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Abstract: The estimation of the aerobic phase end-point is usually used to improve
the operating capacity in a sequencing batch reactor. In this paper, a software
technique and a configuration of the dissolved oxygen control closed-loop are pro-
posed to achieve the aerobic end-point detection. The proposed software technique
consists of Self-Organizing Map and clustering algorithms.Copyright c©2005 IFAC.
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1. PURPOSE OF THE PAPER

This paper is part of the KNOWATER II project
”Implementation of a Knowledge Based System
for Control of Steelworks Waste Water Treatment
Plant”, which is sponsored by ECSC and their
agreement number is 7210-PR-234. The contrac-
tors are Centro Sviluppo Materiali S.p.A., Corus
RT&D, Betrieb Forschung Institut (BFI) and Uni-
versidad de Oviedo. The main objective of the
KNOWATER II project was the development of
plant supervision techniques for implementation
in wastewater treatment plants.

The present work was focused on the sequencing
batch reactor to treat the wastewater effluents of
the coke plant of Arcelor in Avilés (Spain). An
important task was the development of a software
tool that integrates the data acquisition system
and the Self-Organizing Map (SOM) algorithm
as Artificial Intelligence (AI) technique. Also the
supervision of the biological treatment is carried

out using K-means as clustering algorithm and
Davies-Bouldin index for clustering validation.
The estimation of the current process state is
calculated by means of the SOM networks that
have been validated in function of the topographic
error and the quantization error. Moreover, the
dissolved oxygen control closed-loop was config-
ured to achieve the aerobic end-point detection
using the proposed AI technique. Thus, important
on-line knowledge is obtained.

2. SEQUENCING BATCH REACTOR

The wastewater is treated biologically in a Se-
quencing Batch Reactor (SBR). The closed-loop
of the oxygen control in the SBR is shown as block
diagram in figure 1. The dissolved oxygen concen-
tration is controlled by a PID. Air is pumped into
the reactor and a valve is regulated. The set-point
is between 6 and 5 mgO2/l. Moreover, a recorder
is installed to work as data acquisition interface



Figure 1. Connection between the oxygen control
closed-loop and the end-point detection tech-
nique

between the sensors and the developed end-point
detection tecnique located on a PC station (figure
1). The interface is able to establish a TCP/IP
protocol with the developed software. The dis-
solved oxygen electrode has a temperature sensor
to compensate the measurement deviations, so the
temperature can be measured.

Also the measurements can be stored in a floppy
disk unit of the recorder. This unit is like a data
logger. The data files of the floppy disk make
an initial off-line study of the process possible.
Taking into account this previous study, the PID
controller output of the oxygen closed-loop was
connected and registered as one of the process
variables to train the SOM network.

3. SOM MODEL FORMULATION

Self-Organizing Map (SOM) was used to construct
a model that can be used as a pattern (Kohonen et
al., 1996). The SOM (Kohonen, 2001) consists of
a regular lattice typically defined in a two dimen-
sional space composed of several neurons placed
in the nodes of the lattice. SOM training implies
assigning a set of coordinates in the input data
space (prototype vector) to each neuron. Thus,
each neuron is represented by a prototype vector
and a correspondence is established between the
coordinates of each neuron in the input space
(data set) and their coordinates in the 2D-lattice.

The number of neurons determines the accuracy
and generalization capability of the SOM and it
is determined by equation 1. M is the number of
neurons and N is the number of samples of the
training data.

M = 5
√

N (1)

The next step consists of determining the ratio
between the number of rows n1 and the number
of columns n2 of the 2D grid or output space.
According to equation 2, the ratio between side-
lengths of the map is the square root of the ratio
between the two biggest eigenvalues of the train-
ing data. The highest eigenvalue is e1 and the
second highest is e2.

n1

n2

=

√

e1

e2

(2)

The present study was carried out using the SOM
toolbox version 2.0 (Vesanto et al., 1999) devel-
oped at the HUT (Helsinki University of Tech-
nology). The steps taken to analyze the data are
outlined in (López and Machón, 2004c). Firstly,
the most significant process variables are selected.
An off-line study of the process data were car-
ried out to achieve this selection (López and
Machón, 2004a). These variables are described in
table 1. Secondly, the data were normalized to a
zero mean value and a unitary variance to make
SOM treat them in the same way. After normal-
izing, the SOM network was trained with these
variables using batch training algorithm. Once the
SOM has converged, it stores the most relevant
information about the process in its prototype
vectors. The visualization process allows all this
information to be displayed in several ways: In-
terneuron distance matrix (U-matrix) that shows
in gray or color levels the mean distance of each
unit to its closest neighbors; the component planes
that display the value of a given input variable
throughout the whole data set using gray or color
levels in the 2D lattice; the best clustering struc-
ture that allows the main working zones of the
process to be visualized.

Table 1. Training variables.

Name Description

OXYGEN Dissolved oxygen

concentration (mgO2/litre)
CONTROLLER Output of the PID controller

OUTPUT of the oxygen closed-loop
(0-100)

TEMPERATURE SBR Temperature in the SBR (C)

4. VALIDATION METHOD

According to the properties of the SOM, the
trained neural network must achieve the topology
preservation of the data. Therefore the neighbor-
hood on the model and in the input space must
be similar. If two prototype vectors close to each
other in the input space are mapped wide apart
on the grid, this is signaled by the situation where
two closest best matching neurons of an input
vector are not adjacent neurons. This kind of fold
is considered as an indication of the topographic
error in the mapping.

The topographic error (Kiviluoto, 1996) can be
calculated by equation 3 as the proportion of sam-
ple vectors for which two best matching neurons
are not adjacent. N is the number of samples, xk

is the kth sample of the data set and u(xk) is equal



to 1 if the first and second best matching neurons
of xk are not adjacent neurons, otherwise zero.

et =
1

N

N
∑

k=1

u(xk) (3)

Moreover, the prototype vectors try to approxi-
mate to the data set. A consequence of this ap-
proach is the resolution error or the quantization
error. Equation 4 is usually used to measure the
resolution of the mapping calculating the average
quantization error over the whole testing data set.
N is the number of samples, xi is the ith data
sample and mb is the prototype vector of the best
matching neuron for xi

eq =
1

N

N
∑

i=1

‖xi −mb‖ (4)

Several data sets which correspond to the aero-
bic phase of the SBR are available to carry out
the validation of the model. The objective is to
find out the model that minimizes the quantiza-
tion and topographic errors from several neural
networks which have been trained using each of
these available patterns and, at the same time,
for different map sizes. The method of validation
can be summarized in the following steps:

(1) A data set or pattern pi is chosen to train
the network. The data are normalized to
a distribution with zero mean value and
unitary variance.

(2) Batch training is carried out on the SOM
map whose sidelengths are calculated using
equations 1 and 2. using pattern pi as train-
ing data.

(3) Once the trained model is obtained, the to-
pographic and quantization errors are calcu-
lated for the remaining patterns pj which
have not been used during the training.
These patterns must also be previously nor-
malized.

(4) The size of this trained map is increased
and reduced respecting the proportionality of
its sidelengths (width and length). Once the
size has been modified, the neural network is
again trained using pattern pi.

(5) The third and fourth steps are repeated for
different map sizes.

(6) Steps 1 through 5 are repeated for the re-
maining patterns pj , assuming each of these
the role of pattern pi.

Several map sizes have been trained using the pat-
terns. The mean values of the errors over the test
patterns (the remaining patterns which have not
been used during the training) in function of the
map size are shown in figure 2. It can be seen that
the larger the map size the lower the quantization
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Figure 2. Mean value of errors

error but the higher the topographic error. This
is due to the neural network folds to reduce the
quantization error. Moreover, the larger the map
size the higher the computational cost. Therefore,
there is compromise between the increase of the
topographic error and the reduction of the quan-
tization error. A curve, which represents the sum
of both errors, has been added to the graphic.
The selected model, which is integrated into the
software tool, was the neural network that corre-
sponds to the value equal to 6 of the horizontal
axis. This horizontal value corresponds to a map
where n1 is equal to 14 and n2 is equal to 8. The
number of samples N of the training data set was
equal to 500.

5. BEST CLUSTERING TECHNIQUE

In this paper, the clustering process consists of
a two-stage procedure (Vesanto and Alhoniemi,
2000). Firstly, the prototype vectors are obtained
training the data of the aerobic phase using a
SOM algorithm and then clustering them using
a K-means algorithm, see (McQueen, 1967) and
(Dubes and Jain, 1976). Ten clustering structures
were obtained varying the predefined number of
clusters.

Finally, the best clustering structure among the
ten structures, which have been obtained from the
K-means algorithm, is selected using the Davies-
Bouldin index (Davies and Bouldin, 1979). This
index searches the best model that minimizes
the within-cluster distance and maximizes the
between-clusters distance. The Davies-Bouldin in-
dex is suitable for evaluation of k-means partition-
ing, because it gives low values indicating good
clustering results for spherical clusters. Figure 3
shows the Davies-Bouldin index after being ap-
plied to the data from the aerobic stage of the
treatment. The best clustering corresponds to a
number of two clusters and can be seen in figure
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Figure 3. Results of Davies-Bouldin index

Figure 4. Best clustering structure

3. Once the best clustering has been selected, the
clustering structure must be visualized in order
to label the input data space onto the 2D-lattice.
This allows the visualization of the different fea-
tures of the process.

The best clustering has been projected onto the
SOM and a new component plane has been ob-
tained that is displayed in figure 4. Cluster 1 corre-
sponds to the first hours of the aerobic treatment
where the values of the controller output are high
due to the high chemical oxygen demand (COD).
During this period the biological activity is high
and the toxic substances are eliminated by means
of the cellular metabolism, whereas cluster 2 rep-
resents the data collected after this high biological
activity where the values of the controller output
are lower because the COD has decreased. If this
is the state of the treatment plant, the biological
treatment of the aerobic stages can be finished
improving the capacity of the plant.The results
were highly repeatable except in winter time due
to the temperature influence.

6. SOFTWARE TOOL

The developed software is running in the PC
station that is connected to the data acquisition
interface (recorder) by means of Ethernet connec-
tion and TCP/IP protocol (MODBUS protocol in
particular). The proposed AI techniques are inte-
grated into this application to achieve the process
monitoring and the process state estimation. Data
from the aerobic stage is collected on-line auto-
matically to train a SOM network. The plant op-
erator can visualize the latest SOM network that
corresponds to the latest aerobic treatment cycle

of the plant, viewing the correlation between the
process variables and the data classification can be
obtained. The estimation of the current process
state is also calculated by the stored patterns
(SOM networks that have already been trained
and validated).

The program improves the plant operation with
the estimation of the oxygen uptake rate by means
of the controller output dynamic from the dis-
solved oxygen control (Cavalcanti et al., 1999).
The oxygen uptake rate is one of the most impor-
tant variables in the wastewater biological treat-
ments and is the associated demand which is nec-
essary to oxidize the organic substrate by the het-
erotrophic biomass. The estimation of the time of
the main activity of the treatment (aerobic phase)
achieves operating cost savings and increases the
plant performance, see (Paul et al., 1998), (Cho
et al., 2001) and (Andreottola et al., 2001).

In order to achieve the process monitoring of
the aerobic treatment, the process variables of
the table 1 were chosen for SOM training. A
key aspect is: how can the training data set be
determined? The training data set must only
contain the samples of the aerobic stage. The
mean value of the controller output was used to
obtain these samples because this signal can be
considered as a key variable to estimate the states
of the treatment, see (López and Machón, 2004a)
and (López and Machón, 2004b). The user can
change the values for starting and finalizing the
training. Also the sample rate can be changed.

The results of the latest SOM network can be
visualized in figure 5 and they correspond to the
latest aerobic stage of the wastewater treatment.
They are the U-matrix, the component planes and
the best clustering structure. The U-matrix shows
the distances between neighboring prototype vec-
tors of neighboring neurons. Thus, a group of neu-
rons, which is too concentrated, implies a cluster.
Distanced zones of neurons must separate several
clusters. Each component plane shows the value of
each neuron to estimate the data variable of the
input space. It is useful to determine the several
zones where the variable value is high or low and
to observe any correlation or relationship between
process variables. The correlations among vari-
ables can be observed, for example, between the
controller output and the oxygen concentration.
Also there is a correlation between the controller
output and the temperature in the reactor due
to the higher the temperature the lower the dis-
solved oxygen concentration and the controller
must compensate this effect. As mentioned above,
the best clustering structure is composed of 2
clusters and is calculated by means of the Davies-
Bouldin index. A cluster corresponds to HIGH
COD and the other is the LOW COD.



Figure 5. SOM training results

The sample rate of the data acquisition system
has been increased in order to obtain a better
definition of the sensor signals. The dissolved
oxygen concentration and its controller output are
signals with higher component frequencies than
the temperature, i.e., the values of some variables
are changing faster than others. Thus different
sample times have been assigned to each variable.

The cycles of the biological treatment at the
sequential batch reactor can be clearly observed
in figures 6 and 7. The higher values correspond
to the anoxic stage when the controller output
is saturated and equal to 100%. The rest of the
data corresponds to the aerobic stage (including
sedimentation).

An important aspect appears: the end-point of
the aerobic reaction. This end-point detection can
be used to finalize the aerobic stage and in this
way the duration of the cycle is shorter increasing
the operating capacity of the plant. Moreover, the
oxygen consumption is high, influenced by the
temperature in the reactor as could have been
expected. The duration of the cycle was initially
48-72 hours one year ago, see figure 6, and it has
been reduced to 24 hours as is showed in figure 7.
In this way the operating capacity of the plant has
been increased by reducing the retention time.

In figure 8 the process state is estimated project-
ing the current values onto a SOM network by
means of standing out the best matching neuron
from the rest of the neurons. This SOM network
is used as a pattern and is previously stored and
validated using the validation method explained
above. The projection is carried out onto the com-
ponent planes and the best clustering structure.
The best clustering structure is composed of two
clusters. The first one corresponds to the first
hours of the treatment. During this phase high
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oxygen uptake rates take place and the aerobic
activity of the biological process is high. The
second cluster represents the samples which have
been obtained after the biological activity has



Figure 8. Process state estimation

decreased. The implemented application names
them as HIGH COD and LOWCOD, respectively.
Thus, important on-line knowledge is obtained
and the end of the main biological activity can
be identified.

7. CONCLUSIONS

An oxygen control closed-loop was configured to
achieve the end-point detection of the aerobic
phase in a sequencing batch reactor (SBR) using
an AI software. This software tool was developed
to supervise the treatment and is running, con-
nected to the SBR. It is a stand-alone applica-
tion which is composed of the data acquisition
system from the SBR and the SOM as proposed
AI technique. It is also a remote supervision ap-
plication due to the use of a TCP/IP connection.
The data set of the aerobic stage is collected to
train automatically a SOM network. In this way,
the correlation among the process variables can
be observed by visualizing the latest SOM net-
work that corresponds to the latest aerobic treat-
ment cycle of the plant. The data classification
is obtained using K-means algorithm as partitive
clustering algorithm and Davies-Bouldin index for
clustering validation. The estimation of the cur-
rent process state can be assigned calculating the
best matching neuron that corresponds to the cur-
rent process values. The end-point of the aerobic
reaction can be detected by this AI technique.
So, operating cost savings are achieved and the
plant performance is increased. In this way, total
retention time was reduced from 48-72 hours to 24
hours.The results were highly repeatable except in
winter time due to the temperature influence.
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