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Abstract: In this paper the concept of multiple models and concept of switching 
controllers is used. The analog part of the system is described by finite set of 
continuous-time models with input delays. The continuous-time models include 
unmodeled dynamics in the form of affine matrix family. Using suitable transformation 
the models with input delay is converted in the delay free models. Then for multiple 
models, for fixed subsystem, using LMI tool, the robust LQ controller with prescribed 
degree of stability is derived.. The switching rule, between robust LQ controllers, is 
based on the selection of the best performance of the closed loop subsystems. Finally is 
proved that original hybrid system is stable. Copyright  2005 IFAC 
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1. INTRODUCTION 
 
Hybrid systems are digital real-time systems which 
are embeded in analog envirouments. Analog part of 
the hybrid system is described with differential 
equations (Goodwin et al., 2001) and discrete part of 
the hybrid systems is a event driven dynamics which 
can be described using concept from discrete event 
systems. (Cassandras and Lafortune, 1999). 
 
From the clasical control theory point of view hybrid 
systems can be considered as a switching control 
between analog feedback loops (Liberzon, 2003; 
Savkin and Evans, 2002). 
 
Recently, the new approach for adaptive control is 
introduced (Narendra and Xiang , 2000). In the case 
of large parameters errors the clasic adaptive control 
results in a slow convergence with large transient 
errors. To overcome such problems the concept of 
multiple models is proposed. Similar approach is 
taken, also, in (Wang et al., 1999) where mapping of 
hybrid state to hybrid control is based on system 
performance.  
 

In this paper we will adapt the multi model approach 
for control of systems with input delay. Time delay is 
a difficult element in process control systems 
(Shinskey, 1988). Mathematical formalism for 
description of time-delay systems belongs to the class 
of functional differential equations which are infinite 
dimensional. The excellent overview of some recent 
results for control of time-delay system is given in 
(Richard, 2003). Some new results for stability of 
time delay systems are presentid in ( Gu et al., 2003). 
Design of feedback control law for time-delay 
systems, based on dynamic programming, is 
presented in (Yanushevsky, 1978). 
 
In this paper we will use predictor-like techniques for 
systems with input delay. Such techniques is 
considered in (Kwon and Pearson, 1980; Arstein 
1982). Using suitable transformation the original 
problem can be described in the form of delay free 
system. 
 
For description of input delay system we will use 
multiple model concept. Parts of the input signal 
have different delays. In the model, also, unmodeled 
dynamics, in the form of affine matrix family, is 



 

 

present. Such kind of uncertainty in the context of 
limited data  rate in control systems with networks 
(Filipovic, 2004) is considered. In this paper the 
robust hybrid LQ controller with prescribed degree of 
stability, for systems with input delay, using LMI 
tool, is proposed. It is formally proved that such 
hybrid closed-loop system is stable. 
   
 

2. SYSTEM DESCRIPTION BY MULTIPLE 
MODELS 

  
We will assume that the process model is a member 
of admissible process models 
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Where P   is matrix index set which represents the 
range of parametric uncertainty so that for each fixed  

P∈p  the subfamily pF  accaunts for unmodeled 

dynamics. Usually P  is compact subset of finite-
dimensional normed vector space (Hespanaha et al., 
2001). 
 
The process with input delay will be described in the 
next form 
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where  nRx ∈ , mRu ∈  and ( )qAp , and piB  are 
nxn  and nxm  matrices respectively. The 

( )rihi ,..,2,1=  is the input delay. The dimensions of 

vectors ( )( )( )ritu i ,..,2,1=  correspond to dimensions 

of matrices ( ) ( )riB i
pi ,..,2,11 = . 

 
Relation (2) describes the continuous part of the 
system. The event driven part can be described in the 
next form 
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where ( )tp  is a discrete event variable, ( )tσ  is a 
discrete input and ( )⋅⋅,1ϕ  is a function which 
describes behaviour of ( )tp . It is important to note 
that 
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Specific form of switching sequence will be 
described in the next part of the paper.  
 
 

3.  THE SWITCHING CONTROLLERS 
 
For complex processes the regulation problem can be 
solve by family of controllers (Hespanaha et al., 
2001) 
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where D  is index set. It is supposed that the family 
is sufficiently rich so that every admissible proces 
model can be stabilized by controller qC  for some 

index  D∈q . In this paper will be considered the 
case 
  
 DF =  (6) 
 
Now will formulate transformation, for system (2), 
which put the system (2) in the finite dimensional 
form. It means that transformed system will be 
described by ordinary differential equation. That will 
be described in the next lemma. 
 
Lemma 1. System (2), by next transformation  
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Proof: Owing the space is omited. 
  
Remark 1: For  1=r  and 00 =h  transformation is 
proposed in (Kwon and Pearson, 1980). This 
approach is known as a predictor-like techniques. 
 
We naw will introduce the optimal LQ controller 
with the prescribed degree of stability α  for fixed p  
and 
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In that case relation (8) has the form 
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The index of performance is (Anderson and Moore, 
1969) 
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where Q  and R  are positive definite matrices. The 
optimal controller is  
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whereby matrix pP  is a solution of next algebraic 
Riccati eqution 
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It is well known fact that for LQ controller (11)-(13) 
the Lyapunov function  has the form (Polyak and 
Scherbakov, 2002) 
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In the presence of unmodeled dynamics the 
transformed closed-loop system has the next form 
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The next goal is to finde matrix pP  without the help 
of Riccati equation (13). Instead, we will use the LMI 
tool. Such approach can reduces a very wide variety 
of problems in control theory to a few standard 
convex optimization problems. The result will be 
formulated in the form of theorem.  
 
Now we will, for fixed p , formulate theorem. 
 
Theorem 1. Let us suppose that the closed-loop 
system (15, (16) is satisfied 
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 is controlable 
 
2° Matrices Q and R are positive definite 
 
3° ( )ppY γ  is the solution of the next LMI 
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4° For 0>∀ pγ  
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 Then for feedback law 
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upper bound for index of performance is  
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for   lRQq ⊂∈∀ 1    and fixed p  ! 
 
Proof: Let us introduce next transformation 
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Now from relations (15) and (16) we have 
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Using relation (14) one can conclude that 0<V& will 
be satisfied if 
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From (18) and (19) we have 
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Let us multiplay last inequality from left and right 
side with the matrix 1−= pp PY , for 0>pY , and 

introduce parameter 0>pγ . We have 
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Now we will multiplay last inequality from left and 
right side with the matrix 1−

pY . Follows 
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Using result from (Andreev, 1976, p.141) one can get 
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If we substract relation (23) from relation (22) we 
have 
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Using result from (Dullerud and Paganini, 2000, 
p.140) from last relation follows 
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From (23) and (25) one can get 
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The inequality (21) can be rewritten in the next form 
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Using result from (Dullerud and Paganini, 2000, 
p.46) we can, from (27), get LMI formulated in 
theorem. Using LMI from theorem one can find 
solution  ( )ppY γ . After that we can construct 
function 
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Now  feedback law has the form 
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and upper bound for index of performance is 
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Theorem is proved     ! 
 
 

4. ROBUST STABILITY OF  HYBRID 
CONTROL SYSTEMS 

 
Using relation (15) and fact that 00 =h  , system can  
be described in the form 
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B)   The discrete feedback is 
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Now we will formulate theorem in which will be 
proved robust stability of the original system (2). 
 
Theorem 2. Let us suppose that for dynamic hybrid 
system (32)-(35) is valid 
 
1°
 

( )( ) ( )

( ) ck

tyYBeRBA

pp

pp

Tr

i
pi

hA
pp

ip

+≤

≤









−+

−

=

−− ∑
*

1

1*

0

1
00 ˆ0

γϕ

γα
 

( )( ) ( ) 1ˆ1*

0

1
00

0 ≥









−+

−

=

−− ∑ tyYBeRBA pp

Tr

i
pi

hA
pp

ip γα

 
 01 >pk   , 0>c   , sp ,..,2,1=  
 
2° ( ) ( )*

2ˆ ppkty γϕ≤  

 02 >pk   ,  ( ) 1ˆ ≥ty   ,  sp ,..,2,1=  
 
3° [ )∞∈∆ ,0r   
 where 
 ( ) ( ) ( ) qtutptyr

Qq
,ˆ,,ˆsup

1

∆=
∈

∆  

 
Then the completely controllable system (2) is 
stabilized by the control law  
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is a feedback gain matrix which stabilizes the 
completely contrllable ordinary system 
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Proof: From relation (32) for any [ ]1, +∈ ttτ  we 
have (36) 
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From last relation we have in (37) 
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Let us introduce next sets 
 

[ ]

( )( ) ( )







≤







⋅

























−+





+∈=Ω

−

=

−− ∑

1ˆ

:1,

1*

0

1
00

1

0

tyY

BeRBIA

tt

pp

Tr

i
pi

hA
pp

ip

γ

α

τ

(38) 

 
 [ ] 12 1, Ω−+∈=Ω ttτ  (39)  
 
Now from (37) and condition 1° of theorem follows  
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Since the right-hand side is independent of  t  we 
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Transformation relation has the compact form 
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From last relation we have 
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Using relation (52) and (54) one can conclude 
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Theorem is proved      ! 
 
Remark 2: In this remark we will comment 
assumptions 1° and 2° of Theorem2. It is well known 
fact that optimally designed controllers via Riccati 
equations always guarantee stability. Such fact 
suggests that, if system performance indices are 
approprietelly selected, optimality of performance or 
boundedness of performance, will provide stability 
and robusness. Such idea is used in (Wang et al., 
1999).In this paper we prove that index of 
performanse for every closed-loop subsystem has a 
finite upper bound. Using that fact we generalize 
concept of performance dominant condition from 
(Wang et al., 1999). Generalization has the form as in 
first two conditions in Theorem2.  
 
 

6. CONCLUSION 
 

In this paper the problem of design of hybrid LQ 
contrroller for systems with input time-delay is 
considered. The problem is solved using suitable 
transformation which convert original time-delay 
systems in the form of delay free systems. All 
ressults of the theorems are, however, for original 
systems. In the paper the concept of multiple models 
and switching controllers are used. Switching 
strategy is determined using index of performance. 
For hybrid systems the asymptotic sability in the  
sense of −∞  norm is proved. 
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