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Abstract: In this paper the concept of multiple models and concept of switching
controllers is used. The analog part of the system is described by finite set of
continuous-time models with input delays. The continuous-time models include
unmodeled dynamics in the form of affine matrix family. Using suitable transformation
the models with input delay is converted in the delay free models. Then for multiple
models, for fixed subsystem, using LMI tool, the robust LQ controller with prescribed
degree of stability is derived.. The switching rule, between robust LQ controllers, is
based on the selection of the best performance of the closed loop subsystems. Finaly is
proved that original hybrid system is stable. Copyright © 2005 IFAC
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1. INTRODUCTION

Hybrid systems are digital rea-time systems which
are embeded in analog envirouments. Analog part of
the hybrid system is described with differential
equations (Goodwin et a., 2001) and discrete part of
the hybrid systems is a event driven dynamics which
can be described using concept from discrete event
systems. (Cassandras and Lafortune, 1999).

From the clasical control theory point of view hybrid
systems can be considered as a switching control
between analog feedback loops (Liberzon, 2003;
Savkin and Evans, 2002).

Recently, the new approach for adaptive control is
introduced (Narendra and Xiang , 2000). In the case
of large parameters errors the clasic adaptive control
results in a sow convergence with large transient
errors. To overcome such problems the concept of
multiple models is proposed. Similar approach is
taken, aso, in (Wang et a., 1999) where mapping of
hybrid state to hybrid control is based on system
performance.

In this paper we will adapt the multi model approach
for control of systems with input delay. Time delay is
a difficult element in process control systems
(Shinskey, 1988). Mathematical formalism for
description of time-delay systems belongs to the class
of functional differential equations which are infinite
dimensional. The excellent overview of some recent
results for control of time-delay system is given in
(Richard, 2003). Some new results for stability of
time delay systems are presentid in ( Gu et al., 2003).
Design of feedback control law for time-delay
systems, based on dynamic programming, is
presented in (Y anushevsky, 1978).

In this paper we will use predictor-like techniques for
systems with input delay. Such techniques is
considered in (Kwon and Pearson, 1980; Arstein
1982). Using suitable transformation the original
problem can be described in the form of delay free
system.

For description of input delay system we will use
multiple model concept. Parts of the input signal
have different delays. In the model, also, unmodeled
dynamics, in the form of affine matrix family, is



present. Such kind of uncertainty in the context of
limited data rate in control systems with networks
(Filipovic, 2004) is considered. In this paper the
robust hybrid LQ controller with prescribed degree of
stability, for systems with input delay, using LMI
tool, is proposed. It is formally proved that such
hybrid closed-loop system is stable.

2. SYSTEM DESCRIPTION BY MULTIPLE
MODELS

We will assume that the process model is a member
of admissible process models

F = pE.JD F, (1)
Where P is matrix index set which represents the

range of parametric uncertainty so that for each fixed
pUP the subfamily F, accaunts for unmodeled

dynamics. Usually P is compact subset of finite-
dimensional normed vector space (Hespanaha et al.,
2001).

The process with input delay will be described in the
next form
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where xOR", uOR™ and Ap(q), and B, ae
nxn and nxm matrices respectively. The
h(i =12..r) is the input delay. The dimensions of
vectors u®)(t)i =1,2....r) correspond to dimensions
of matrices B (i =12,..r).

Relation (2) describes the continuous part of the
system. The event driven part can be described in the
next form

p*(t)=#.(p(t) olt)) 3

where plt) is a discrete event variable, oft) is a
discrete input and ¢1(EI)] is a function which
describes behaviour of p(t). It is important to note
that

p*(t)= plta) » pt)= Pltn) . ta <thn @)

Specific form of switching sequence will be
described in the next part of the paper.

3. THE SWITCHING CONTROLLERS

For complex processes the regulation problem can be
solve by family of controllers (Hespanaha et al.,
2001)

{cy:q0Df (5)

where D isindex set. It is supposed that the family
is sufficiently rich so that every admissible proces
model can be stabilized by controller C, for some
inde>i( gD . In this paper will be considered the
C

F =D (6)

Now will formulate transformetion, for system (2),
which put the system (2) in the finite dimensional
form. It means that transformed system will be
described by ordinary differential equation. That will
be described in the next lemma

Lemma 1. System (2), by next transformation
t
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Proof: Owing the space is omited.
Remark 1: For r =1 and hy =0 transformation is
proposed in (Kwon and Pearson, 1980). This

approach is known as a predictor-like techniques.

We naw will introduce the optimal LQ controller
with the prescribed degree of stability a for fixed p

and

|
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In that case relation (8) has the form
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The index of performance is (Anderson and Moore,
1969)
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where Q and R are positive definite matrices. The
optimal controller is

T
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whereby matrix P, is a solution of next algebraic
Riccati eqution
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It is well known fact that for LQ controller (11)-(13)
the Lyapunov function has the form (Polyak and
Scherbakov, 2002)

V(x)=y" t)Pylt) (14)

In the presence of unmodeled dynamics the
transformed closed-loop system has the next form

y(t) Ze o 'B ult)  (@15)
T
)= ‘{Ze 0 'B] P, y() (16)
p=12.,s , hy=0

The next goa is to finde matrix P, without the help

of Riccati equation (13). Instead, we will use the LMI
tool. Such approach can reduces a very wide variety
of problems in control theory to a few standard
convex optimization problems. The result will be
formulated in the form of theorem.

Now we will, for fixed p, formulate theorem.

Theorem 1. Let us suppose that the closed-loop
system (15, (16) is setisfied

1° For fixed p-th subsystem, couple

;
i=0
is controlable
2° Matrices Q and R are positive definite
3 Y, (yp) is the solution of the next LMI
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Proof: Let usintroduce next transformation
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Now from relations (15) and (16) we have
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Using relation (14) one can conclude that V < 0 will
be satisfied if

Al (a)P, +P,A (q)<0 (19)
From (18) and (19) we have
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(20)



Let us multiplay last inequality from left and right
side with the matrix Y, =P;*, for Y, >0, and

introduce parameter y, >0. We have
(Ap(q)+ al )TYp +Yp(Ap(q)+ al )_

;
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Now we will multiplay last inequality from left and
right side with the matrix Y,*. Follows
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Using result from (Andreev, 1976, p.141) one can get
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If we substract relation (23) from relation (22) we
have
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p Yp

Using result from (Dullerud and Paganini, 2000,
p.140) from last relation follows
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From (23) and (25) one can get
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Theinequality (21) can be rewritten in the next form
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Using result from (Dullerud and Paganini, 2000,
p.46) we can, from (27), get LMI formulated in
theorem. Using LMI from theorem one can find

solution Yp(yp). After that we can construct
function

( )_ 1,7
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From last relation we can find

Y, =argmin ¢(yp) (29)

Yo

Now feedback |aw has the form

:—R‘l{Ze "B, ]T( L e

and upper bound for index of performanceis

<gl;) (31)

Theoremisproved =

4. ROBUST STABILITY OF HYBRID
CONTROL SYSTEMS

Using relation (15) and fact that h, =0 , system can
be described in the form

y(t) = Apoy(t)+ Bpou(t)+ A(y(t), p(t),u(t), q)
A(y(t), p(t)u(t).a)=

qu,Apy Ze o 'B

(33)

where q,0Q OR and p=12..,s.

A) The analog feedback

(t)R[z B] AR

p=12..,s
whereby Yp(y;) is the solution of LMI which is
defined in Theorem 1.



B) Thediscrete feedback is

p=minlp(y,) . p=12...5

Vo = argmin¢(yp)
Yp

¢(Vp) = Vl_nlyTYp (Vp )yT (t) (35)

Now we will formulate theorem in which will be
proved robust stability of the original system (2).

Theorem 2. Let us suppose that for dynamic hybrid
system (32)-(35) isvalid
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Then the completely controllable system (2) is
stabilized by the control law
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is a feedback gain matrix which stabilizes the

completely contrllable ordinary system
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Proof: From relation (32) for any TD[t,t+]] we
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From last relation we have in (37)
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Now from (37) and condition 1° of theorem follows
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Using last inequality and condition 2° of theorem we
have
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Transformation relation has the compact form
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Remark 2: In this remark we will comment
assumptions 1° and 2° of Theorem2. It is well known
fact that optimally designed controllers via Riccati
equations aways guarantee stability. Such fact
suggests that, if system performance indices are
approprietelly selected, optimality of performance or
boundedness of performance, will provide stability
and robusness. Such idea is used in (Wang et a.,
1999).In this paper we prove that index of
performanse for every closed-loop subsystem has a
finite upper bound. Using that fact we generalize
concept of performance dominant condition from
(Wang et al., 1999). Generalization has the formasin
first two conditions in Theorem?2.

6. CONCLUSION

In this paper the problem of design of hybrid LQ
contrroller for systems with input time-delay is
considered. The problem is solved using suitable
transformation which convert original time-delay
systems in the form of delay free systems. All
ressults of the theorems are, however, for original
systems. In the paper the concept of multiple models
and switching controllers are used. Switching
strategy is determined using index of performance.
For hybrid systems the asymptotic sability in the
sense of oo — normis proved.
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