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law is not the same for both cases, an FDI module isnecessary to isolate the faulty element accurately.The existing methods of reconfigurable controllerdesign can be classified as linear quadratic regulator(D.P. Looze, 1985), eigenstructure assignment (J.Jiang, 1994), multiple model (P.S. Maybeck, 1991),adaptive control (M. Bodson, 1997) (Wu et al, 2000),pseudoinverse (A.K. Caglayan, 1988). Thereconfiguration function may be active ((Jiang,1998), (Noura, 2000)) or passive (Zhao, 1998). Aclassical way to achieve fault tolerant control relieson supervised control where an FDI unit providesinformation about the location and time occurrenceof any fault. Faults are compensated via anappropriate control law triggered according todiagnosis of the system. Nevertheless, it is to benoticed that only few methods have been applied toreal plants (Ballé et al. 1998), (Noura et al.2000).Fault diagnosis implies to design residuals that areclose to zero in fault-free situations and  clearly



deviate from zero in the presence of faults. Residualmust possess the ability to discriminate between allpossible modes of faults, which explains the use of the term isolation. Generation of residuals havingdirectional properties in response to a particularfaults is an attractive way forenhancing fault isolability. The fault detection filterwhich is proposed in this paper is a special full-orderstate observer which generates output residualshaving directional properties in response to eachfault. First  developed by Beard (1971), the faultdetection filter (FDF) has been revisited byMassoumnia (1986) from the geometric state-spacecontrol theory and by White and Speyer (1987) in thecontext of eigenstructure assignment. To apply thefault detection filter in stochastic systems, a newinterpretation of the fault detection filter have beensuggested by Park and Rizzoni (1994a) before itsoptimization in (1994b), however, the treatment ofmultiple faults, convergence and stability conditionsof the filter was not studied. Sauter and Hamelinhave studied the fault detection filter in frequencydomain (1999). Further improvements weresuggested by Liu and Si (1997) and Keller and Sauter(2000). Recently, Chen and Speyer (2002) haveproposed a new robust multiple fault detection filterwhich is derived by solving an optimization problemin the context where we can not achieve a perfectdecoupling. The fault isolation filter (FIF) presentedhere is very similar to the predictor structure of thestandard Kalman filter allowing the establishment ofits convergence and stability conditions.The paper is organized as follows. Section 2 presentsthe augmented fault isolation filter designed underdead beat constraints. Section 3, propose the designof control law with a maximum adaptativity. The lastsection, illustrates the application of the fault tolerantr to the winding system.This work is related to IFATIS project.2. AUGMENTED FAULT DETECTIONFILTERConsider the following discrete time linear systemkkkk1k FvBuAxx w+++=+ (1.a)kkk Cxy v+= (1.b)where nkx ℜ∈  is the state vector, mky ℜ∈  is theoutput vector, pku ℜ∈  is the input vector.]fff[F qi1 KK=  is fault distributionmatrix, qkv ℜ∈  is the bias fault. The state andmeasurement noises kw and kv are zero meanuncorrelated random sequences with
[ ] kjTjTjkk I0 0WE δ=  vwvw  where 0≥W  and0>V .The initial state 0x , uncorrelated with kw  and kv , isa gaussian random variable with { } 00 xxE =  and

( )( ){ } 0T0000 PxxxxE =−− .We suppose the bias model has the following formr,kk1k vδ+ν=ν + ∆ (2)where r  is the unknown occurrence time of theimpulsive change, v∆  the impulsive jump magnitudeand r,kδ  the Kronecker operator.

under (1) and (2) the system qh  can be rewritten asfollow kr,kq,nkkk1k 1k w0IvI0u0BxI0 FAx +δ++ν=ν +

+ ∆ (3.a)
[ ] kkkk x0Cy v+=

ν
(3.b)where v∆  can be considered as an impulsiveunknown input, with= I0 FAA , = 0BB , [ ]0CC = , = I0F ,= 0IΓConsider the following observer)X̂Cy(KuBX̂AX̂ kkkk1k −++=+ (4.a))X̂Cy(Lv̂ kk −=∆ (4.b)where kX̂  is the state of the filter, v̂∆  the output ofthe filter and where mqL ,ℜ∈  and m,qnK +ℜ∈  areunknown matrices that we will design in order tosolve the fault detection and isolation problem.From (3) and (4), the estimation error kkk X̂X −=Ξand the output of the filter v̂∆  propagate askkkk1k KvF)CKA( vwT −++−=+ ∆ΞΞ (5.a))C(Lv̂ kk v+= Ξ∆ . (5.b)Let us define the detectability indexes firstintroduced by Liu and Si (1997) and later used byKeller (1999) . The linear time invariant system (3)has the following set of fault detectability indexes

{ }qi1 ,..,,.. ρρρρ =where { }K,2,1,0fAC:min i1i =ν≠ν=ρ −ν .Define the fault detectability matrix DC=Ψwith [ ]q1i111 fAfAfAD qi1 −ρ−ρ−ρ= KK (6)Under the following assumptionsq)(rank =Ψ (7)the goal of this paper is to compute K  and L  so that=−−=
ρ−

ρ−

−

→ q1 z00 00 00zF))CKA(zI(CL)z(W 1v̂v O
∆∆ (8.a)where (8.a) ensures the diagonal structure of transferfrom faults to residuals allowing the multiple faultsisolation .After having parameterized (8.a), the remainingdesign of freedom will be used to minimize the traceof  the fault estimation error covariance matrix kPgiven by

( )( )  −−=
Tvkvkvkvkvk )(E)(EEP ∆∆∆∆∆ ΞΞΞΞ (8.b)



with v̂ve vk ∆∆∆ −=  whereTqkik1k qi1 vvv)v̂(E = ρ−ρ−ρ− ∆∆∆∆ KK  under(8.a).Theorem 2.1: Parameterization of the FIF.Under (7), the solutions of (8.a)  can beparameterized as
ΣΠω kKK += (9.a)

ΣΠ kLL += (9.b)with ),I( ΠΨ−β=Σ +Ψ=Π and DA=ωand DC=Ψ  where β  is an arbitrary matrix chosenso that qm)(rank −=Σ  and qm,qnkK −+ℜ∈ ,qm,nkL −ℜ∈  are the time-varying free parameters.Proof: We have F))CKA(zI(CL)z(W 1ˆ −
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−− i10k ik1k fCLzf)CKA(CLz L+−+−+ −− i23i2 f)CKA(CLzf)CKA(CLz (11)Substituting (11) in (10), we obtain
=
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ρ−−−−ρ+ρ−−ρ KK 0k 1ki11ki1 iiii zfA)CKA(LCzfACL (12)So, if the observer’s gain K satisfies the algebraicconstraint [ ] 0fA)CKA( i1i =− − KK ρ (13)then (12) gives
[ ]KK ii zfACL)z(W i1ˆ ρ−−ρ
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=

ρ−

ρ−

ρ− qi1 z00 0z0 00zΨL LL OOOM MOOM MOOO LL (14)and (8.a) is satisfied underIL =Ψ (15)Under the condition (7), the solutions of theeigenstructure assignment (13) and algebraicconstraint (15) can be parameterized as
ΣΠ kKK +ω= (16)

ΣΠ kLL += (17)closing the proof.We are going to compute kK  and kL  so that thetrace of the fault estimation error covariance matrixvkP ∆∆∆∆ given by (8.b) is minimized.

Theorem 2.2: The Robust Fault Isolation Filter(RFIF)Under the stability and convergence conditionsgiven by .1z,Cz,qn0C DAzIrank ≥∈∀+= − (18.a)
[ ] ]2,0[w,nWDAIerank 2/1jw π∈∀=+− . (18.b)The RFIF is described by )X̂Cy)(K(uBX̂AX̂ kkkkk1k −+++=+ ΣΠω (18.c)Tkkk1k )C)K(A(P)C)K(A(P ΣΠωΣΠω +−+−=+ Tkk )K)(K(W ΣΠωΣΠω ++++ (18.d)

( ) )X̂Cy(Lv̂ kkkk −+= ΣΠ∆ (18.e)
( ) ( )Tkkkvk LHLP ΣΠΣΠ∆ ++= (18.f)with 1−+= )VCPC(CPAK bTbkbTbkbk (18.g)1TkTkk )H(HL −−= ΣΣΣΠ (18.h)ICPCH Tkk += (18.i)where CAAb Πω−= , CCb Σ=  and TbV ΣΣ= .Proof. From equations (5), we can write kΞ  askkk ~ΞΞΞ +=  where kΞ  is the estimation errorwithout fault and k~Ξ  the estimation error taking intoaccount the presence of faults. We have

( ) +++−=+ ++ kkkk1k1k vF)~(CKA~ ∆ΞΞΞΞ kkk vKw −+Γ (19)or
( ) kkkkk1k vKwCKA −+−=+ ΓΞΞ (20.a)

( ) kkk1k vF~CKA~ ∆ΞΞ +−=+  with 0~0 =Ξ . (20.b)From theorem 2.1, the faults estimation can be givenby kk CLv̂ Ξ∆ = Tqkik1kkk qi1 vvv)vC(L ++= ρ−ρ−ρ− ∆∆∆Ξ KK (21)So, Tqkik1kk qi1 vvv)v̂(E = ρ−ρ−ρ− ∆∆∆∆ KK andlet )v(Eve kkvk ∆∆∆ −=  the fault estimation errorswhich propagates as kkkkk1k )K()C)K(A( vw ΣΠωΓΞΣΠωΞ +−++−=+ (22.a))C)(L( kkkvk v++= ΞΣΠΞ ∆ . (22.b)The estimation errors covariance matrices
{ }Tkkk EP ΞΞ=  and { }vTkvkvk eeEP ∆∆∆ =  satisfy Tkkk1k )C)K(A(P)C)K(A(P ΣΠωΣΠω +−+−=+ Tkk )K)(K(W ΣΠωΣΠω ++++ (23.a)

( )( )( )TkTkkk LICPCLP Σ+Π+Σ+Π=ν∆ (23.b)ICPCH Tkk += . (23.c)The traces of 1kP +  and ν∆kP  are minimized withrespect to kK and kL  if and only if



0)K(CP)C)K(A( TkTTkk =+++−− ΣΣΠωΣΣΠω (24.a)
( ) 0HL Tkk =+ ΣΣΠ  (24.b)The solution of (24) gives

( ) ( ) 1TkTkTbkbk HHCPAK −
−= ΣΣΣΠω (25.a)
( ) 1TkTkk HHL −

−= ΣΣΣΠ (25.b)Since 0T =ΠΣ , (25.a) can be rewritten
( ) 1bTbkbTbkbk VCPCCPAK −

+=  where CAAb Πω−= ,CCb ΣΣΣΣ=  and TbV ΣΣ= . So, the stability andconvergence conditions of the augmented FDF arededuced from the results given in (Keller, 1999) thenin (Jamouli et al.2003).3.FAULT TOLERANT CONTROL WITHMAXIMUM ADAPTATIVITYThe general concept of this approach is illustrated byFig.1 The FDI module consists of residual generationand residual evaluation. Second stage is performanceevaluation and the third stage is represented by thereconfiguration mechanism. Fault detection andisolation must be achieved as soon as possible toavoid huge losses in system performance or evencatastrophic consequences. Once the FDI moduleindicates which sensor or actuator is faulty, the faultmagnitude is estimated and a new control law isadded to the nominal one to thwart the fault effect onthe system.
Plant

FaultReference
input

FDI

ReconfigurationControllerFig. 1: Architecture of the fault tolerant controllerWe recall that the filter designed in the last paragraphhave a dead beat structure. When an impulsive jumpfault occurs r,kkkd δν∆=  at time r , the estimationerror of the filter affected by kν∆  decreased to zeroin a minimal time. This property will be used for thedesign of the control law with a maximumadaptativity to abrupt changes kd .We propose to design a control law of the form
[ ] −=−= kkvxkk vxLLLXu (26)or by the separation principle to compute a controllaw kk LXu −=  for the following systemkk1k uBXAX +=+ (27.a)kk XCy = . (27.b)Consider k1nkk Guu ν−=  where knk xLu −=  is anominal control law designed on the jump-freesystem. kk1k BuxAx +=+ (28.a)

kk xCy = . (28.b)From the state transformation= kkkk xI0 TIx
νν

(29)and the law control knkk Guu ν−= . (30)The noise-free system (27) controlled with (30) canbe equivalently rewritten
( ) ( )knkkk1k 1k Gvu0BxI0 FTAIAx

−+ +−
= +

+

νν
(31.a)

[ ] −= kkk vxCTCy . (31.b)The influence of jumps kv  on ky  isasymptotically rejected if and only if T  and Gsatisfy the following algebraic equations
( ) FBGTIA =+− (32.a)0CT = (32.b)rewritten in the matricial form
[ ] ( ) [ ]0F0B CIAGT TT TTTT = − . (33)Under the existence condition of a solution of (33)given by  −

= − 0C BAIrank00C FBIArank (34)the solution of (33) gives
( )[ ] ( ) FAICBAICG 11 −+− −−= (35)where ( ) ( )FBGAIT −−= −1 . Substituting (35) in(31) gives k1k x)LBA(x −=+ (36.a)kk xCy = (36.b)where LBA−  is stable. The control law

[ ] ν= kkk xGLu (37)is a stabilisante control law which reject the jumpsuncontrollable modes kν . We have
[ ] ν −−= kkk xITIITIGLu 00 (38)
[ ] ν+−= kkxGTLL (39)by the separation principle,
[ ] ν−= ν kkxk x̂̂LLu  with LLx =  andGTLL +=νis a stabilisate control law which rejects in aminimum time the effect of impulsionnel signalr,kkkd δν∆= . It is obvious that performances androbustness of our control law depend on nominalcontrol law knk x̂Lu −= .4. APPLICATIONThe Fault Detection and Isolation filter proposedhere has been applied to a winding machine (fig. 2)representing a subsystem of many industrial systemsas sheet and film processes, steel industries, and soon. The system is composed of three reels driven byDC motors (M1, M2, and M3), gears reduction



coupled with the reels, and a plastic strip. Motor M1corresponds to the unwinding reel, M3 is therewinding reel, and M2 is the traction reel. Theangular velocity of motor M2 ( 2Ω ) and the striptensions between the reels ( 1T , 3T ) are measuredusing a tachometer and tension-meters, respectively.Each motor is driven by a local controller. Torquecontrol is achieved for motors M1 and M3, whilespeed control is realised for motor M2.
M3

M1  M2Angular velocity
Ω2  U2 U3U1

T1 T3
Fig. 2. The winding machineThe control inputs of the three motors are 1U , 2U ,and 3U . 1U  and 3U  correspond to the current setpoints 1I  and 3I  of the local controller. 2U  is theinput voltage of motor M2. In winding processes, themain goal usually consists of controlling tensions 1Tand 3T  and the linear velocity of the strip. Here thelinear velocity is not available for measurement, butsince the traction reel radius is constant, the linearvelocity can be controlled by the angular velocity2Ω .With the sampling interval is sT  = 0.1 s., thelinearized model of the winding machine around theoperating point ( 0u , 0y ) is given by the followingdiscrete state-space representation:

[ ] [ ]T0T0 4.055.06.0y15.06.015.0u =−=with ,0.257100.0101 0.04130.52070.0333 0.019600.4126A −
−
−

=== ,UUUu,TΩTx 321321 .2.07520.0930.0424 0.10510.46580.0928 0.07340.06961.7734B  −−

−
=C is the identity matrix I3. The system described bythese matrices is completely observable andcontrollable.A nominal control law is first set up according to theLQI technique such that the following cost functionis minimised:

( )∑
=

+=
N0k kTkT uux~x~21J kk RQ .The weighting matrices Q  and R  arerespectively nonegative symmetric and positivedefinite symmetric, 3I05.0Q =  and 310 I.R = .In the first scenario the effectiveness of thesecond actuator M2 acting on the strip velocity isreduced by 5% and appears at instant 30s. Accordingto the actuator fault description given earlier, thisfault corresponds to a coefficient 950.+=α  and

appears abruptly on the system. In the secondscenario, the same kind of fault, with a reduction ofcontrol effectiveness of 20% is applied to theactuator M1 acting on the strip tension at instant 82sduring a ramp change of the strip tension. Thesystem outputs are displayed on Fig. 3

Fig3. System outputs with loss of controleffectiveness applied respectively at t=30s on secondactuator (motor M2) and at t=82s on first actuator(motor M1)

Fig4. Reponse of the isolation filter; two residualsare generated

Fig5. System outputs with control reconfigurationFig 5 clearly demonstrate the FTC method’s abilityto compensate for such actuator faults. Indeed, sincean actuator fault acts on the system as a perturbation,and due to the presence of the integral error in the
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