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Abstract: Optimal productivity o5. cerevisiaeultures can be achieved through the regu-
lation of the ethanol concentration at a low value. In thigdgf a robust control strategy
is developed, which requires very little knowledge abow finocess, i.e. only one yield
coefficient and the on-line measurement of the ethanol cdrat@n. A Youla parametriza-
tion is selected in order to reject asymptotically the exguial growth disturbance and
to robustify the control scheme against unstructured uaicgies and measurement noise.
The performance of the control scheme is illustrated witl mn-line experimental data.
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1. INTRODUCTION line measurements (dissolved oxygen, oxygen uptake
rate, dissolved carbon dioxide and carbon dioxide pro-

Saccharomyces cerevisiaee among the most popu-  duction rate, .. .).
lar industrial microorganisms for their robustness and
ability to utilize cheap materials for growth and pro-
duction. They have been used since the very early day
of microbial fermentation history for brewing wine
and beer. Recently, with achievement of modern gene
technology,S. cerevisiaecan be used as host organ-
isms for production of recombinant proteins (produc-
tion of insulin, vaccines, ...).

This study develops a strategy for robust control of
Jhe ethanol concentration assuming the knowledge of
only one stoichiometric coefficient and only one on-
line measurement: the ethanol concentration. Follow-
ing the line of thought of Valentinottet al. (2003),
two simple linear models are derived from the global
non linear model of Sonnleitner andalpeli (1986).
The first model depicts the relationship between the
Due to the economic importance of these products, substrate feed and the ethanol production, while the
there is an obvious motivation to maximize the bio- second model describes the exponential cell growth.
mass productivity of the process. One method com- Therefore as far as the regulation of the ethanol con-
monly used to ensure optimal operating conditions centration is concerned, the exponential cell growth
consists in regulating the ethanol concentration at acan be considered as a disturbance to be rejected.
low value. Several methods have been proposed to this n .

end (see, e.g. Cheet al, 1995; Pomerleau, 1990). Then, an or_|g|nal control strategy V\{hlch uses a RST
However, they often require an extensive knowledge controller with a Youla parametrization is developed.

of the reaction scheme stoichiometry and several on—TE_e \;pula parameter is chosen in order to reach two
objectives:

e An asymptotic rejection of the exponential growth
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growth rate can evolve during the culture, an saturates is defined &it, for whichrg = romax/ks.
adaptive version of the robust control algorithm According to the glucose concentration value, two
is also considered. different operating regimes can be distinguished. At
e An improvement of the robustness against un- low glucose concentration§(< Ggit), the system is
structured uncertainties and a reduction of mea- said in respirative regime. The glucose consumption
surement noise on the control signal (Rodriguez, rate is smaller than the maximal respiratory capacity
2003). (re < romax’ks) and the rate of the oxidative glucose
metabolism is determined by the glucose consump-
tion rate (2). Whereas, at high glucose concentrations
(G > Ggrit), the system is said in respiro-fermentative
regime. The glucose consumption rate is larger than
the maximal respiratory capacityd > romax/ks) and
the respiratory capacity of the cells determines the rate
of the oxidative glucose metabolism (2). If the glucose
flux is higher than the maximal respiratory capacity,
the excess of glucose will be metabolized by the fer-
mentative metabolism (3). If the glucose flux does
not take up the whole respiratory capacity of the cell,
ethanol may be oxidized in parallel with glucose and
the rate of the oxidative ethanol metabolism depends
on the excess of respiratory capacity and the available
ethanol (4). Under oxygen starvation conditions, the
fermentative metabolic pathway always predominates.

A particular structure of the Youla parameter is chosen
in order to take account of these two objectives with

two stable transfer functions. The design of the first

one is based on the internal model principle whereas
the second one results from a convex optimisation
problem expressing the frequency and temporal con-
straints of the second objective.

2. MODELING OF YEAST FED-BATCH
CULTURES
2.1 Nonlinear dynamic model
The metabolism of yeast depends strongly on the

culture conditions. During the aerobic growth, glucose
and ethanol can be used as carbon sources accordingased on the reaction scheme (1), the following

to the following reaction scheme: macroscopic mass balances can be derived:
Glucose oxidation : G- ksO LEN kiX+k7P (1a) d ((\j/tX) = (Kerp+kora+karz) VX (5a)
Glucose fermentation : G ko X +ksE+kgP (1b) vV
e . VG (i 4r)VX+FnGn  (5b)
Ethanol oxidation : E-ksO = kaX +koP (1c) dt
. d(VE)
where X, G, E, O, P are, respectively, the concen- at = (karz—r3)VX (5¢)
tration in the culture medium of biomass, glucose, gy
ethanol, dissolved oxygen and dissolved carbon diox-  §¢ = Fn (5d)

ide, andk; are the pseudo-stoichiometric coefficients. where ., is the inlet feed rateV is the culture

The reaction rates associated with these reactions aremedium volume an@;, is the glucose concentration

in the feed.
r1{=min (r& rOkmax> (2)
° 2.2 Optimal operating conditions
r» = max <07 re— roma") ()
ks For economic reasons, there are strong motivations

. r —ksr to maximize the amount of biomass produced with
ra= max<0, min (rE, M)) (4) :

ke minimum operating time. Therefore the optimization
problem consists in establishing the feeding strategy

The kinetic terms associated with the glucose con- that maximizes the biomass productivity. It is shown
sumptionrg, the respiratory capacityomax and the (see,. e.g. Valentinottet al., 2094) that the opt.|mal
potential ethanol oxidative rate are: solution corresponds to a feeding profig(t) which
fills exactly the bottleneck. Thus the optimal operating

rg= UGL7 F Omax= HOL7 re = Mg point is situated at the boundary between the respiro-
G+Ke O+Ko E+Ke fermentative and respirative operating regimes. In this
wherepgs, lo and e are the maximal values of spe- case the glucose concentration is maintained at a con-
cific growth ratesKg, Ko andKg are the saturation stant valueGgi such that the glucose consumption
constants of the corresponding substrate. raterg is equal to the maximal glucose oxidative rate
romax’ks. Only the glucose oxidation reaction takes
place and there is no ethanol production or consump-
tion. The total amount of ethanWlE is kept constant.

This kinetic model is based on the bottleneck hypoth-
esis developed by Sonnleitner andpgpeli (1986). It
assumes a limited oxidation capacity of yeast, leading
to the formation of ethanol under conditions of oxy- Therefore, in order to always operate the system
gen limitation and/or high glucose concentration. The around the optimal operating point, the control strat-
glucose concentration at which the oxidative capacity egy must be able to maintain the produd constant.



It requires an accurate measurement of both volumeRespirative moddfs # 0;r, = 0)

and ethanol concentration. As it is difficult to take This modelis valid when the excess oxidative capacity
into account all liquid additions (evaporation, sam- is small. Therefore, if the ethanol concentration is
pling, base addition, ...), E-control is more usual than sufficient (i.e.re > (romax— ksrc)/ke), the glucose
VE-control. Although the E-control is a suboptimal flux rg is heamomax/ks and (7) still holds. In this case,
strategy, it comes quite close to the optimal one asthe ethanol oxidative rate remains small and can be
the reference valuEe s for the ethanol concentration written as follows:

approaches zero. r— Mo —ksr1 (12)
ke
2.3 Simplified linear models Considering (5c¢) and (6) with, = 0 and the average
volumeV, the ethanol dynamics is given by:
As the optimal operating point is situated at the bound- dE ks Gi
ary between the respiro-fermentative and respirative = (Fin —d) (13)

operating regimes, a simple tailor-made model is de- ) dt kﬁ_ v ) )
rived for each regime whe® tends toGeit. The where the disturbanagis the same as in the respiro-

modeling procedure is directly inspired from the work férmentative model.

of Valentinotti et al. (2003). For both models, it is  Finally, for both operating regimes, disturbance and
assumed that the total amount of glucas® is at  ethanol dynamics can be expressed by the same dis-

quasi-steady state: crete transfer functions:
d(vVG -1
(dt )=—(r1+rz)VX+ FnGin=0  (6) E(k) = % (Fin(k) —d(K))
This assumption is justified since a small variation B(g 1)
in the substrate feed rafg, will result in an almost = A(qD) (Fin(k) —d(K)) (14)
instantaneous change in the amount of subsWae K clqY)
in the bioreactor. d(k) 45k ==9 V5K (15)

Respiro-fermentative modgh # 0; r3 = 0) Lova® P
espiro-fermentative mo ;T3 = L — .
This model is valid wherk is regulated aEe near with y = exp(itTs) andd(k) the unit pulse.
0. In this caseG is slightly larger tharGqiy and only ~ This simplified model can be associated to the follow-
a small production of ethanol is needed to counteracting modeling uncertainties:

the dilution effect. This way, reaction (1a) is saturated
(r1 = po/ks if oxygen is not limiting) and the cell

growth ratep can be assimilated to a constant para-

o Kg variations according to the operating regime
(respiro-fermentative regimeKe = TskaGin/V;
respirative regimeKg = Ts%Gin/V, whereTg is

meter: e
the sampling time),
M=Kkirs +koro+ksrz ~kiry = klk@ ESTRN ) e neglected (‘high frequency’) glucose dynamics,
' ' _ 5 e yvariations. In facty is the only kinetic para-
Together with (7), Equation (5a) gives: meter of the simplified model, which & priori
VX =VoXo exp(i(t — o)) ®) unknown.
Withrz =0, (5¢) and (6) lead to the ethanol production
dynamics: 3. CONTROL STRATEGY
d(VE)
gt~ *4Gin (Fin—d) (9  The controller used in this work is a RST controller

whered = 22 VX is considered as an input distur- with Youla parametnzayon (see, e.g. Mac_lejowskl,
ksGin ~ ° 1989). The corresponding block diagram is shown
bance corresponding to the substrate flux needed for. ~ _. h | - f the initial
biomass growth in Figure 1. The Youla parametrlzatl(_)n of t g_lr_ntla
’ controller R oS 07 o leads to the following stabilizing
During a fed-batch culture, the volume increases with polynomials:

time fromVg to Vs. Thus, considering a constant aver- - _ To—AoQ2 R =Ro— BQ1, S=So0+AQs

age volume/ = (Mo + Vi) /2, the ethanol dynamics in (16)
(9) can be rewritten as:
dE  kiGip whereQ 1 andQ are stable transfer functions.
— = Fn—d 10 . .
dt \% (Fin—d) (10) The closed loop transfer function can be written as
follows:
With Equation (8), the disturbancecorresponding to
the exponential substrate oxidation is given by: y= B(70—AoQ2) W4 B(Ro—BQu) d (17)

q K O 1 ARo+BSo ARo+BSo
(t) = Ka exp(i(t —to)) (11) Two remarks can be done&), modifies only the
whereKy = 0. tracking behaviour, and, if the model is exact, the




Fig. 1. Closed-loop diagram of fed-batch yeast cul-
ture process controlled by a RST controller with
Youla parametrizationu= F,, y = E andw =
Eref)-

characteristic equatioApA: is not modified by the
parametrization:

AoAc = AR +BS = ARp+BSo (18)

Q2 is set to zero since tracking is ensured by the
initial controller design. Disturbance rejection can be
achieved by tuning 1, for which a particular struc-
ture is chosen:

Q1= Qu1+DQa>

where Q11 and Q42 are stable transfer functions:

(19)

3.2 Q12 design

Q.12 is designed to satisfy two kinds of specifications:
frequency and temporal specifications (Rodriguez,
2003).

3.2.1. Frequency specifications With regard to the
simplified model, the uncertainties on the gKinand

the neglected glucose dynamics can be represented
by a multiplicative direct uncertainty. Assuming the
system and controller structured as in Figure 1,Rhe
representation for this kind of uncertainty is:

B(So+AQu1) BAD
AgAc AcAc

Considering the small gain theorem (Maciejowski,
1989), the robustification against unstructured uncer-
tainties is achieved by minimizing ath, norm:
; -1 -1

o Min [P W@
whereW is a weighting transfer function arifH, is
the space of all proper and stable transfer functions.
The Youla parametrization allows linear dependency
betweenP and the Youla paramete@;, as shown
in Equation (22). So, the specifications defined by
Equation (23) are convex iQ1» (see e.g. Boyd and
Barrat, 1991).

P= 22)

Q12

(23)

Q11 is designed to ensure an asymptotic rejection of 3.2.2. Temporal specifications A temporal specifi-

disturbancel, while Q 12 is designed to maximize the
robustness against modeling uncertainties.

3.1 Q11 design

The Q11 design follows the work of Valentinottt
al. (2003) about the adaptive rejection of unstable

cation on the control signal response to a measurement
noise is considered. Léd,, be the transfer function
between the noisk and the control signal:

_A(Sot+AQu) AD
AoAc AoAc

and denote b(t) the response dfly, to a specific
inputb(t) like a white noise sequence. Temporal spec-
ifications consist of a template inside whisf) must

Hub =

Qiz  (24)

disturbances. Considering Equations (15) and (17), theremain constrained. This template can be specified by

disturbance effect on the output is defined as:

AcAc D
According to the internal model principle (Francis and

Wonham, 1976), the unstable poles &f must be
present in theR. denominator in order to ensure the

& = (20)

the minimal and maximal amplitudesands. So, the
set of allQ1, parameters that satisfy this constraint is:

Cenv: {Q.12 | qDenv( le) < O} (25)
with Pen(Q12) = max<|;n>%x(s(t) —3(t),s(t) — s(t)))

The transfer function (24) being linearly parametrized

disturbance rejection. Since the characteristic equationpy the Youla parameteq 1», the temporal specifi-
is stable by construction, the disturbance effect hascations are also convex iR 1> (see e.g. Boyd and

only one unstable pole, the pojeof the D polyno-
mial. Thereforegy converges asymptotically to zero
if the polynomialD is a factor of theR polynomial.
With the particular structure (19) af; where Q12

is already convoluted witd, Q11 can be designed
independently ofQ 12 by solving the following Dio-
phantine equation:

Ro—BQi1=MD

whereM is an arbitrary polynomial i 2.

(21)

Barrat, 1991).

In conclusion, the design of) 12 consists of aH
minimisation problem (23) under constraints imposed

by the temporal specifications (25):
; -1 -1

oM [PEHWE ]
PenQ12)<0

(26)

This is a convex optimisation problem leading to
a Q12 parameter varying in an infinite dimensional



space. To the authors’ knowledge, there is no solution4.2 Controller design

to this optimization problem, and a sub-optimal so-

lution can be obtained by considering a finite dimen- When E is regulated to the setpoiries = 0.7 g/l

tional sub-space generated by an orthonormal basehe system operates in respiro-fermentative regime.

of stable transfer functions. This way, th&, norm Thus, the only nonoperational parameter required to

minimisation and the temporal constraints can be ap-compute the controller is the stoichiometric coefficient

proximated by a minimisation under linear inequality k4. The value proposed by Sonnleitner andpgeli

constraints (Rodriguez, 2003). (1986) is chosenk, = 0.48 [g of E/g of G]. With a
sampling periodls = 0.1 h, a feed glucose concen-
tration Gj, = 350 g/l and an average volurive= 9 |,

3.3 Qa1 adaptation the gain of the production/consumption process (14)
is Ke = 1.87. The initial controller is designed by

Equation (21) depends on the unstable pol& the pole placement withApA: = 1 —0.95q 1. The re-

D polynomial. However, this pole & priori unknown  sulting proportional controller is given bRo = 1,

since the critical growth ratg can vary from a yeast  §, = 0.027 and 7y = AoAc(1)/B(1) = 0.027. The

strain to another or also during the culture. Therefore, minimal degree solution of the Diophantine equation

Q11 has to be adapted on-line in order to minimize the (21) corresponds tv = 1 andQy; is a scalar equal

disturbance effect. With (21) and (19), the disturbance to y/Kg. Asy = exp(iTs), an initial value ofQ 11 can

effect (20) can be rewritten as: be computed from an initial estimation of the critical

M—BQ12\ /Ro—BQu1 growth ratep.
& = g (27) _ . . .
M AoAc Ke varies according to the operating regime and
whereds(K) = B(q~2)d(K) = A(q~2)y(k) — B(q~2)u(k) the neglected glucose dynamics can be modeled
is a filtered expression of disturbande Both terms Py @ direct multiplicative uncertainty (22). The fre-

into brackets are parametrized independentlygy ~ duency domain of glucose dynamics being situated in
and Q1. If M is stable, it is enough to minimize on- h|gh frequencies, those frequ_enmes_ are more h_eaV|Iy
line the last term and it can be written as a linear Weighted thanks to the following weighting function:

regression problem: W(g1) = (1-0.5g71)/0.5. Temporal specifications
) ) ®en(Q12) correspond to a template for measurement
%j'lrl‘ l[e1—€2Quul| (28) noise/control transfer (24). With a pseudo-random

noise of zero mean and@b variance, these specifi-

where the signals, ande; are defined as: cations set a limit for the measurement noise effect on

e — Ro de and & — B d the control signal, restricting variations due to noise
1 AoAc B 2 AoAc B within a +0.15 range. The optimization problem (26)
An on-line adaptation of) 11 can be done using stan- ?s solveq bya quadratic minimization algorithm under
dard algorithms (Ljung, 1999). inequality constraints and leads to:

_ —0.3281+0.1460qg 1
Quz(qY) = g

~ 1-1.1225q 1 +0.2408q 2
4. EXPERIMENTAL RESULTS

. Figure 2 shows the Black diagram for three different
4.1 Experimental setup controllers. It is well known that ensuring a modulus

) . . L lower than 6 dB foroq and lower than 3 dB foo,
A new strain of genencally mod|f|e$. cerevisiags provides a good stability robustness. It is therefore
considered in this study. A 20-I stirred tank biore- a5harent that the introduction of the unstable pple
actor (BioLafitte, France) is used for the cell cul- i, % geteriorates the robustness at high frequencies.
ture. Temperature, dissolved oxygen, pH and air flow o, the other hand, the full robustified controller has

rate are controlled by the bioreactor control box. 404 robustness for all frequencies, as well as better
The fed-batch process is started witt8 3 of fresh gain and phase margins.

medium without glucose and the inoculation gives
an initial biomass concentration of 0.7 g/l. The in-

oculum also introduces a small quantity of ethanol.
The feed medium contains 350 g/l of glucose and
its composition (ammonium sources, vitamins, trace
elements, ...) has not already been optimized for the
considered yeast strain.

4.3 Results and discussion

An experimental test is performed with the controller
and the results are shown in Figure 3. After a short la-
tency phase during which a small feed rate is used, the
The ethanol concentration is measured with an ethanolcontroller is started. Figure 3 shows that the control
probe (Frings, Bonn, Germany) immersed in the cul- algorithm is able to bringt to the setpoinE,e; = 0.7

ture medium. A LABVIEW-based bioprocess man- g/l and to subsequently reguldEearound this setpoint
agement and control environment, BioOPT, is used to throughout the first 18 h. During this period, the cell
supervise the process (Valentinattial., 2003). growth is exponential and, after a short transient, the
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fed-batch cultures can be modeled by a simple lin-
ear model describing the main macroscopic processes:
exponential glucose uptake for cell growth and small
ethanol production/consumption according to the op-
erating regime. The first process is considered as a
disturbance to be rejected, and the second one models
the plant to be controlled. This modeling methodology
allows several uncertainties to be associated with the
simplified model, i.e. the gain variation of the ethanol
production/consumption process and the glucose dy-
namics which has been neglected.

A RST controller with Youla parametrization is used
to ensure the asymptotic rejection of unstable distur-
bances, a good robustness against uncertainties and a
noise attenuation on the control signal. Moreover, the
control algorithm includes a disturbance model adap-
tation since the growth rate & priori unknown and
can evolve during the culture. This control strategy is
tested experimentally with a fed-batch culture of a new
genetically modified yeast strain. The results are quite
promising, and show that the controller is able to deal
with metabolic changes such as a substrate limitation
phenomenon.
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