)  

 

where nT is the number of input-output 

measurements. It can be obtained as a region of the 

parameter space determined by nT pairs of 

hyperplanes 
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where each pair defines the parameter strip (Fig. 2) 
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Any parameter vector contained in Θ  is a valid 

estimate of θ .  

 

  
 

Fig. 2 Feasible parameter set 

 

3. FORWARD AND BACKWARD FAULT 

DETECTION TESTS USING BEA GMDHNN  

 

3.1 Forward detection test 

 

Let V  be the set of all vertices iθ , i=1,...,nv 

describing the feasible parameter set Θ . Considering 

that there is no error in the regressor, the interval for 

the estimated output for a given neuron when its 
activation function is linear since the uncertainty in 

the estimated output can be determined by 

 

)k()k()k()k(y)k()k()k( TT εε +≤≤+ θθ ϕϕϕϕϕϕϕϕ ,   (9) 

 

where: 
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In case of errors in the regressors and non-linear 

activation functions in the neurons these expressions 

can be adapted as in (Mrugalski, 2004; Witczak and 

Mrugalski, 2003). The drawback of this approach is 

that it loses the dependence between parameters and 

the outputs while computing the envelope. Only 

maximum and minimum values of the parameters are 

used for the envelope. This leads to tests that is 

specially sensitive to faults close to the extreme 
points of the parameter intervals (corners) while less 

sensitive to faults where some parameters are close to 

the center of the its interval and where many more 

parameter combinations can explain the data.  

 

3.2 Backward detection test 

 

The backward detection test applied to the GMDHNN 

consists on checking if there exist some Θθ ∈  such 

that: 

 

)k()k(y)k()k()k(y| T εε −≤≤−∈∃ θΘθ ϕϕϕϕ . (10) 

 

In case that does not exist any parameter Θθ ∈  such 

that (10) is satisfied, a discrepancy between the 

measured output and the model is detected and a fault 

+

Θ  
minp

2θ
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1θ  max

1θ
1θ  

max

2θ  

min

2θ  

θ̂  



should be indicated. In fact this test can be viewed as 

a kind of parameter identification, since the set of 

parameters that are consistent with the actual set of N  

test measurements are 
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Then, equivalently, the backward fault detection test 

consists in checking if  

 

∅≠∩ΘΘN .       (12) 

 
The computation of the set of parameters consistent 

with a given set of N  measurements  

 

[ ] [ ])N(y)1(y ××= ⋯YYYY ,             (13) 

with [ ] [ ])k()k(y),k()k(y)k(y εε −−=  can be 

computed using the same bounded error parameter 

estimation algorithms used in computing the feasible 

parameter set (Milanese et al., 1996) or by computing 

the inverse image of the interval function g  

introduced in (4) describing the neural net model: 

 

)(g
1

N YΘ
−= ,         (14) 

 

Jaulin (2001) has proposed an algorithm called SIVIA 

that computes the inverse image of an interval 

function using subpavings. This algorithm make use 

that the point test 
 

))(f()(t
1

YYYY
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associated to the inverse image can be easily 

evaluated computing f(x) and checking is belongs to 

YYYY . However, when the dimension of the set to 

characterize is of high dimension the computational 

complexity explodes since SIVIA uses bisection in all 

directions.  

Moreover, after computing (14), either using bounded  

error parameter estimation algorithms either using the 
inverse image of an interval function using SIVIA, 

the intersection presented in (12) should be computed, 

being not an easy task in general (Ploix et al., 2000). 

Then, the backward test presented in Section 3.2 will 

be implemented using (10) using constraints 

satisfaction algorithms since the use of contractors 

save a lot of computation because bisections are only 

used when required.   

 

4. IMPLEMENTING THE BACKWARD TEST 

USING CONSTRAINTS SATISFACTION   
 

4.1 Constraint satisfaction problem 

 

An interval constraint satisfaction problem (ICSP) 

can be formulated as a 3-tuple ),,( CDVH = , where 

{ }n1 v,,v ⋯=V  is a finite set of variables,  

[ ] [ ]{ }n1 v,,v ⋯=D  is the set of their domains 

represented by closed real intervals and 

{ }n1 c,,c ⋯=C  is a finite set of constraints relating 

variables of V  (Waltz, 1975; Hyvönen, 1992) A point 

solution of H is a n-tuple V∈)v~,,v~( n1 ⋯  such that 

all constraints C are satisfied. The set of all point 

solutions of H is denoted by S(H). This set is called 

the global solution set. The variable iiv V∈  is 

consistent in H if and only if: 
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4.2 Backward test as an ICSP 

 

The fault detection test in (10) can be formulated as 

an ICSP in the following way: 
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Then, using an ICSP solver as, for example, Interval 

Peeler developed by the group of Jaulin using the 

principles described in (Jaulin, 2001) (see 
http://www.istia.univ-angers.fr/~baguenar/), this 

problem can be solved. In case that no solution is 

found, a fault should be indicated since there is no 

parameter Θθ ∈  such that (10) is satisfied. Since in 

the case of the GMDHNN, the feasible parameter set 

is not described by parameter vector but instead by a 

polygon, being V  be the set of all vertices iθ , 

i=1,...,nv (Fig. 2), additional restrictions should be 

introduced in (17) to reflect it. Each pair of adjacent 

vertices 1ii , +
θθ  introduce a linear restriction of the 

following type: 
 

0),(b),(a

),(a),,(f

1ii
n

1ii
n

1
1ii

1
1ii

pp
≤−+

+=
++

++

θθθθ

θθθθθ

θ

θ ⋯
,   (17) 

 

with [ ]θθΘθ ,)(hull =∈ , i.e., the minimum interval 

box containing the feasible parameter set Θ .  In this 

case )(hull Θ  can be easily computed 
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5. APPLICATION TO THE DAMADICS 
BENCHMARK 

 

The application example proposed to show the 

effectiveness of the backward fault detection 



approach using a model based on GMDHNNs is 

based on the FDI DAMADICS Benchmark. The real 

data used for system identification and fault detection 

were collected on 17th November 2001. A detailed 

description regarding the data and the artificially 

introduced faults can be found on DAMADICS 

website (DAMADICS, 2004). Based on the actuator 

benchmark definition a GMDH model g  describing 

the juice flow F  is designed: 

 

)T,P,P,X(gF 121= ,          (18) 

 

where X  is the servomotor rod displacement, 1P  is 

the pressure before the valve, 2P  is the pressure after 

the valve and 1T  is the juice temperature before the 

valve. Using the training algorithm proposed by 

(Witczak et al., 2005) the final structure of the 

GMDHNN is presented in Fig. 3 

 

 
 

Fig. 3 Final structure of )(gF ⋅=  

 
Forward and backward tests are applied to the last 

neuron using (9) and (10), respectively. In this case 

there are two uncertain parameters (θ1 and θ2), each 
one associated to a one of the last neuron inputs. 

 
5.1 Fault scenario f17 

 
The first fault scenario considered consists of an 
unexpected pressure drop across the valve. Using the 

forward test, the fault is detected at sample k=38 (Fig. 

4) since at this time the measured output leaves the 

prediction interval provided by the GMDHNN. On 

the other hand, in Fig. 5 and 6 the result of the 

backward test is presented. In this case, the fault is 

detected at the same sample k=38 (Fig. 6), since when 

considering the corresponding measured output, the 

set of parameters consistent with this measurement 

(in solid line) do not intersect with the feasible 

parameter set obtained in the training phase (vertices 
shown with crosses) (Fig. 5). The set of parameters 

consistent with output envelopes (in dotted line) also 

do not contain the parameters consistent with the 

measurements what explain why measurements go 

out the envelope. In Fig. 5, the result of the backward 

test is presented when sample k=37 is considered. In 

this case, set of parameters consistent with 

measurements intersect with the feasible parameter 

set determined in the training phase, so the fault is not 

detected. The set of parameters consistent with 

envelope intersects with the feasible parameter set 

what explains why at that time the envelope is not 

violated.  

 
 F (Detrended flow) in t/h 

 
Fig. 4 Forward detection test for fault f17 
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Fig. 5 Backward detection test for fault f17 

using data at time k=37 
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Fig. 6 Backward detection test for fault f17  

using data at time k=38 

 

5.2 Fault scenario f19 
 

The second fault scenario considered consists of a 
flow rate sensor fault. In Fig. 7, the fault detection 

result is presented when the forward test is used. In 

this case fault is detected at time k=32. On the other 

hand, Fig. 8 presents the fault detection result when 

the backward test is applied. In this case using a 

measurement at time k=28 the fault is detected. This 

can be seen in this figure since the set of parameters 

consistent with measurement do not intersect with the 

feasible parameter set described by its vertices 

represented using crosses. However, the set of 



parameters consistent with envelope intersect with 

this set being this reason why the fault is not detected 

using the forward test. 
F (detrented flow) in t/h 

 
Fig. 7 Forward detection test for fault f19 
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Fig. 8 Backward detection test for fault f19 

using data at time k=28 
 

 

6. CONCLUSIONS 

 

In this paper, a GMDHNN based approach to passive 

robust fault detection is presented using a constraints 

satisfaction backward test. In the passive robustness 

FDI literature, the forward fault detection test based 
on propagating the parameter uncertainty to the 

residual or predicted output has been the 

predominant. Here, a backward fault detection test 

based on checking if there is a value inside the 

uncertainty model that can explain the measured 

output is introduced. The backward test has been 

implemented using constraints satisfaction tools. The 

usefulness of this test has been shown when 

compared to the classical forward test in several real 

fault scenarios proposed in the DAMADICS FDI 

benchmark.  
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