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Abstract : In this paper, a new Fault-Tolerant Control System strategy is presented for
linear dynamic systems. The detection and isolation of each jump is achieved by the
Kalman filter designed under a dead beat constraint allowing the maximum
adaptability of the fault magnitude estimation in the case of abrupt change. By using
the state estimation corrected by the estimation of jumps we will describe a integrated
Fault Tolerant Control via a particular LQG approach. Copyright © 2005 IFAC
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1. INTRODUCTION

Due to an increasing complexity of modern
engineering systems, as well as the need for
reliability, safety and efficient operation of industrial
systems, a great deal of attention has been focused on
the subject of the fault tolerant control (FTC). The
aim of Fault Tolerant Control is to maintain current
performances closed to a desired one and to preserve
the stability conditions in presence of component
and/or instrument faults. In addition, reduced
performances could be accepted as a trade-off.

A natural way to cope with the FTC problem is to
modify the controller parameters according to an on-
line identification of the system parameters when a
fault occurs. However, due to difficulties inherent to
the on-line multivariable identification in closed-loop
systems, such as the lack of excitation signals or the
presence of noise, we propose an alternative solution
based on the computation of a new control law to be
added to the nominal one. But since this new control

law is not the same for both cases, an FDI module is
necessary to isolate the faulty element accurately.

The existing methods of reconfigurable controller
design can be classified as linear quadratic regulator
(D.P. Looze, 1985), eigenstructure assignment (J.
Jiang, 1994), multiple model (P.S. Maybeck, 1991),
adaptive control (M. Bodson, 1997) (Wu et al, 2000),
pseudoinverse (A.K. Caglayan, 1988). The
reconfiguration function may be active ((Jiang,
1998), (Noura, 2000)) or passive (Zhao, 1998). A
classical way to achieve fault tolerant control relies
on supervised control where an FDI unit provides
information about the location and time occurrence
of any fault. Faults are compensated via an
appropriate control law triggered according to
diagnosis of the system. Nevertheless, it is to be
noticed that only few methods have been applied to
real plants (Ballé et al. 1998), (Noura et al.2000).

Fault diagnosis implies to design residuals that are
close to zero in fault-free situations and clearly



deviate from zero in the presence of faults. Residual
must possess the ability to discriminate between all
possible modes of faults, which explains the use of
enhancing fault isolability. The fault detection filter
which is proposed in this paper is a special full-order
state observer which generates output residuals
having directional properties in response to each
fault. First developed by Beard (1971), the fault
detection filter (FDF) has been revisited by
Massoumnia (1986) from the geometric state-space
control theory and by White and Speyer (1987) in the
context of eigenstructure assignment. To apply the
fault detection filter in stochastic systems, a new
interpretation of the fault detection filter have been
suggested by Park and Rizzoni (1994a) before its
optimization in (1994b), however, the treatment of
multiple faults, convergence and stability conditions
of the filter was not studied. Sauter and Hamelin
have studied the fault detection filter in frequency
domain (1999). Further improvements were
suggested by Liu and Si (1997) and Keller and Sauter
(2000). Recently, Chen and Speyer (2002) have
proposed a new robust multiple fault detection filter
which is derived by solving an optimization problem
in the context where we can not achieve a perfect
decoupling. The fault isolation filter (FIF) presented
here is very similar to the predictor structure of the
standard Kalman filter allowing the establishment of
its convergence and stability conditions.

The paper is organized as follows. Section 2 presents
the augmented fault isolation filter designed under
dead beat constraints. Section 3, propose the design
of control law with a maximum adaptativity. The last
section, illustrates the application of the fault tolerant
r to the winding system.

This work is related to IFATIS project.

2. AUGMENTED FAULT DETECTION
FILTER

Consider the following discrete time linear system
Xpy; = Ax, + Buy, + Fv, +w, (1.a)
vy =Cx; +v, (1.b)
where x, 00" is the state vector, y, OO" is the
output u, 007 is the input vector.
F=[f . fi o f,] is fault

matrix, v, 007 is the bias fault. The state and

vector,
distribution

measurement noises W, and V,are Zero mean

uncorrelated random sequences with
B [w’f v’f] |70 3, Where W 20 and
v |m 0 1"

k
V>0.
The initial state x,, uncorrelated with w; and v, , is
a gaussian random variable with E{xo} =X, and
E{(x(, Xy )(x(, =Xy )j} = f_){) .
We suppose the bias model has the following form
Ve Vg T O, @
where 7 is the unknown occurrence time of the
impulsive change, 4v the impulsive jump magnitude
and 9, the Kronecker operator.

the term isolation. Generation of residuals having
directional properties in response to a particular
faults is an attractive way for

under (1) and (2) the system hq can be rewritten as

follow
Xt ][4 F[x].[B Oy I
ila M R R
3.a)
yk:[c O]Rk}'vk (3.b)
&

where Av can be considered as an impulsive
unknown input, with

T e o)
.

Consider the following observer

Xk+122)2k +Bu, +K(y, —éXk) 4.2)

&=Ly, -CX;) (4.b)

where X, is the state of the filter, 4v the output of

the filter and where LO0%" and KOO"?" are

unknown matrices that we will design in order to

solve the fault detection and isolation problem.

From (3) and (4), the estimation error =, = X, - X,

and the output of the filter 4v propagate as
—:k+I:(Z_K6)—:k +FAVk +TWk_KVk (S.a)

M=L(CZ, +v,). (5.b)

Let us define the detectability indexes first
introduced by Liu and Si (1997) and later used by
Keller (1999) . The linear time invariant system (3)
has the following set of fault detectability indexes

p=\p1.-0i.. 0,
where p, = min{\) CAYf 0 = 1,2,...}.

Define the fault detectability matrix ¥ = CD
Zpi_]j“

with 5:[2 pivl 7, A "v"ﬁ,] (6)

Under the following assumptions

rank(¥ ) = q @)
the goal of this paper is to compute K and L so that
zPro 0
W(z)=LC(zI-(A-KC)'F=| 0 . 0
Ly 47 0 0 =z P4
(8.2)

where (8.a) ensures the diagonal structure of transfer
from faults to residuals allowing the multiple faults
isolation .

After having parameterized (8.a), the remaining
design of freedom will be used to minimize the trace

of the fault estimation error covariance matrix P,
given by

R (S ) SRS &) D



with =4dv-4L where
. r
B(&v)= [Av,ﬁ_m o v, Avg_pJ under
(8.a).
Theorem 2.1: Parameterization of the FIF.
Under (7), the solutions of (8.a) can be
parameterized as
K=wl+K, > (9.2)
L=M+L25 9.b)

with =B/ -®¥M), N =W and w= 4D
and ¥ =CD where B is an arbitrary matrix chosen
[?k D |:| n+q,m—q ,

L, 00" are the time-varying free parameters.

so that rank(5Z)=m-q and

Proof: We have
W(z)=LC(zI-(A-KC))~'F
AV - N
=Y LC(A-KC ¥ Fz7!

k=0

=Yz ¥l ILC(A-KC)*f i..] (10)
k=0

where

Yz MLC(A-KC) f; =7 LCS, +

k=0

+22LC(A-KC )f, +z7LC(A-KC )? f, +--- (11)

Substituting (11) in (10), we obtain
W(z)=

v - N
[ LCAPT f2 P4 Y LO(A — KC R AR f ke }
k=0
(12)
So, if the observer’s gain K satisfies the algebraic

constraint (4 — KC )|.... Ry ] (13)
then (12) gives
W(z)=|. i LCAPT fz7P ]
- N
2Pt 0
0 . . . :
N (14)
0
0 0 z ™
and (8.a) is satisfied under
L¥Y=1 (15)
Under the condition (7), the solutions of the
eigenstructure assignment (13) and algebraic
constraint (15) can be parameterized as
K=wl+K, % (16)
L=lM+L25 (17)

closing the proof.

We are going to compute Kk and Lk so that the
trace of the fault estimation error covariance matrix

P given by (8.b) is minimized.

Theorem 2.2: The Robust Fault Isolation Filter
(RFIF)

Under the stability and convergence conditions
given by

{ZIAD

0 =n+q,00C, 421 (18.2)

rank

rank[—ej”’l+;1m D W]'2]=n,DwD[0,2T[]. (18.b)

The RFIF is described by
)A(k+1 :2)/‘(/{ +E1/lk +(m +kk2)(yk _C)A(k) (18 C)

+W+(w/7 +K, S )(all+K, Z)" (18.d)
A, —(/7 +1, 5 )(yk -CX,) (18.¢)
po =(m+i, 2 (m+1,z) (18.9)
with
K, =4,PC, (c,pc,’ +v,)" (18.9)
L,=-nH,z"(zm,5" )™ (18.h)
H,=CPC" +1 (18.)
where

A, =A-w/C, C,=5C and v, =357

Proof. From equations (5), we can write =, as
Z,=%,+Z, where Z, is the estimation error
without fault and =, the estimation error taking into
account the presence of faults. We have

WL —(A K.C )(—k +2, )+ Fdv, +

+/w, —K, v, (19)
or
;_“k'f'/ :(A _ch)““k + /_Wk Kkvk (20.3)
2. =(i-x,6)Z, +Faw, with Z,=0. (20.b)

From theorem 2.1, the faults estimation can be given
by

4o, =LCZ,

=I(CZ, +v, )+[Av,i_pl v v pJ
@n

So, E(A&k):[dv,ﬁ_pj o iy Av]‘f_pq}"and

let efv =4v, —E(4v, ) the fault estimation errors
whlch propagates as

S S (A~ (T +K, Z)C)Z, +Tw, ~(alT+K, 5)v,

(22.a)
=M+ L,IZ)CE +v, ). (22.b)
The estimation errors covariance matrices

P, = E{_: ET} and P2 = E{e,f"e,f”‘} satisfy
P =(A—(T+K, 5)C )P (A~ (w/7+KkZ)C)
+W+(a)/7+KkZ)(a)/7+KkZ) (23.a)

Hk —CPkC’ +1. (23.0)

The traces of P,,, and P are minimized with

respectto K, and L, ifand only if



—(A—(aT+K,Z)C)P,C"S" +(w1 +K,5)5" =0

(24.2)
(7+L,5)H,57 =0 (24.b)
The solution of (24) gives
K, = (AT,,E@" - WlTH, )z"(sz z"')" (25.a)
I, =-nms (s, ) (25.b)
Since /72" =0, (25.a) can be rewritten

K, =4,23, (C,nC, +1,) where 7, =T-wiiC,
C,=2C and ¥, =55". So, the stability and
convergence conditions of the augmented FDF are

deduced from the results given in (Keller, 1999) then
in (Jamouli et al.2003).

3.FAULT TOLERANT CONTROL WITH
MAXIMUM ADAPTATIVITY

The general concept of this approach is illustrated by
Fig.1 The FDI module consists of residual generation
and residual evaluation. Second stage is performance
evaluation and the third stage is represented by the
reconfiguration mechanism. Fault detection and
isolation must be achieved as soon as possible to
avoid huge losses in system performance or even
catastrophic consequences. Once the FDI module
indicates which sensor or actuator is faulty, the fault
magnitude is estimated and a new control law is
added to the nominal one to thwart the fault effect on
the system.

4
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input
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i
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Fig. 1: Architecture of the fault tolerant controller

We recall that the filter designed in the last paragraph
have a dead beat structure. When an impulsive jump
fault occurs d, =A4v,d,, at time r, the estimation
error of the filter affected by Av, decreased to zero

in a minimal time. This property will be used for the
design of the control law with a maximum
adaptativity to abrupt changes 4, .

We propose to design a control law of the form

uy =L, =" L]E}ﬂ (26)
or by the separation principle to compute a control
law u, =-LX, for the following system

X,y =AX, +Bu, (27.a)

Ve =CX,. (27.b)

Consider u, =uj -G,v, where u}=-L%, is a

nominal control law designed on the jump-free

system.

Ek+] :A)_Ck +Buk (283)

Vi =Cxp. (28.b)

From the state transformation

b T *

and the law control u, =u] -Gy, . (30)

The noise-free system (27) controlled with (30) can
be equivalently rewritten

{Zj _ {;1 (1 —AET +F} m {ﬂ(ﬁ; ~Gv,)(31.a)

v =[c —cr]{xk] (31.b)
Vi

The influence of jumps v, on y, is

asymptotically rejected if and only if 7 and G

satisfy the following algebraic equations

(4-1)T+BG=F (32.2)
CT=0 (32.b)
rewritten in the matricial form
(4-1)" c*
[T”' G"] = [F"' 0]. (33)
BT 0

Under the existence condition of a solution of (33)
given by

rank{A 1B F} = rcmk{[ ~4 B} (34)
c 0 0 c 0
the solution of (33) gives
G= [C([ —4)! B]+C(l a (35)
where 7 =(7-4)"(BG-F). Substituting (35) in
(31) gives
¥s) =(A-BL)%, (36.2)
v, =Cx;, (36.b)
where 4 - BL is stable. The control law

u =[0 G]Bf;

is a stabilisante control law which reject the jumps
uncontrollable modes v, . We have

T

-z Irs G]{xk } (39)

} €0

by the separation principle,

u, :—[Lx L"]F"} with L'=L and
Vi
L'=LT+G
is a stabilisate control law which rejects in a
minimum time the effect of impulsionnel signal
d, =4v,0;, - It is obvious that performances and

robustness of our control law depend on nominal
control law ! =-IX, .

4. APPLICATION

The Fault Detection and Isolation filter proposed
here has been applied to a winding machine (fig. 2)
representing a subsystem of many industrial systems
as sheet and film processes, steel industries, and so
on. The system is composed of three reels driven by
DC motors (M;, M,, and Mj), gears reduction



coupled with the reels, and a plastic strip. Motor M;
corresponds to the unwinding reel, M; is the
rewinding reel, and M, is the traction reel. The
angular velocity of motor M, (£, ) and the strip
tensions between the reels (7], 73) are measured
using a tachometer and tension-meters, respectively.
Each motor is driven by a local controller. Torque

control is achieved for motors M; and M;, while
speed control is realised for motor M,.

Angular velocity U,

Q2 T
U

Fig. 2. The winding machine

The control inputs of the three motors are U/,, U,,
and U;. U, and U, correspond to the current set
points I, and I; of the local controller. ¢/, is the

input voltage of motor M,. In winding processes, the
main goal usually consists of controlling tensions 7,
and 7, and the linear velocity of the strip. Here the
linear velocity is not available for measurement, but
since the traction reel radius is constant, the linear
velocity can be controlled by the angular velocity
Q,.

With the sampling interval is 7 = 0.1 s., the
linearized model of the winding machine around the
operating point (ug, () is given by the following
discrete state-space representation:

u,=[-0.15 06 015]"  y,=[0.6 055 04]"

with
T, U, 04126 0  -0.0196
x=|Q, lu=|U,|,A=| 0.0333 0.5207 -0.0413|,
T, U, -0.0101 0  0.2571

-1.7734 0.0696 0.0734
B=| 0.0928 0.4658 0.1051|
-0.0424 -0.093 2.0752

C is the identity matrix I;. The system described by
these matrices is completely observable and
controllable.
A nominal control law is first set up according to the
LQI technique such that the following cost function
is minimised:
N
:12()7[ QX, +ut Ruk).
2 =0

The weighting matrices @ and R are

respectively nonegative symmetric and positive
definite symmetric, 0 =0.057; and R =0.1/;.

In the first scenario the effectiveness of the
second actuator M2 acting on the strip velocity is
reduced by 5% and appears at instant 30s. According
to the actuator fault description given earlier, this
fault corresponds to a coefficient o =+0.95 and

I<

appears abruptly on the system. In the second
scenario, the same kind of fault, with a reduction of
control effectiveness of 20% is applied to the
actuator M1 acting on the strip tension at instant 82s
during a ramp change of the strip tension. The
system outputs are displayed on Fig. 3

Measured Outputs without reconfiguration
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Fig3. System outputs with loss of control
effectiveness applied respectively at t=30s on second
actuator (motor M2) and at t=82s on first actuator
(motor M1)

Residuals without reconfiguration
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Fig4. Reponse of the isolation filter; two residuals
are generated
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FigS. System outputs with control reconfiguration

Fig 5 clearly demonstrate the FTC method’s ability
to compensate for such actuator faults. Indeed, since
an actuator fault acts on the system as a perturbation,
and due to the presence of the integral error in the



controller, the system outputs again reach their
nominal values even without fault compensation. It
shows that, without FTC, the strip tension, which is
the output more affected by the fault, reaches its
corresponding reference input about 7s after the fault
occurrence, whereas it takes only 1s using the FTC
method.

4. CONCLUSION

In this paper, we have shown that the FDF can be
integrated in harmony with a control law
reconfiguration mechanism to maintain the steady
state performances of unknown disturbance rejection
in the event of failures of abrupt changes. The results
show that once the fault appears, it’s easy to reduce
its effects on the system in minimum time. We can
show that this approach tends towards to LTR
control law. However, the limits of this method are
reached when there is complete loss of an actuator; in
this case, only a hardware redundancy is effective
and could ensure performance reliability.
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