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1. INTRODUCTION

The continuous-time ARX (CARX) model struc-
ture is defined as

A(p)y(t) = B(p)u(t) + e(t), (1)

where

A(p) = pn + a1p
n−1 + . . .+ an,

B(p) = b1p
n−1 + . . .+ bn,

with p denoting the differentiation operator, u(t)
is the input, and where e(t) is continuous-time
stationary white process noise, which is assumed
to be Gaussian with zero mean and intensity σ2

e .
Note that y(t) can be written as a sum of a
deterministic and a stochastic term

y(t) =
B(p)

A(p)
u(t) +

1

A(p)
e(t) , yd(t) + ys(t), (2)

where the stochastic part ys(t) is well defined, and
n − 1 times differentiable. A CARX process can
be very useful in the following cases:

• The data are sampled irregularly.
• It is important to have a model where the

parameters have a physical meaning.
• The control design is made in continuous

time.

When the data are sampled irregularly, it might
be difficult to find a good discrete-time system
description involving the shift operator. Even if
such a model can be found, it will be time varying
and the computational demands for the prediction
error method (PEM) will in general increase dras-
tically, (Larsson and Söderström, 2002). A better
idea could then be to choose a continuous-time
model in which the differentiation operator can be
approximated with some difference operator. Note
that the situation with unevenly sampled data can
also occur when data are sampled regularly, but
some samples are missing. The reconstruction of
missing values for discrete-time ARX models is
discussed in (Isaksson, 1993).



Model parameters with physical interpretations
are in many cases an absolute demand for people
in chemistry, biology, physics and other sciences.
In these areas it is important to have a model
derived from physical laws, and stochastic differ-
ential equations, (Øksendal, 2003), such as the
CARX model (1), are therefore a natural choice.
A discrete-time model where the parameters do
not have a physical meaning is simply not what
these scientists aim for.

Sometimes the control design for stochastic sys-
tems is made in continuous-time, see, e.g., (Kush-
ner and Dupuis, 2001; Yong and Zhou, 1999).
Just as a discrete-time ARX model is a natural
choice for modeling the system that is to be
controlled when using a discrete-time setting, a
CARX model constitutes a natural choice in a
continuous-time framework.

Consider the problem of estimating the CARX
parameters

θ =
[

a1 . . . an b1 . . . bn σ
2
e

]T
(3)

from irregularly sampled data {y(tk)}
N
k=1 and

{u(tk)}
N
k=1, taken at the moments of observations

t1 < t2 < · · · < tN . The Cramér-Rao bound
(CRB) for the CARX parameter estimation prob-
lem from irregularly sampled data is derived in the
paper. The derived expression makes it possible
to judge the performance of different estimators
and to investigate how the achievable accuracy
is affected by the sampling scheme. Numerical
studies in the paper investigate the influence of
the input signal on the CRB for different sam-
pling schemes. The CRBs for continuous-time AR
and continuous-time ARMA (CARMA) parame-
ter estimation for the case with irregular sampling
are derived in (Larsson and Larsson, 2002) and
(Larsson and Larsson, 2004), respectively. The
derivation in this paper is based on the same
technique used in the latter reference. However,
for the derivation of the CRB for CARX parame-
ter estimation from irregularly sampled data, an
assumption must be made regarding the behavior
of the input signal between the sampling instants.
One possibility is to assume that the input signal
is constant between the sampling intervals. This
would lead to very complex computations when
estimating the parameters via the PEM. Instead,
in this paper it is assumed that the input signal
is given by a CARMA process. An assumption
regarding the input signal must also be made
when deriving the CRB for the errors-in-variables
problem (Karlsson et al., 2000).

A state space description of the CARX process,
with the input signal given as a CARMA process,
is given in the next section. The description is
needed in Section 3, where the CRB is derived
using the Slepian-Bangs formula. The derived

expression is investigated for different sampling
schemes in a numerical study in Section 4. Finally,
concluding remarks are given in Section 5. In
the paper, tr{·} denotes the trace, ⊗ stands for
the Kronecker product, ⊙ denotes element-wise
multiplication, and (·)c stands for the complex
conjugate.

2. STATE SPACE DESCRIPTIONS

A state space description of the CARX process
(1), needed for the derivation of the CRB in
the next section, is given here. However, before
writing the CARX process on state space form,
an input signal u(t) that is persistently exciting of
high enough order must be chosen. The CARMA
process

(

pm1 + c1p
m1−1 + . . .+ cm1

)

u(t)

=
(

pm2 + d1p
m2−1 + . . .+ dm2

)

v(t),
(4)

where v(t) is continuous-time stationary white
process noise, which is assumed to be Gaussian
with zero mean and intensity σ2

v , and where m1 ≥
m2 + n, is chosen here. The process noises v(t) in
(4) and e(t) in (1) are independent. The CARMA
process (4) is a general signal description that, by
varying {ci}

m1

i=1 and {di}
m2

i=1, has the ability to de-
scribe input signals with very desirable properties
for identification purposes.

The CARX model (1) can be described in a state-
space framework as

ẋ1(t) = Ayx1(t) + byu(t) + dye(t),

y(t) = cTy x1(t).
(5)

In this paper, the observable canonical form is
chosen, and hence Ay ∈ R

n×n, by ∈ R
n×1,

dy ∈ R
n×1 and cy ∈ R

n×1 have the structures

Ay =













−a1 1 0
... 0

. . .
...

...
. . . 1

−an 0 . . . 0













, by =











b1
b2
...
bn











,

dy =
[

0 1
]T
, cy =

[

1 0
]T
.

Similarly, the input signal u(t) in (4) is written on
observable canonical form

ẋ2(t) = Aux2(t) + buv(t),

u(t) = cTux2(t),
(6)

where Au ∈ R
m1×m1 , bu ∈ R

m1×1 and cu ∈
R
m1×1 are defined as

Au =













−c1 1 0
... 0

. . .
...

...
. . . 1

−cm1
0 . . . 0













,bu =















0

1
d1

...
dm2















, cu =

[

1
0

]

.



Let

x(t) =

[

x1(t)
x2(t)

]

, w(t) =

[

e(t)
v(t)

]

, z(t) =

[

y(t)
u(t)

]

,

Σ = E{w(t)wT (t)} =

[

σ2
e 0
0 σ2

v

]

.

The state-space forms (5) and (6) can then be put
together as

ẋ(t) = Ax(t) + Bw(t),

z(t) = CTx(t),
(7)

with A ∈ R
η×η, B ∈ R

η×2 and C ∈ R
η×2 given

as

A =

[

Ay byc
T
u

0 Au

]

, B =

[

dy 0

0 bu

]

, C =

[

cy 0

0 cu

]

,

where η , n+m1 is introduced for notational con-
venience. Throughout the paper it is assumed that
A is asymptotically stable and, for simplicity, di-
agonalizable. Extension to the non-diagonalizable
case is likely possible, but technically more in-
volved. It is treated for the corresponding prob-
lem of deriving the CRB for CARMA parame-
ter estimation from irregularly sampled data in
(Larsson, 2004).

3. THE CRB

Let the CARX parameters θ in (3), together with
the CARMA parameters

ν =
[

c1 . . . cm1
d1 . . . dm2

σ2
v

]T
, (8)

define the augmented parameter vector

ψ = [θT νT ]T

=
[

a1 . . . an b1 . . . bn σ
2
e

c1 . . . cm1
d1 . . . dm2

σ2
v

]T
.

(9)

The CRB for the estimation of ψ given the
samples {y(t1), u(t1), . . . , y(tN ), u(tN )} is given
by CRB = J−1, where J is the Fisher infor-
mation matrix (FIM). The (k, l)th element of
the FIM is given by the Slepian-Bangs formula
(Slepian, 1954; Bangs, 1971)

[J]k,l =
1

2
tr{R−1R′

kR
−1R′

l}, (10)

where

R = E

















z(t1)
...

z(tN )







[

zT (t1) . . . zT (tN )
]











(11)

is the covariance matrix of the sampled data,
and where R′

k = ∂R/∂ψk, with ψk denoting
the kth element of ψ. The CRB for θ, which
is of primary interest here, is found from the
upper left block of J−1. In order to obtain the
upper left block of J−1, all elements of J must be
evaluated. It can therefore be interpreted as if the

input signal parameters ν enter the computations
as nuisance parameters. Next, compact closed-
form expressions for R and its derivatives R′

k are
derived.

To find an expression for R, it is first noted that
the covariance function of z(t) can be written as
(Åström, 1970; Söderström, 2002)

r(τ) = E{z(t)zT (t− τ)} = CT eAτPC, (12)

for τ ≥ 0. In (12), eAτ is the standard matrix
exponential, which has the spectral representation

eAτ =

η
∑

k=1

ρkξ
H
k e

λkτ , (13)

where ρi and ξHi are the right and left eigenvectors
of A, respectively (normalized such that ρHi ξi =
1), and λi are the eigenvalues of A. Also, in (12),
P is the unique and nonnegative definite solution
to the continuous-time Lyapunov equation

AP + PAT + BΣBT = 0. (14)

This is a linear system of equations for the entries
of P, and hence easily solved numerically in a
standard manner. Next, by observing that r(τ)
is defined for τ ≥ 0, we find that R in (11) can be
written as:

R = R̃ + UT , (15)

where

R̃ , I ⊗ r(0) + U,

U ,













0 . . . . . . 0

r(t2 − t1)
. . .

...
...

. . .
. . .

...
r(tN − t1) . . . r(tN − tN−1) 0













,

and I is the identity matrix of dimension N . It
turns out that R̃ can be computed by a compact
formula, as shown below. Once R̃ is known, U is
obtained from the lower left part of R̃ and R is
found via (15). Note also that all elements of U

are 2 × 2 matrices.

From (12), (13) and the solution to (14), it follows
that R̃ can be computed as

R̃ =

η
∑

k=1

Γ(λk) ⊗ (γkα
H
k ), (16)

where γk and αHk are defined as

γk ,CTρk,

αHk ,ξHk PC,

and Γ(s) is the matrix whose (k, l)th element is
equal to

[Γ(s)]k,l =

{

e(tk−tl)s, k ≥ l,

0, otherwise.



To obtain convenient formulas for R′

k, it is first
noted that R′

k possesses the same structure as R,
i.e.,

R′

k = R̃′

k + UT
k , (17)

where
R̃′

k , I ⊗ rk(0) + Uk,

with Uk = ∂U/∂ψk and rk(0) = ∂r(0)/∂ψk.
Next, we will show how R̃′

k can be computed.

Once R̃′

k is found, R′

k is easily constructed from
(17).

First, notice that differentiation of (14) with re-
spect to ψi yields

APi + PiA
T + AiP + PAT

i

+ BiΣBT + BΣiB
T + BΣBT

i = 0,
(18)

where the derivatives Pi = ∂P/∂ψi, Ai =
∂A/∂ψi, Bi = ∂B/∂ψi and Σi = ∂Σ/∂ψi. The
derivatives Ai, Bi and Σi, for all elements ψi of
ψ in (9), i.e., with respect to {ai, bi, σ

2
e , ci, di, σ

2
v},

are given in Appendix A. The Lyapunov equation
(18) is straightforward to solve with respect to Pi.
Next, differentiation of r(τ) in (12) with respect
to ψi, yields

ri(τ) =
∂

∂ψi
r(τ)

= CT

(

∂

∂ψi
eAτ

)

PC + CT eAτPiC,

where (Brewer, 1977)

∂

∂ψi
eAτ =

η
∑

k=1

η
∑

l=1

ρkξ
H
k Aiρlξ

H
l fkl(τ),

and

fkl(τ) =







τeλkτ , λk = λl,

eλlτ − eλkτ

λl − λk
, otherwise.

Hence,

R̃′

i =

η
∑

k=1

Γ(λk) ⊗ (γkα
H
k,ψi

)

+

η
∑

k=1

η
∑

l=1

Gk,l ⊗ (γkα
H
l β

(i)
k,l),

(19)

where

αHk,ψi
, ξHk PiC,

β
(i)
k,l , ξHk Aiρl,

Gk,l =







Ω ⊙ Γ(λk), λk = λl,
1

λl − λk
(Γ(λl) − Γ(λk)), otherwise,

and where Ω is a matrix whose (k, l)th element is
equal to

[Ω]k,l = |tk − tl|.

This completes the derivation of the expressions
for R and R′

k. We summarize our algorithm for
computing the CRB as follows:

Step 1. Compute P, and Pi by solving the Lya-
punov equations (14), and (18).

Step 2. Compute R̃ via (16). Thereafter construct
R by using (15).

Step 3. Compute R̃′

k by using (19), and form R′

k

via (17).

Step 4. Compute J via (10) and obtain the CRB
for θ by extracting the upper left block of J−1.

Let CRBN denote the CRB given N samples of
y(t) and u(t). The evaluation of CRBN can be im-
practical if N is very large. Theorem 2 in (Larsson
and Larsson, 2002) provides some remedy to this
problem by showing that under certain circum-
stances, the CRB becomes inversely proportional
to N , and hence it can be extrapolated as

CRBN
as.
=

N0

N
CRBN0

,

where N0 < N .

4. NUMERICAL STUDIES

We considerN = 50 samples of the CARX process

A(p)y(t) = B(p)u(t) + e(t) (20)

where e(t) is continuous-time white noise of inten-
sity σ2

e , and

A(p) = p2 + a1p+ a2 = (p− p̃1)(p− p̃c1),

B(p) = b1p+ b2.

The input u(t) is given by the CAR process

C(p)u(t) = v(t) (21)

where v(t) is continuous-time white noise, inde-
pendent of e(t), with intensity σ2

v , and

C(p) = p2 + c1p+ c2 = (p− n1)(p− nc1).

In the example to follow, we will consider the
following four sampling strategies:

(a) (Deterministic) uniform: Here tn = nT , n =
1, . . . , N .

(b) Uniformly distributed : Here tn = nT +
∑n

k=1 δk, n = 1, . . . , N , where δk is uniformly

distributed between −δ̃ and δ̃; δk are inde-
pendent of e(t) for all t and k, and δk are
independent of δj for all j 6= k. We choose

δ̃ = T/5 in our example.
(c) Two-point distributed : tn =

∑n

k=1 ∆tk, n =
1, . . . , N , where

∆tk =

{

∆0 with probability p0

∆1 with probability 1 − p0.
(22)

Here ∆tk are independent of each other and of
e(t). In this case the average sample interval
T is

T = E{∆tk} = p0∆0 + (1 − p0)∆1. (23)



In Example 1 below, we choose p0 = 1/2,
∆0 = 2T/3 and ∆1 = 4T/3. Note that
this particular choice of parameters effec-
tively models uniform sampling with ran-
domly missing observations, which is impor-
tant in some system identification applica-
tions (Isaksson, 1993).

(d) Gapped-data sampling :

{tn} = {0, ∆̃, . . . , (Ñ − 1)∆̃,∆,∆ + ∆̃, . . . ,

∆ + (Ñ − 1)∆̃, . . . ,

(N# − 1)∆, (N# − 1)∆ + ∆̃, . . . ,

(N# − 1)∆ + (Ñ − 1)∆̃}.

(24)

Here the average sample interval is

T = E{tn− tn−1} =
(N# − 1)∆ + (Ñ − 1)∆̃

N#Ñ − 1
.

(25)
Gapped-data sampling is of particular rel-

evance in time-series analysis applications
(Adorf, 1995; Stoica et al., 2000) and radar
imaging (Larsson et al., 2002) but its use in
system identification can also be envisioned.
In the example below, the values of the pa-
rameters are Ñ = 5, ∆̃ = 2T/3, N# = N/Ñ
and ∆ is chosen such that (25) is fulfilled.

Example 1. The aim with this example is to show
how the spectrum of the input may influence
the accuracy of the parameter estimates. When
dealing with evenly sampled models it is well-
known that the input should have its major energy
at the frequencies that dominate the system. The
process is described by (20) and (21), and we
study the following situations:

× : T = 0.125; p̃1 = −0.05 + i;n1 = −0.05 + iγ

◦ : T = 0.5; p̃1 = −0.05 + i;n1 = −0.05 + iγ

2 : T = 0.5; p̃1 = −0.02 + i;n1 = −0.02 + iγ

(26)

where γ varies between 0.1 and 3 and T =
E[tk − tk−1] is the average sampling interval. In
all situations we choose b1 = 1, b2 = 1, σ2

e = 0.1
and σ2

v such that varu(t) = 1. All situations in
(26) yield a process (20) with a transfer function
B(s)/A(s) with a narrow-band characteristic; see
Figure 1. The spectral peak is situated at ω = 1 in
all situations, while the spectral width (which is
associated with the real part of p̃1) is different in
some of the situations. Note that the spectrum
of the input is affected by γ; the value of γ
determines the location of the spectral peak for
the spectrum of the input signal.

The expected CRB is computed by using the
results in Section 3 and averaging over 50 re-
alizations by means of Monte-Carlo simulation.
The value of det CRB(θ) as a function of γ is
shown in Figure 2. It is clear from the figure

that det CRB(θ) has a minimum for γ = 1. This
supports the claim that the input should have its
energy in the frequency region that dominates the
system. Furthermore, we see that there is, at least
for this example, no big difference between the
CRBs for different sampling strategies.

0 1 2 3 4 5
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0

10
2

10
4

Angular frequency [ω]
M

ag
ni

tu
de

Fig. 1. Bode diagram for the transfer function
B(s)/A(s) of the system (20). The character-
istics of the two different curves are explained
in (26).
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Fig. 2. Illustration of det CRB(θ) as a function
of γ, for the CARX processes described in
Example 1. The legend is further explained
in (26). Note that many curves overlap.

5. CONCLUSIONS

A simple algorithm for computing the Cramér-
Rao bound for estimation of parameters in contin-
uous-time ARX models from irregularly sampled
data was presented. The derivation was based on
the Slepian-Bangs formula together with a state
space framework, resulting in closed form expres-
sions for the Cramér-Rao bound. A numerical
example was included to illustrate the behavior
of the CRB for different scenarios. The framework
presented here for calculating the CRB for CARX



models can easily be modified to include other
model structures. The results also provide us with
useful tools for answering questions regarding, for
example, optimal input design for irregularly sam-
pled CARX models.

Appendix A. MATRIX DERIVATIVES

The derivatives Ai = ∂A/∂ψi, Bi = ∂B/∂ψi
and Σi = ∂Σ/∂ψi, with respect to any com-
ponent ψi of ψ in (9), i.e., with respect to
{ai, bi, σ

2
e , ci, di, σ

2
v}, are given in this appendix.

The derivatives are needed in the Lyapunov equa-
tion (18), and in (19). Let ek(j) be the kth column
of the identity matrix of dimension j. Straightfor-
ward calculations then give

∂A

∂ai
=

[

−ei(n)eT1 (n) 0

0 0

]

,
∂B

∂ai
= 0,

∂Σ

∂ai
= 0,

i = 1, . . . , n,

∂A

∂bi
=

[

0 ei(n)cTu
0 0

]

,
∂B

∂bi
= 0,

∂Σ

∂bi
= 0,

i = 1, . . . , n,

∂A

∂σ2
e

= 0,
∂B

∂σ2
e

= 0,
∂Σ

∂σ2
e

=

[

1 0
0 0

]

,

∂A

∂ci
=

[

0 0

0 −ei(m1)e
T
1 (m1)

]

,
∂B

∂ci
= 0,

∂Σ

∂ci
= 0,

i = 1, . . . ,m1,

∂A

∂di
= 0,

∂B

∂di
=

[

0 0

0 ei(m2)

]

,
∂Σ

∂di
= 0,

i = 1, . . . ,m2,

∂A

∂σ2
v

= 0,
∂B

∂σ2
v

= 0,
∂Σ

∂σ2
v

=

[

0 0
0 1

]

.
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