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Abstract. A complex system usually encompasses agents, as they are known from modern
Artificial Intelligence. Within the system dynamics, interactions between agents are
affected by perturbations (uncertainty), which often make modeling difficult. This paper
introduces a modeling approach based on a function that quantifies uncertainty: the fuzzy
measure of ambiguity. A model based on ambiguity minimization has been designed, as
succinctly described in this paper. The model might assist the system manager to set an
optimal strategy. Copyright © 2005 IFAC
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1. INTRODUCTION

The concept of agent constitutes the foundation of
modern Artificial Intelligence (AI) (Russell and
Norvig, 1995). Whenever it is a human or a computer
routine/program, the agent can be understood as an
autonomous problem solver that interacts with other
agents (usually, heterogeneously distributed in an
environment (O’Hare and Jennings, 1996)), in order
to progress towards solutions. Capability for self-
activation, interaction and evolution are prime
features of an agent. A set of interactive agents meant
to solve some problem is referred to as Multi-Agent
System (MAS) (Weiss, 1999). Such a system can be
quite complex and appears everywhere human and/or
non-human resources are concurrent in finding a
solution to a problem (e.g. in a factory or on
Internet).

For MAS, stating a problem to solve is equivalent
with targeting a global goal. Subsequently, the MAS
starts to evolve, according to some strategy (in
general adaptive). On the whole, evolution means
here transition from an initial state through a chain of
intermediate states, until the goal is reached in a final
state. This motivates the agents to associate or not
within working groups referred to as clusters or
teams (Maturana and Norrie, 1996). Thus, a virtual

clustering mechanism can be observed during the
evolution. Clusters are built, modified and/or
destroyed any time, describing, in fact, the states
parsed by the system. Each possible structure of
clusters that covers the agents set will be referred
hereafter to as (clustering) configuration. Each state
of a MAS is described by a configuration covering
the agent set. The succession of all states through
which MAS transitions until reaching the goal is
referred to as plan or (planning) strategy.

One can hardly predict the MAS dynamics by using
simple observations, since various perturbations
affect the interactions between agents. Therefore,
only an uncertain information is available in this aim.
When facing the uncertainty in information about
MAS dynamics, two sides should be considered:
vagueness and ambiguity (Klir and Folger, 1988).

Vagueness deals with inconsistent and unclear
information. More specifically, a clear distinction
between a possible plan reaching the imposed goal
and a plan, which, on the contrary, leads the MAS in
an opposite direction, is difficult to make. This is the
case when, for example, two or more factories are
merging and new structures of clusters are
constructed. The initial knowledge about the MAS is
very parsimonious.
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Whenever more information is available, the
manager is faced with ambiguity. An ambiguous
information is quite consistent, but the facts are
mixed such that all entities seem to be similar. More
specifically, the consistency means here that several
possible plans of MAS can be constructed for a given
goal. Nonetheless, it is quite difficult to select one of
them, because their descriptions are too general,
confuse or non-specific.

Starting from some uncertain information, the
problem is to provide models of MAS, useful in
selecting the most possible (least ambiguous) plan
reaching for a given goal. This problem can be
addressed in mathematical terms as follows. One
aims to construct a family of possible plans

Kkk ,1}{ ∈= PP  reaching for a preset goal and a

measure of uncertainty U , in order to select the least
uncertain (ambiguous) of them:
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The problem of MAS modeling by using vagueness
was approached in Ulieru et al. (2000). Within this
paper, we are mostly concerned with ambiguity
modeling. On the whole, the initial information about
the agents of MAS is considered to be sufficiently
rich, such that several possible plans can be adopted
for a given goal. The solution of problem (1) is
founded on Theory of Evidence (Klir and Folger,
1988) and Iterative Deepening Search (IDA*) from
AI (Russell and Norvig, 1995). More specifically,
fuzzy measures of uncertainty (such as confusion and
non-specificity) are employed. The main steps in
construction of the required ambiguity measure

AU ≡  (from “ambiguity”) are succinctly presented
hereafter.

2. BUILDING THE FUZZY MODEL

Step 1. Construct a possibility tree of MAS states
The possible successions of configurations during the
MAS evolution can be represented by means of a
tree. Each tree node is assigned to a configuration
and comes from a unique parent, corresponding to
the previous configuration. A node can have no
children (if it is a leaf) or at most 1≥L  children. The
root is generated by some initial state. A label can be
assigned to the current node, such as: ),( lm , where

Mm ,0∈  is the depth and mLl ,1∈  is the width. The
maximum depth, 1≥M , is preset and may or may
not correspond to a leaf, if plans are very complex.
(This limits the tree complexity, which, otherwise,
would be unacceptable.) An oriented arc links a
parent to a child: ),()',1( lmlm >− . The arc ending
in ),( lm  contains two labels: a time cost ( lmt ,  – the
time spent by MAS when passing from the previous
state to the current one) and a set of N  non-temporal
costs, ( nlmc ,,  – the cost of actions performed by agent

na  ( Nn ,1∈ ) when MAS reaches the current state).

A plan is represented by any path drawn from the
root to some leaf. If the leaf does not correspond to
the final state, only a partial plan is generated. The
construction of possibility tree is gradually
performed: for each MAS state lmS , , one generates
all possible subsequent states, starting from the
information about clustering capacity of agents. This
simple procedure is not based on the prior knowledge
of the possible plans. On the contrary, the tree is the
basis in construction of possible plans.

MAS are, in general, so complex that it is extremely
difficult to figure out in advance what are their final
states. For example, in a chess game, there is a very
large variety of possible final states, i.e. final
positions on the chessboard corresponding to
checkmate, stalemate or abandon. It is impossible to
consider all the strategies reaching these positions.
Therefore, a maximum depth of the possibility tree is
imposed, although the goal could not yet be reached.
This method can be employed to find the least
ambiguous path from the root to a leaf. If the leaf
corresponds to a final state of MAS, the procedure
stops and the least ambiguous plan was found. If the
leaf corresponds to a non-final state of MAS, the
method restarts with that leaf as root and so forth,
until a final state is reached. Meantime, the MAS can
be initiated to evolve according to the partial least
ambiguous path found. Thus, the possibility tree
changes according to each stage of ambiguity
minimization and the initial data should be updated
between stages. This approach provides an adaptive
mechanism of uncertainty minimization, by
accounting that various perturbations may affect not
only the data but also the optimum plan, when
varying in time.
Step 2. Construct the family of possible plans
The collection of all possible plans is Kkk ,1}{ ∈= PP .

(The number of possible plans, 1≥K , is upper
bounded by ML .) A plan of family P  is expressed as

follows: { }
kMkkkk PPP ,1,0, ,,, K=P , Kk ,1∈∀ . Here,

mkP ,  is the configuration corresponding to the node

( )mklm ,,  of the tree: 
mklmmk SP

,,, =  ( kMm ,0∈ ), for

some mmk Ll ,1 , ∈  (where 1 0, =kl ). The plan kP  is
thus generated by a path conventionally described as:
( ) ( ) ( ) ( )

kMkkkk lMll ,2,1, ,,2,11,0 >L>>> .

Step 3. Construct possibility distributions for nodes
Three operations are necessary to complete this step.
First, a score is assigned to each agent na  from the
set of N  agents NA , for the current node ),( lm :
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where 1≥nJ  is the number of clusters including na
and ji  ( nJj ,1∈ ) is the number of agents for each
cluster. Also, 1, ≥inN  is referred to as clustering



number and represents the maximum number of
clusters with i  agents that could include the agent

na . If 1=nJ , the score is simply:
1,,, innlm Ns = .

Next, it is suitable to use cost estimators, but if they
are unavailable, costs can be set according to MAS
specific characteristics. Beside the costs specified in
Step 1, one defines: lmC ,  – the non- temporal cost
supported by MAS on the path from the initial node
to the current one, and lmT ,  – the time spent by the
MAS on that path. Costs can be additive:
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Finally, a possibility distribution ]1,0[:, →Nlmr A  is

defined (for Nn ,1∈ ), by normalizing the following
map in range [0,1]:
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(At least one unit value is necessary, as required by
the Possibility Theory (Klir and Folger, 1988).)
Definition (4) sets the possibility ][, nr lm  of agent na
to belong to the specific configuration of state lmS , .
For paid costs ( 0,,,1 1

>+
−− nlmlm cC

m
), the possibility

varies proportionally to the score ( nlms ,, ) and inverse
proportionally to the time cost ( lmT , ), as well as to
the non-temporal cost that the MAS would pay due to
the agent actions ( nlmlm cC

m ,,,1 1
+

−− ). For realized

gains ( 0,,,1 1
<+

−− nlmlm cC
m

), scores and time costs
should affect the possibility inversely than for paid
costs, but the gains improve it proportionally
(negative denominator). One assumes that MAS will
reach a state where the clustering capacities of agents
and the realized gains are maximum, but the
supported costs are minimum. Actually, the
possibility values corresponding to paid costs are
mapped onto [0,1/2], whereas realized gains lead to
values within [1/2,1]. (Different definitions may also
be considered.)
Step 4. Construct consonant bodies of evidence
It is well known that any possibility distribution can
uniquely generate a consonant body of evidence (Klir
and Folger, 1988). After decreasingly ordering the
distribution lmr ,  ( ][1][ ,1, Nlmlm krkr ≥≥= L ), the
consonant body of evidence ( )lmlm ,, ,ϕΦ  is generated,
where the focal elements of lm,Φ  are

{ } NnaaF
nkknlm ,1,,,

1,, ∈∀= K  and the basic
assignment is expressed by:

Nnkrkrn nlmnlmlm ,1,][][][ 1,,, ∈∀−=ϕ + . (5)

For each Nn ,1∈ , the value ][, nlmϕ  defined in (5)
represents the degree of evidence that any agent of

NA  belongs to the focal cluster nlmF ,,  (with exactly
n  agents), if MAS would reach the state lmS , .

Step 5. Construct measures of ambiguity.
The ambiguity can firstly be generated by confusion,
which focuses on the incapacity to disseminate
between characteristics appearing as equally
important within the available information. More
specifically, the confusion is present especially when
the basic assignment takes approximately equal
values for a large set of focal elements, because no
clear evidence of inclusion in one subset is available.
One defines the ambiguity-confusion measure, CCA ,
by composing the following maps:
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where: LM ,S  is the collection of all states lmS , ,
)( ,LMSΠ  is the set of all possibility distributions,

)( ,LMS≥Π  contains only decreasingly ordered
distributions and )( ,LMSφ  is the set of all consonant
basic assignments. The map ψC  assigns a possibility
distribution kρ  to each possible plan kP , through the
confusion measure: MAXmkmkk P αα−=ρ /1)( ,, ,

kMm ,1∈∀ . Here, mk ,α  are the confusion values of
( )mkmk ,, , ϕΦ  (see (5) and Step 2), derived depending
on 
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One can prove that MAXα  – the maximum of
confusion for consonant bodies of evidence – is
smaller than the general upper bound evaluated in
Klir and Folger (1988), where no consonance is
considered. The larger mk ,α , the more confuse the
configuration mkP ,  and, thus, the less possible its
inclusion into kP . Each distribution kρ  is next
decreasingly ordered by means of map J , whereas
the map T  associates kρ  to its unique (consonant)
basic assignment kγ , like in (5). Finally, a new
confusion measure is computed for the whole plan

kP , i.e. γC , similar to (7). Thus, )( kγγC  represents
the degree of confusion in information for plan kP .

Another source of ambiguity is the non-specificity,
which appears when one member has to be selected
from a set and the available information seems to
equally point out all its members as candidates. Then,
like above, the measure of ambiguity-non-specificity

UUA  is defined by composing the following maps:
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The map pU  assigns a possibility distribution kρ  to

kP , by means of a non-specificity measure. Here,

mk ,α  are the non-specificity values of ( )mkmk ,, ,ϕΦ :
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This time, the maximum is easy to derive:
NMAX 2log=α . The larger mk ,α , the less specific the

configuration mkP ,  and, thus, the less possible its
inclusion into kP . After ordering decreasingly kρ ,
the non-specificity ρU  of a plan kP  is computed by
using an equation similar to (9). Thus, )( kρρU

represents the non-specificity degree of kP .

Other measures such as the confusion-non-specificity
( ψρ≡ CJU ooCUA ) and the non-specificity-
confusion ( pUC TA UJC oooγ≡ ) can be considered
as well. A new couple of measures is obtained by
initializing the vagueness minimization procedure
(Ulieru et al., 2000) with mk ,α  given by (7) or (9).
These measures are the confusion-entropy ( CEV ) and
the non-specificity-entropy ( UEV ).
Step 6. Optimization.
By solving problem (1), the 6 measures constructed
above ( CCA , UUA , CUA , UCA , CEV , UEV ) provide 6
least uncertain plans. The minimization concerns the
ambiguity (for the first 4 plans) and the vagueness
(for the last 2 plans). Since the number of plans, K ,
is finite, the optimization can be performed by direct
comparisons between measure values. But, if K  is
large, this attempt might be time consuming. An
iterative intelligent search for the optimum can be
considered as well. Since plans belong to a tree, an
adapted version of IDA* (Russell and Norvig, 1995)
can be implemented, provided that a good heuristic
estimator of kρ  be defined. One can prove that the
AR optimal predictor (Söderström and Stoica, 1989)
is an acceptable choice for pure ambiguity measures.
But for ambiguity-vagueness measures, this heuristic
is not necessarily verifying the basic condition of
IDA* (the cost function, including the heuristic, must
be non-decreasing) and thus the results may be sub-
optimal.

Several measures are used because none of them is
“perfect”. However, from the optimization point of
view, some of them can be preferred. In general, it is
suitable that an optimization criterion (or a cost
function) be smooth (more than one or two times
derivable) and to have a unique extreme or, at least,
all the extremes with the same value. Ruptures and
multiple extremes are unsuitable. If minimization is
performed in terms of kρ  (uniquely assigned to plan

kP ), the measures are smooth and exhibit as less
minima as possible (all null). If the measures are
expressed in terms of mkr , , the minimization becomes
more complicated for some measures. The
ambiguity-non-specificity ( UUA ) seems to be the
best one in this respect. Its minimum is obtained
when all mkr ,  are unitary (and, thus, the costs among
the plan can be minimum). The next two suitable
measures are: confusion-non-specificity ( CUA ) and

the non-specificity-entropy ( UEV ); they have a
unique minimum and, respectively, only null minima
on the domain frontier. The other 3 measures are
affected by ruptures and/or they have multiple
minima (although all null) not only on domain
frontier, but also inside the domain.

3. SIMULATION RESULTS

A case study consisting of a MAS with 10 agents has
been approached. The agents are: one manager ( 1a ),
two executive directors ( 2a  and 3a ), three chiefs in
charge ( 4a , 5a  and 6a ) and four resources ( 7a , 8a ,

9a  and 10a ), as illustrated in Figure 1. Relationships
between agents are described by the symmetric
matrix below, referred to as interactions descriptor.
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Figure 1. A Multi-Agent System with 10 agents.

The generic matrix element ],[ jiD  can be: 1 (when

ia  and ja  are direct agents, i.e. they interact within
the same cluster), –1 (when ia  and ja  are opposite
agents, i.e. they cannot belong to the same cluster)
and 0 (when ia  and ja  are mediated agents, i.e. they
need a third agent as mediator, in order to interact
within the same cluster). The interactions descriptor
is very useful in evaluation of clustering numbers,
through an inference mechanism based on a trivalent
logic. The non-temporal costs are considered here as
rates of exchanged messages between agents. Some
messaging weights (evaluated by using D  again) are
applied when computing these costs. The time costs
are evaluated by adding the duration of transition
between a clustering configuration to another (the
reconfiguration duration) and the life duration of
each configuration. The possibility tree considered
here has 9=M  depth levels and 5=L  maximum
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children per node. The maximum number of nodes is
2,441,406 and the maximum number of plans is

125,953,1=K .

The goal of this system is to reach the deepest level
with minimum ambiguity, by passing through 9
states, starting from the root. In general, even the
user knows very well the MAS, generating the next
states starting from a current one is a demanding
task. Therefore, beside the states guessed by the user
when considering some system characteristics, in this
case study, new configurations are produced by using
a technique issued from Genetic Algorithms
(Mitchell, 1996). Thus, mutations and crossovers are
randomly applied to the matrix describing the current
configuration, in order to produce new valid
configurations (according to D ). From all these
configurations, the ones that appear as the most
plausible for MAS evolution should be selected. But
the user is often still confused and might create the
worst situation for optimization algorithm, by
selecting the maximum number of children for each
current node. One focuses next on this case.

The optimization is performed by an adaptation of
IDA*, where the heuristic estimator is an AR
predictor of second order (see Söderström and Stoica,
1989), for all 6 measures. Although the pure
ambiguity measures match well the predictor, the
choice is not very suitable for ambiguity-vagueness
measures, because they require to forecast not only
possibility distributions of plans but configurations as
well. However, the simulations revealed that, for the
most part of expanded nodes, these measures are
non-decreasing if the AR predictor is used.

The Ambiguity Minimization Procedure has been
implemented within MATLAB environment. Before
searching for the optimum plans, the procedure is
initiated to run with fast measures, obtained when
dividing the realized ambiguity value by the sum of
all lmr ,  norms associated to the path. This is
motivated by 2 main reasons. First, a maximum
radius of expansion is produced for the next run (the
ambiguity of any optimal plan has to be inferior to
the ambiguity of its corresponding fast plan).
Secondly, since minimizing the ambiguity does not
necessarily mean minimizing costs, whereas the
norm is proportional with costs, the fast plans reveal
a good trade-off ambiguity–costs. The algorithm runs
fast with these measures. In average, only one node
per level is expanded (see the first row in Table 2).

In Table 1, the ambiguity values corresponding to
fast plans and the 6 measures are depicted. The
minimum values are underlined, though they are not
the best ones. The computational complexity is
measured here by using 2 parameters: the number of
expanded nodes (the first row in Table 2) and the
number of flops (the second row), as accounted by
MATLAB environment. The fast plans allow
important reductions of computational complexity
into the next stage, when the procedure is initiated to

run with normal ambiguity measures (without
division by possibility distributions norm). The
minimum of each column in Table 1 is in fact the
maximum radius for expansion within IDA* – the
main actor of minimization process. This upper
bound involves a mechanism of sub-trees pruning,
where all partial paths whose ambiguity values
overpass the maximum radius are removed, together
with their subsequent tree structures. Also, the
maximum radius is upgraded each time a final node
is found, provided that the ambiguity of
corresponding plan is inferior. The algorithm stops
when all nodes with inferior ambiguity that the
maximum radius have been expanded. There are 6
optimum plans selected by IDA*. Their ambiguity
values are grouped within Table 3. The optimum
values lie on main diagonal. The power of IDA* is
revealed by the computational complexity of Table 4.

Table 1. Ambiguity values of fast plans.

CCA UUA CUA UCA CEV UEV
n

CCP 0.543 2.522 2.213 0.617 67.92 67.96
n

UUP 0.607 2.246 2.436 0.521 67.9ß 67.98
n

CUP 0.543 2.293 2.213 0.534 67.90 67.97
n

UCP 0.575 2.248 2.343 0.518 67.98 67.97
n

CEP 0.580 2.657 2.258 0.626 51.82 51.54
n

UEP 0.580 2.657 2.258 0.626 51.82 51.54

Table 2. Computational complexity for fast plans.
n

CCP n
UUP n

CUP n
UCP n

CEP n
UEP

9 9 9 9 13 13

35,121 34,851 34,851 35,121 94,205 94,703

Table 3. Ambiguity values of optimum plans.

CCA UUA CUA UCA CEV UEV

CCP 0.502 2.644 2.083 0.635 67.86 67.65

UUP 0.611 2.245 2.445 0.523 67.97 67.99

CUP 0.515 3.010 2.048 0.649 67.54 67.70

UCP 0.617 2.274 2.391 0.518 67.88 67.92

CEP 0.621 2.695 2.375 0.613 37.86 37.34

UEP 0.621 2.658 2.376 0.600 37.86 37.34

Table 4. Computational complexity for optimum plans.

EN FLOPS SFW LFW

CCP 43 159,484 73 173

UUP 276 1,067,195 971 1105

CUP 489 1,888,442 692 1957

UCP 33 124,248 7 133

CEP 89 679,444 158 357

UEP 71 526,891 150 285

Here: EN is the number of expanded nodes, SFW
(short frontier width) is the maximum width of tree



dynamic frontier (next nodes for expansion, with
evaluated ambiguity) when maximum radius is used
and LFW (long frontier width) is the frontier width
without using maximum radius.
Ambiguity-non-specificity ( UUA ) and confusion-non-
specificity ( CUA ) perform the worst: slow
convergence to the optimum (the largest number of
flops) and large number of expanded nodes
(involving large frontier width). However, the
computational complexity is low. Thus, for example,
the largest frontier width (1957) takes only 0.4%
from the total number of expandable nodes (488,281)
or 0.08% from the total number of tree nodes. The
non-specificity-confusion ( UCA ) exhibits the best
characteristics. All characteristics are yet balanced by
costs diagrams depicted in Figure 2. The variation of
non-temporal costs (up) seems to have important
oscillations. Actually, the non-temporal costs and the
duration to reach a final state are opposite: the MAS
preserves small costs with large delays or it will pay
more for fastness, as expected. One can note that the
ambiguity-non-specificity measure ( UUA ) realizes a
good trade-off between paid costs and duration, being
the smoothest one (without costs spikes and relatively
constant duration increase). A good result has been
obtained by using the ambiguity-confusion measure
( CCA ) as well (smaller final cost than UUA , but
longer final delay), although it provides the largest
supported cost, when MAS transitions through the 4-
th node. For the other measures, the trade-off is not
so suitable. For example, the ambiguity-vagueness
measures ( CEV  and UEV ) operate with really low
non-temporal costs, but with largest possible delays,
whereas the non-specificity-confusion measure
( UCA ), with minimum delay, led to the largest non-

temporal cost with a spike for the 8-th node. Also,
note that the ambiguity-vagueness plans are identical.
They appeared to be optimum for this application
(see Table 1 again), though this property could not be
guaranteed by IDA*, as already mentioned.

One can see that every fuzzy measure has strengths
and weaknesses. However, the system manager has
now the opportunity to select the most suitable
managing strategy from a set comprising only 6
plans, depending on the dynamics of costs and delays
that can be afforded by the MAS.
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Fig. 2. Evolution of costs among the optimum plans.


