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1. INTRODUCTION

Most of the research for control design of non-
linear systems has been done for systems that
are affine in the control variables. However, many
practical applications (chemical reactions and PH
neutralization, aircraft dynamics and so on) give
rise to nonaffine nonlinear systems. Since the in-
put does not appear linearly, this makes direct
feedback linearization difficult. Also, even if it is
known that the inverse of such a system exists,
it is often impossible to construct it analytically.
Consequently conventional control designs are not
possible for nonaffine nonlinear systems.

In this paper, a new control design is proposed
for a large class of nonaffine nonlinear systems. In
the following paragraph the heuristics behind this
approach are briefly illustrated, by considering a
simple scalar example.

Consider the scalar nonlinear system

ẋ = f(x, u),

x(t) ∈ R, u(t) ∈ R, t ≥ 0. The control objective is
to design u to track the state of the asymptotically
stable reference system

ẋ = ax,

with a < 0. One would like to solve for u from the
equation

f(x, u) = ax.

Now suppose that sign
(

∂f
∂u

)

is constant, and

consider the system

εu̇ = −sign

(

∂f

∂u

)

(f(x, u) − ax), (1)

with ε � 1. This equation represents “fast”
dynamics as compared to the “slow” dynamics of
ẋ = f(x, u). Let x be fixed, and let u satisfy (1).
Then intuitively we would expect that if u had a
limit as t → ∞, it would satisfy the static equation

f(x, u(∞)) = ax.

Therefore the solution to the fast dynamical equa-
tion (1), with a small enough ε, can be viewed
to be an approximation of the solution to the
equation f(x, u) = ax, and so we arrive at the
following closed loop system:

ẋ = f(x, u),

εu̇ =−sign

(

∂f

∂u

)

(f(x, u) − ax).



Hence the need of solving the implicit equation

f(x, u) = ax

is eliminated by introducing the fast dynamics
given by (1).

As a concrete example, consider the problem of
stabilization of the scalar nonlinear system given
by

ẋ = ex + u + u2 tanh(u). (2)

A stabilizing dynamic inversion controller can be
obtained by solving the following equation for u:

ex + u + u2 tanh(u) = −x. (3)

It can be checked that for u ∈ R, ∂f
∂u

has a
constant sign. Hence the system is controllable.
Notice however that the equation (3) is not in-
vertible explicitly, and hence the precise dynamic
inversion solution for u cannot be found. So we
approximate the dynamic inversion solution via
time-scale separation. Consider the following fast
dynamics:

εu̇ = −sign

(

∂f

∂u

)

(ex+u+u2 tanh(u)+x), ε � 1.

(4)
When ε = 0, the relationship in (4) reduces to the
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algebraic relationship in (3), the solution of which
renders the system (2) asymptotically stable:

ẋ = −ax.

For a suitably chosen small ε, the solution of
differential equation (4), achieves asymptotic sta-
bilization of the system (2), as shown in Figure
1.

The outline of this paper is as follows. First in
§2, we recall a few definitions and theorems on
nonaffine nonlinear systems and singular pertur-
bations. We give our main result concerning sta-
bilization §3.

2. PRELIMINARIES ON SINGULAR
PERTURBATIONS

In this section we recall Tikhonov’s theorem (The-
orem 2.1 below) on singular perturbations. We
will use this key theorem to obtain our main result
Theorem 3.1 in the next section. Consider the
problem of solving the system

Σ0 :

{

ẋ(t) = f(t, x(t), u(t), ε), x(0) = ξ(ε)
εu̇(t) = g(t, x(t), u(t), ε), u(0) = η(ε)

}

,

(5)
where ξ : ε 7→ ξ(ε) and η : ε 7→ η(ε) are
smooth. We assume that f and g are continuously
differentiable in their arguments for (t, x, u, ε) ∈
[0, t1] × Dx × Du × [0, ε0], where Dx ⊂ R

n and
Du ⊂ R

m are domains. We also assume that Σ0

is in standard form, that is,

0 = g(t, x, u, 0) (6)

has k ≥ 1 isolated real roots

u = hi(t, x), i ∈ {1, . . . , k}

for each (t, x) ∈ [0, t1] × Dx. We choose one
particular i, which is fixed. We drop the subscript
henceforth. The reduced order system is given by

Σ00 : ẋ(t) = f(t, x(t), h(t, x(t)), 0), x(0) = ξ(0),
(7)

and the solution is denoted by xr. Let η(0) = η0

and ξ(0) = ξ0. The boundary layer system is given
by

Σb :

{

dy

dτ
= g(t, x, y + h(t, x), 0), τ =

t

ε
,

y(0) = η0 − h(0, ξ0), (t, x) ∈ [0, t1] × Dx.

(8)
The equilibrium point y = 0 of Σb is exponentially

stable uniformly in (t, x) ∈ [0, t1] × Dx, if there
exist positive constants M , ω and ρ0 such that
the solutions satisfy

‖y(τ)‖ ≤ Me−ωτ‖y(0)‖ (9)

for all y0 such that ‖y(0)‖ < ρ0, for all (t, x) ∈
[0, t1] × Dx, and for all τ ≥ 0. With this set up,
we recall the following Tikhonov’s theorem; see
for instance Theorem 11.2 on page 439 of (Khalil,
2002):

Theorem 2.1. Consider the singular perturbation
system Σ0 given by equation (5) and let u =
h(t, x) be an isolated root of (6). Assume that the
following conditions are satisfied for all

[t, x, u − h(t, x), ε] ∈ [0,∞) × Dx × Dy × [0, ε0]

for some domains Dx ⊂ R
n and Dy ⊂ R

m, which
contain their respective origins:

A1. On any compact subset of Dx × Dy, the
functions f , g, their first partial derivatives with
respect to (x, u, ε), and the first partial deriva-
tive of g with respect to t are continuous and

bounded, h(t, x) and
[

∂g
∂u

(t, x, u, 0)
]

have bounded



first derivatives with respect to their arguments,
[

∂f
∂x

(t, x, h(t, x))
]

is Lipschitz in x, uniformly in t,

and the initial data given by ξ and η are smooth
functions of ε.

A2. The origin is an exponentially stable equilib-
rium point of the reduced system Σ00 given by
equation (7). There exists a Lyapunov function
V : [0,∞) × Dx → [0,∞) that satisfies

W1(x) ≤ V (t, x) ≤ W2(x)

∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x, h(t, x), 0) ≤ −W3(x)

for all (t, x) ∈ [0,∞) × Dx, where W1, W2, W3

are continuous positive definite functions on Dx,
and let c be a nonnegative number such that
{x ∈ Dx | W1(x) ≤ c} is a compact subset of
Dx.

A3. The origin is an equilibrium point of the
boundary layer system Σb given by equation (8)
which is exponentially stable uniformly in (t, x).

Let Ry ⊂ Dy denote the region of attraction of
the autonomous system

dy

dτ
= g(0, ξ0, y + h(0, ξ0), 0), τ =

t

ε
,

and let Ωy be a compact subset of Ry. Then for
each compact set

Ωx ⊂ {x ∈ Dx | W2(x) ≤ ρc, 0 < ρ < 1},

there exists a positive constant ε∗ such that for all
t ≥ 0, ξ0 ∈ Ωx, η0 − h(0, ξ0) ∈ Ωy and 0 < ε < ε∗,
Σ0 has a unique solution xε on [0,∞) and

xε(t) − xr(t) = O(ε)

holds uniformly for t ∈ [0,∞), where xr(t) denotes
the solution of the reduced system Σ00 given by
(7).

Remark 2.1 One can use a Lyapunov argument
to check Assumption A3: if there is a Lyapunov
function V : [0,∞) × Dx × Dy that satisfies

c1‖y‖
2 ≤ V (t, x, y) ≤ c2‖y‖

2

∂V

∂y
g(x, y + h(t, x)) ≤ −c3‖y‖

2

for all (t, x, y) ∈ Dx ×Dy, then Assumption A3 is
satisfied.

3. STABILIZATION

In this section we give our main result concerning
stabilization (Theorem 3.1).

Consider the following nonlinear system in non-
affine normal form:











ẋ1,1(t)
...
ẋ1,r1−1(t)
ẋ1,r1

(t)











=











0 1
...

. . .

0 1
0 0 . . . 0





















x1,1(t)
...
x1,r1−1(t)
x1,r1

(t)











+











0
...
0

f1(z(t), x(t), u(t))











...










ẋm,1(t)
...
ẋm,rm−1(t)
ẋm,rm

(t)











=











0 1
...

. . .

0 1
0 0 . . . 0





















xm,1(t)
...
xm,rm−1(t)
xm,rm

(t)











+











0
...
0

fm(z(t), x(t), u(t))











ż(t) = ζ(z(t), x(t), u(t))
(10)

where x =
[

x1,1 . . . x1,r1
. . . xm,1 . . . xm,rm

]>

and u =
[

u1 . . . um

]>
.

The control objective is to design u such that
the state in equation (10) tracks the state of the
following reference model:

ẋk,rk
(t) = Ar,kxk, k ∈ {1, . . . , m}

where

Ar,k =











0 1
...

. . .

0 1
ak,1 ak,2 . . . ak,rk











, k ∈ {1, . . . , m}

are all Hurwitz. We need to solve for u from the
equations:

fk(z, x, u) = ak,1xk,1 + · · · + ak,rk
xk,rk

,

k ∈ {1, . . . , m}. So we introduce the appropriate
fast dynamics, and applying Theorem 2.1, we
obtain the following theorem:

Theorem 3.1. Consider the system given by (10)
along with the following fast dynamics:

εu̇(t) = P f(z(t), x(t), u(t)) (11)

where

f(z, x, u) =






f1(z, x, u) − a1,1x1,1 − · · · − a1,r1
x1,r1

...
fm(z, x, u) − am,1xm,1 − · · · − am,rm

xm,rm






,

x =
[

x1,1 . . . x1,r1
. . . xm,1 . . . xm,rm

]>
,

u =
[

u1 . . . um

]>
,

P ∈ R
m×m, with x(0) = x0 ∈ R

r1+···+rm , z(0) =
z0 ∈ R

n−(r1+···+rm), u(0) = u0 ∈ R
m and



Ar,k =











0 1
...

. . .

0 1
ak,1 ak,2 . . . ak,rk











, k ∈ {1, . . . , m}

are Hurwitz matrices. Let u = h(z, x) be an
isolated root of the equation

f(z, x, u) = 0.

Assume that the following conditions are satisfied
for all

[t, (z, x), u−h(z, x), ε] ∈ [0,∞)×Dz,x×Dy×[0, ε0]

for some domains Dz,x ⊂ R
n and Dy ⊂ R

m, which
contain their respective origins:

B1. On any compact subset of Dz,x × Dy, the
functions fk, k ∈ {1, . . . , m}, and their first partial
derivatives with respect to (z, x, u), are continuous
and bounded, h(z, x) has bounded first derivatives
with respect to x and z, and the maps

(z, x) 7→

[

∂fk

∂z
(z, x, h(z, x))

∂fk

∂x
(z, x, h(z, x))

]

,

k ∈ {1, . . . , m} are Lipschitz.

B2. The origin is an exponentially stable equi-
librium point of ż = ζ(z, 0, h(z, 0)). The map
(z, x) 7→ ζ(z, x, h(z, x)) is continuously differen-
tiable and Lipschitz in (z, x) ∈ Dz,x.

B3. There exists a positive number c such that

∂f

∂u
(z, x, y + h(z, x))>P>+P

∂f

∂u
(z, x, y + h(z, x))

< −cI < 0

for all (z, x) ∈ Dz,x, y ∈ Dy.

Let Ry ⊂ Dy denote the region of attraction of
the autonomous system

dy

dτ
= P f(z0, x0, y + h(z0, x0)), τ =

t

ε
(12)

and let Ωy be a compact subset of Ry. Then
for each compact set Ωz,x ⊂ Dz,x there exists a
positive constant ε∗ and a T ≥ 0 such that for all
(z0, x0) ∈ Ωz,x, u0−h(z0, x0) ∈ Ωy and 0 < ε < ε∗,
the system of equations given by (10)-(11) has a
unique solution xε, zε on [0,∞) and

xε(t) = xr(t) + O(ε) (13)

holds uniformly for t ∈ [T,∞), where xr denotes
the solution to

ẋr(t) = Arxr(t), xr(0) = xr,0,

and Ar is the block diagonal matrix given by

Ar =







Ar,1

. . .

Ar,m






.

Furthermore,

zε(t) = zr(t) + O(ε) (14)

holds uniformly for t ∈ [0,∞), where zr denotes
the solution of

żr(t) = ζ(zr(t), e
tArx0, h(zr(t), e

tArx0)), zr(0)= z0.

Proof First we verify that Assumptions A1,
A2, A3 in Theorem 2.1 are satisfied. Since f =
[

f1 . . . fm

]>
and h are independent of t, As-

sumption B1 clearly implies that A1 holds.

We now show that Assumption A2 holds. From
Lemma 4.6 on page 176 of (Khalil, 2002), it follows
that the system

ż(t) = ζ(z(t), x(t), h(z(t), x(t)))

(with x viewed as the input) is input to state
stable. Thus there exists class K and class KL
functions γ and β, respectively, such that

‖z(t)‖ ≤ β(‖z(t0)‖, t − t0) + γ

(

sup
t0≤τ≤t

‖x(τ)‖

)

for all t ≥ t0, t0 ∈ [0,∞). Furthermore from the
proof of Lemma 4.6 of (Khalil, 2002), it follows
that γ(r) = cr, for some constant c > 0. Using the
fact that the unforced system ż = ζ(z, 0, h(z, 0))
has 0 as an exponentially stable equilibrium point,
it can be seen from the proof of Lemma 4.6 of
(Khalil, 2002) that β(r, t) = kre−ωt for some
positive constants k and ω. Thus the solution to
the system of equations

ẋ(t) = Arx(t), x(0) = x0 (15)

ż(t) = ζ(z(t), x(t), h(z(t), x(t))), z(0) = z0 (16)

satisfies ‖x(t)‖ ≤ ‖x0‖c1e
−ω0t and ‖z(t)‖ ≤

(‖x0‖ + ‖z0‖)c2e
−ω0t for all t ≥ 0 and for some

ω0 > 0. Hence the origin (0, 0) is an exponentially
stable equilibrium point of (15)-(16). From a con-
verse Lyapunov theorem (Theorem 4.14 on pages
162-163 of (Khalil, 2002)), it follows that there
exists a Lyapunov function V : [0,∞)×Dz,x → R

such that

w1‖(z, x)‖2 ≤ V (t, (z, x)) ≤ w2‖(z, x)‖2

∂V

∂t
(t, (z, x)) + ∇z,xV · F (z, x) ≤ −w3‖(z, x)‖2,

where

F (z, x) =

[

Arx

ζ(z, x, h(z, x))

]

.

We note that any positive c can be chosen in A2 of
Theorem 2.1, and so a compact Ωz,x ⊂ {(z, x) ∈
Dz,x | W2(z, x) ≤ ρc, 0 < ρ < 1} can be chosen
to be any subset of Dz,x.

In light of the Remark 2.1 (following Theorem
2.1 in §2), it is easy to see that Assumption
B3 implies A3. Indeed, consider the candidate
Lyapunov function

V (z, x, y) = 〈f(z, x, y+h(z, x)), f(z, x, y+h(z, x))〉



for the dynamics

dy

dτ
= P f(z, x, y + h(z, x)), τ =

t

ε
.

From Assumption B1 it follows that f is locally
Lipschitz in y uniformly in (z, x). Furthermore,
since f(z, x, h(z, x)) = 0, it follows that given any
compact subsets Ωz,x ⊂ Dz,x and Ωy ⊂ Dy, there
exist constants c1 and c2 such that

c1‖y‖
2 ≤ V (z, x, y) ≤ c2‖y‖

2,

for all (z, x, y) ∈ Ωz,x × Ωy. Moreover,

V̇ =

〈(

[

∂f

∂u

]>

P> + P

[

∂f

∂u

]

)

f , f

〉

<−c〈f(z, x, y + h(z, x)), f(z, x, y + h(z, x))〉

<−cc2‖y‖
2.

Hence Theorem 2.1 applies and so it follows that
for each compact set Ωz,x ⊂ Dz,x there exists a
positive constant ε∗ and such that for all (z0, x0) ∈
Ωz,x, u0 − h(z0, x0) ∈ Ωy and 0 < ε < ε∗,
the system of equations given by (10)-(11) has a
unique solution xε, zε on [0,∞) and

xε(t) = etArxr,0 + O(ε),

zε(t) = zr(t) + O(ε)

hold uniformly for t ∈ [0,∞), where zr denotes
the solution of

ẋ(t) = Arx(t), x(0) = x0,

ż(t) = ζ(z(t), x(t), h(z(t), x(t))), z(0) = z0,

Hence (14) holds uniformly for t ∈ [0,∞). Choose
T ≥ 0 such that

‖etArx0 − etArxr,0‖ ≤ ε,

and this proves that (13) holds uniformly for
t ∈ [T,∞).

Remark 3.1 1. The verification of Assumption
B3 is easy in many cases. We list a few instances
below.

(a) Let co spec(M) denote the convex hull of the
spectrum of the square matrix M . If the map

(z, x, y) 7→dist

(

co spec

([

∂f

∂u
(z, x, y+h(z, x))

])

,iR

)

is bounded below by a positive number, then we
can take P = −sign

(

tr
[

∂f

∂u

])

, where tr(·) denotes
the trace function.

(b) In the case when there exist d1, . . . , dm >

0 and δ1, . . . , δm ∈ [0, 1) such that for k ∈
{1, . . . , m}

∣

∣

∣

∣

∣

[

∂f

∂u

]

k,k

∣

∣

∣

∣

∣

≥ dk and

m
∑

l=1

l 6=k

∣

∣

∣

∣

∣

[

∂f

∂u

]

k,l

∣

∣

∣

∣

∣

≤ δkdk ,

then using Gershgorin’s circle theorem; see for
instance (Brualdi and Mellendorf 1994), it can
be seen that P can be chosen to be the diagonal
matrix












−sign

(

[

∂f

∂u

]

1,1

)

.
.
.

−sign

(

[

∂f

∂u

]

m,m

)













. (17)

A special case of the above diagonal dominance
is when f1, . . . , fm depend only on u1, . . . , um,
respectively, that is, when ∂fi

∂uj
= 0 for all i and j

such that i 6= j, and so
[

∂f

∂u

]

is diagonal. If

(z, x, y) 7→ sign

(

∂fk

∂uk

(z, x, y + h(z, x))

)

is bounded away from zero, then we can take P

to be equal to the diagonal matrix given in (17).

2. We note that the result of Theorem 3.1 is
semiglobal: indeed, if Dz,x = R

n, then for every
compact subset Ωz,x of R

n, there exists an ε∗ such
that with the feedback given by (11) we get the
tracking performance specified in (15)-(16).

4. CONCLUSION

In this article, a new control design has been given
for solving the stabilization problem for a class
of nonaffine nonlinear systems using time-scale
separation and a key result from singular pertur-
bation theory. An illustrative example was given,
and some conditions were given under which the
assumptions in the main theorem can be verified
easily.
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