

TWO APPLICATIONS OF ENG-GENES BASED NONLINEAR IDENTIFICATION

Patrick Connally, Kang Li, George W. Irwin

Intelligent Systems & Control Group, School of Electrical & Electronic Engineering
Queen’s University Belfast, UK

Abstract: Nonlinear identification using a novel neural network paradigm, namely eng-
genes, is investigated. A set of MATLAB functions for the training and simulation of
eng-genes based neural models are described. These functions are then used to investigate
the effectiveness of the technique applied to two nonlinear dynamical systems.
Experimental data from a pH neutralisation plant and simulation data from a physical
model of a CSTR process are used to generate ‘eng-genes’ models. The results are
compared with conventional neural models of these plants, showing that simple neural
models with better performance and improved transparency are obtainable using the eng-
genes paradigm. Copyright © 2005 IFAC

Keywords: Neural networks, neural network models, nonlinear systems, system
identification.

Grey-box techniques such as fundamental grey-box
(FGB) modelling (Li, et al., 2004), attempt to include
the advantages of both of the above concepts by
incorporating some ‘a priori’ system knowledge into
a black-box type model structure. In some grey-box
techniques, physical modelling and system
identification are combined to form two intersecting
paths (Bohlin, 1994). However, such methods would
assume that the model structure is at least partially
known a priori. The modelling task is therefore to
identify the unmodelled dynamics or unknown
parameters using black-box methods such as neural
networks (Psichogios and Ungar, 1992). The eng-
genes concept, on the other hand, incorporates
known system nonlinearities into a novel neural
network structure.

1. INTRODUCTION TO ENG-GENES

1.1 Nonlinear System Modelling

Current system modelling techniques fall into three
broad categories: white-box models, black-box
models and grey-box models. White-box modelling
techniques, such as Computational Fluid Dynamics
(CFD), use the physical equations governing the
system in order to predict its behaviour under given
conditions. While this method is very accurate
provided the system equations are sufficiently well-
known, it is very computationally intensive for all
but the simplest of systems, rendering it unsuitable
for real-time use and unwieldy for many offline
applications (Thompson and Li, 2003). Black-box
models, such as linear and nonlinear autoregressive
models and conventional neural networks, are
derived from plant data and may be as simple or
complex as necessary, with obvious trade-offs in
accuracy and complexity. However, due to the
absence of a mechanism for including ‘a priori’
physical knowledge, the accuracy of a black-box
model of a given complexity is very strongly
dependent on the quality of the training data used.

1.2 Eng-genes concept

As universal approximators, artificial neural
networks (ANN) such as the multi-layer perceptron
(MLP) and radial basis function (RBF) networks
have many successful applications. These neural
networks utilise a set of hidden nodes with
homogeneous nonlinear activation functions in order

to give the network its capability to approximate
nonlinear systems. Thus, a logical way to incorporate
a priori system information into a neural network
structure is to use the system’s nonlinearities, or
variations more suitable for neural network
manipulation, as activation functions. This leads to a
novel neural network paradigm – ‘eng-genes’
networks. These could be heterogeneous networks,
in which different hidden layer nodes have different
activation functions.

targets inputs

The most pressing problem in implementing the eng-
genes concept is to select activation functions which
reflect the specific nonlinearities present in the
system. It is proposed to do so by encoding the set of
possible functions and parameters into chromosome
representations, and to evolve these solutions using
genetic algorithms to produce an ‘optimum’ solution.
This idea is behind the name ‘eng-genes’.

2. ENG-GENES FRAMEWORK AND SOFTWARE

2.1 Eng-genes modelling framework

In a conventional neural network structure, once the
number of hidden layers and nodes has been
selected, the only adjustment made to the network is
the modification of the intra-neuron connection
weight and bias values. This may be achieved
through standard back-propagation algorithms and is
relatively straightforward. However, in an eng-genes
network, not only the values of the weights, but also
the type of activation function of each hidden layer
neuron, may be changed in order to best approximate
plant the behaviour. Thus, the following series of
steps are required for eng-genes construction:

Selection of potential activation functions: These
must be derived from the first principle laws for the
engineering system in question. Appropriate ranges
are required for the parameters appearing in these
functions.

Determination of neural network structure: As in a
conventional neural network, the number and size of
hidden layers and the number of inputs to the
network must be chosen. The set of activation
functions and parameters to be used by the eng-genes
network must also be selected. Due to the size of the
potential solution space, genetic algorithms will be
used to select functions and optimise parameters.

Training: The network created above must be
trained, ie. its weights adjusted so as to provide an
acceptable model. This can also be done using
genetic optimisation in conjunction with structure
selection if desired. Training can also be done using
revised neural network training algorithms
specifically designed for eng-genes models. In this
paper, MATLAB functions for training eng-genes
models using back-propagation principles are
applied.

Fig. 1 Flowchart showing usage of eng-genes

software (Version 1, Sept. 2004)

2.2 Software Implementation

To date, software has been implemented in the
MATLAB environment to create an eng-genes
network structure and to train the network from given
input/output plant data. The fundamental difference
between this set of functions, and others designed to
manipulate neural networks in the same environment,
is the capability of using different nonlinear
functions in a heterogeneous hidden layer.

Fig. 1 illustrates typical usage of the new software in
the form of a flowchart.

Initialisation: A new eng-genes network is created
using the function new_eng_nn. This takes as its
inputs an input matrix, a target output vector, and a
vector of integers representing the hidden layer
activation functions. It returns an eng_nn data
structure.

This function may call one of two other functions to
initialise the network weights. The most basic of
these, init_eng_nn, simply initializes the members of
the weight matrices to random numbers between zero
and one. The other, nw_init_eng_nn, uses the
Nguyen-Widrow method (Nguyen and Widrow,
1990) to scatter the hidden nodes evenly across the
input space. This is done by initialising the weight
matrix W such that

RkhW n
1

= (1)

where W is the matrix of weights, h is the number of
hidden nodes, n is the number of input nodes, R is a
matrix of random values with normalised rows, and
0 < k < 1 is used to provide some overlap between
neuron responses in the input space (usually k =
~0.7).

Empty network

structure

activation
functions

Initialisation function,
eg. new_eng_nn init_eng_nn,

Initialised nw_init_eng_nn
network structure

Network Structure

Number of training cycles
 Training function,
Training rate eg.
 lm_train_eng_nn
Target performance level

Trained Network
Performance indicators

New input values sim_eng_nn

Network outputs

Training: The Levenberg-Marquardt algorithm
(Hagan and Menhaj, 1994) is a very commonly used
second-order training method which relies on a
Jacobian matrix, given in equation (2).





















∂

∂

∂

∂

∂

∂

∂

∂

=

mw

)(Ne

1w

)(Ne

mw

)(1e

1w

)(1e

)(
ww

ww

wJ

L

MOM

L

 (2)

where is the vector of weights (both hidden layer
and output layer), ei are the instantaneous errors at
each sample, N is the number of training samples,
and m is the number of weights in the network.

w

In a conventional neural network, derivative values
to be used in the Jacobian are back-propagated
through the network according to:

)i(y
)j(x

))j(x(f
)j(y

e

)j,i(w

e 1k
k

kk

k
q

k
q −

∂

∂

∂

∂
=

∂

∂ (3)

where q = 1,…,N, wk(i,j) is the weight between node
i in layer (k-1) and node j in layer k, yk(j) is the
output of node j in layer k, xk(j) is the sum of
weighted inputs to node j of layer k, and f k is the
activation function used in layer k.

However, for the eng-genes structure, where hidden
node activation functions are not necessarily
homogeneous, the back-propagation formula
becomes:

)i(y
)j(x

))j(x(f

)j(y

e

)j,i(w

e 1k
k

kk
j

k
q

k
q −

∂

∂

∂

∂
=

∂

∂ (4)

where is the activation function of the jth node in
layer k.

k
jf

The weight update for each node is then given by:

() 1
)()(T)(T)()n()1n(

−
+−=+ IwJwJwJweww µ (5)

where e(w) is the vector of instantaneous errors, I is
an m × m identity matrix, and µ is a small scalar.

This algorithm is implemented for eng-genes
networks in the function lm_train_eng_nn.

3. TWO APPLICATIONS OF THE ENG-GENES

METHOD

3.1 Continuously Stirred Tank Reactor (CSTR)

This is a simulated continuously stirred tank reactor
(CSTR) (Morningred, et al., 1990), a chemical
engineering process exhibiting a high degree of
nonlinearity.

 Coolant out

 Coolant in

Ingredients in

Fig. 2 Schematic of a CSTR pla

Physical Characteristics: The sys
single-output, where the input vari
of a coolant qc(t), and the outp
concentration of the product Ca(
exothermic; if uncooled, the heat
slow it down. T(t) is the temperat
Fig. 2 shows a simple schematic
equations (6) and (7) define the ph
between qc(t), Ca(t) and T(t).

 −−= e(t)Ck(t))C(C
v
q(t) aoaaoa

&C

(T
(t)q
 kexp1(t)qk

e(t)CkT(t))(T
v
q(t)T

co
c

3
c2

a1o



















−−

+−=&

where

p

0
1 ρC

∆Ηk
k −= ,

vρC
Cρ

k
p

pcc
2 = ,

A simulation of the physical plant
the Simulink environment using t
given in Table 1.

Table 1 Nominal values for CS

Parameter
Process flowrate q 1
Reactor volume v 1
Reaction rate constant k0

 7
Activation energy E/R 1
Feed temperature T0 3
Inlet coolant temperature Tco 3
Heat of reaction ∆H −
Specific heats Cp, Cpc 1
Liquid densities ρ, ρc 1
Heat transfer coefficient ha 7
Inlet feed concentration Cao 1

Fig. 3 illustrates the nonlinear na
note the increasingly oscillatory
output as the magnitude of the inp
until saturation finally occurs.

Product out

nt

tem is single-input,
able is the flowrate
ut variable is the
t). The reaction is
it generates acts to
ure of the solution.
 of the plant, and
ysical relationship









⋅

−
T(t)R
Exp (6)

T(t))

T(t)R
Exp

−

+







⋅

−
 (7)

pcc

a
3 Cρ

hk =

 was created within
he nominal values

TR parameters

Nominal Value
00 l/min
00 l
.8 × 1010 min-1
 × 104 K
50 K
50 K
2 × 105 cal/mol
 cal/g/K
 × 103 g/l
 × 105 cal/min/K
.0 mol/l

ture of this plant –
 behaviour of the
ut steps increases,

]q)WW(

q)WW(q)WW[(
Ah
1W

34b3b

24b2b14b1b4b

−+

−+−=&
 (10)

0 50 100 150 200 250 300
90

100

110

120
Input - Coolant Flowrate

qc
(t)

 -
l/m

in

0 50 100 150 200 250 300
0

0.5

1
Output - Product Concentration

Time (s)

C
a(

t)
- m

ol
/l

010
10101

1021W

10W

4

2441

24

4

pH
pKpHpHpK

pKpH

4b

14pH
4a

=−
++

×+
+

+

−
−−

−

−

 (11)

Here is the liquid level, W and W are the
reaction invariants of the effluent stream, and ,

 and are the acid, buffer and base flowrates
respectively. The pH measurement is assumed to be
delayed by a transportation lag

h 4a 4b

1q

2q 3q

β so
)(β−= t44 pHpH m . The output time delay is

0.5min and the sampling rate used is 0.25 min.

Fig.3 Nonlinearity evident in the CSTR system.

Generation of modelling data: For a steady-state
output concentration of Ca(t) = 0.1 mol/l, equations
(6), (7) yield values of T(t) = 438.54 K and qc(t) =
103.41 l/min. The system was simulated with a
sampling interval of 0.2 seconds, and subjected to
input consisting of uniformly distributed random
perturbations in the input qc(t) over the range [-10,
10] l/min from the operating point with a zero-order-
hold of 2 seconds. A normally distributed random
signal was added to the output to simulate
measurement noise. Statistics of the data compared
to their nominal values are shown in Table 2.

A data set of 2100 samples was available from the
experimental plant, from which 500 samples were
used for training, and 1600 for validation. Nominal
values for all parameters are given in Table 3. All
input data was zero meaned and normalised.

Table 3 Nominal pH system operating conditions

A = 207 cm2

Cv = 8.75 ml cm-1 s-1

pK1 = 6.35
pK2 = 10.25
Wa1 = 3×10-3 M
Wa2 = -3×10-2 M
Wa3 = -3.05×10-3 M
Wb1 = 0

Wb2 = 3×10-2 M
Wb3 = 5×10-5 M
q1 = 16.6 ml s-1
q2 = 0.55 ml s-1
q3 = 15.6 ml s-1
h = 14.0 cm
pH4 = 7.0
θ = 0.5 mi n

Table 2 Statistics of CSTR data

Data Nominal Mean Variance

qc(t) (l/min) 103.41 103.42 23.41
Ca(t) (mol/l) 0.1000 0.1029 0.0005

The plant data was split into two sets; the first 100
samples were used for modelling, the remaining
2900 as test data to analyse the generalization
performance of the models produced. All data was
zero meaned and normalized such that its variance is
equal to 1.

4. RESULTS

4.1 CSTR results

3.2 The pH neutralisation process
On inspection of equations (6) and (7) governing the
CSTR system, it becomes evident that the plant
derives its nonlinear nature from the Arrhenius terms
of the form given in equation (12).

While the CSTR data was generated from physical
equations, actual plant data is available for the pH
neutralisation process (Hall and Seborg, 1989;
Brown, et al., 1997).








 −
×=

RT
 E

 Ak aexp (12) In this process, acid, buffer, and base solutions are
mixed in a tank, similar to the CSTR plant shown in
figure 1. With a constant buffer flow rate, the flow
rate of the base input to the tank is used to control the
pH value of the effluent.

Here k is the rate coefficient, A is a constant, Ea is the
activation energy, R is the universal gas constant, and
T is the temperature (in degrees Kelvin). The
activation function given in equation (13) was chosen
for use in the hidden-layer neurons.

This plant is highly nonlinear, as gain and dynamics
vary significantly with operating point. Equations (8)
– (11) govern the system behaviour.









+
−

=
bx

ay exp (13)

)hCqqq(
A
1h 5.0

v321 −++=& (8)
where y is the neuron output and x is the weighted
sum of neuron inputs. The set of values for the
constant parameters a and b which have been chosen
by genetic optimisation for this case study are given
in Table 4.

]q)WW(

q)WW(q)WW[(
Ah
1W

34a3a

24a2a14a1a4a

−+

−+−=&
 (9)

0 0.5 1

-0.2

0

0.2

0.4

0.6

0.8

Standard sigmoid neuron

Neuron input x

N
eu

ro
n

ou
tp

ut
 y

-4 -2 0 2

0.93

0.94

0.95

0.96

0.97

0.98

0.99
Eng-genes neuron

Neuron input x

N
eu

ro
n

ou
tp

ut
 y

50 100 150 200 250 300 350 400 450 500 550

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Time (s)

P
ro

du
ct

 C
on

ce
nt

ra
tio

n
(m

ol
/l)

Plant data
Model prediction

Error

Fig. 4 Standard MLP neuron vs. eng-genes neuron

Table 4 CSTR activation function parameters

Neuron a value b value
1 8.8469x10-2 6.8697
2 8.4694x10-3 7.6782
3 2.0781x10-1 6.2040

Fig. 5 Long-term prediction performance of a (5,3,1)
eng-genes network

Fig. 5 shows the long-term prediction performance of
the eng-genes network over the validation data.
 The set of inputs to the neural networks to be created

was also chosen via genetic algorithms, yielding the
set qc(t-2), qc(t-4), qc(t-5), Ca(t-1), Ca(t-5). Neural
networks with two and three hidden neurons were
created, of both eng-genes and MLP types. The eng-
genes networks used hidden nodes with activation
functions of the form given in equation (13). The
two hidden node eng-gene network used parameters
from rows 1 and 2 in Table 4, and the three hidden
node network used parameters from rows 1, 2 and 3.

4.2 pH neutralisation process results

Inspection of equations (8) – (11) resulted in the
selection of two activation functions. The function
given in equation (14) reflects the power function
present in the system in equation (8).

b

20
axy 






 +

= (14)

 Figure 4 shows the distribution of input-output pairs
from a standard sigmoidal MLP neuron and a neuron
of type 1 in Table 4 after the networks had been
trained for 5 epochs. Because of the less bounded
nature of the eng-gene response, the networks were
initialised using the Nguyen-Widrow method with
the value of k (see equation (1)) reduced to 0.1 in
order to begin training from smaller weight values.

As before, y is the neuron output, x is the neuron
input, and a and b are constant parameters. The
second activation function is given in equation (15),
and is used to reflect the relationship of the output
pH4 with the other variables.







 +

=
6

cxy 10log (15)

Five single hidden layer networks of both types (eng-
genes and MLP) with 2 or 3 hidden neurons were
trained for five epochs each, and evaluated for both
one-step-ahead and long-term prediction on both the
modelling and validation sets. Table 5 gives the
average rooted mean squared errors (RMSE) for the
predictions for each of the two network paradigms.

Here c is a constant parameter.

Sets of a, b and c values were again obtained using
genetic optimisation, and are given in table 6. The
network inputs were q3(t-1), q3(t-4) and pH4(t-1).

Table 6 Activation functions for the pH process Table 5 CSTR modelling results

 One step ahead Long-term
 Mod. Val. Mod. Val.

Eng (5,2,1) 0.0046 0.0063 0.0057 0.0078
MLP(5,2,1) 0.0047 0.0065 0.0062 0.0082
Eng (5,3,1) 0.0044 0.0058 0.0048 0.0065
MLP(5,3,1) 0.0045 0.0070 0.0063 0.0091

Neuron Type a value b value c value
1 Log - - 10.084
2 Power 12.835 1.128 -
3 Power 13.529 0.560 -

Again, both eng-genes and MLP networks were
created, containing both 2 and 3 hidden nodes.
Stability considerations in this case required the use
of small initial weight values.

As can be seen in Table 5, the eng-genes network
shows an improvement over the MLP in this
application, with only a few hidden nodes used.
Moreover, as the activation function for the eng-
genes representation was extracted from the
engineering equations governing the CSTR, this a
priori information was preserved in the eng-genes
network.

Five networks of each type were trained until the
one-step-ahead root-mean-square error fell below
0.5. Table 7 gives the average rooted mean squared
errors (RMSE) for each type of network for one-step-
ahead and long-term prediction using both the
modelling and validation datasets.

Table 7 pH Process modelling results

 One step ahead Long-term
 Mod. Val. Mod. Val.

Eng(3,2,1) 0.4930 0.7889 0.7834 1.2502
MLP(3,2,1) 0.4063 0.6813 1.0617 1.3553
Eng(3,3,1) 0.4451 0.5852 0.7003 0.9498
MLP(3,3,1) 0.3965 0.7317 0.8681 1.3444

While the MLP generally performs better in the one-
step-ahead case, the eng-genes network is
consistently more accurate in the long-term case,
which is a more rigorous test of modelling accuracy.
Figure 6 shows the long-term prediction performance
of the (3,3,1) eng-genes network and the (3,3,1) MLP
network over the validation data.

5. CONCLUSION AND FUTURE WORK

This paper has described briefly the concept behind
the eng-genes modelling framework, before giving a
detailed description of a MATLAB software toolbox
for creating and manipulating eng-genes
heterogeneous neural networks. Two nonlinear
engineering systems were then introduced and
described, and data from these systems obtained for
use in a case study to verify the modelling potential
of the eng-genes technique. Activation functions
were derived from known system equations, and
these were used to construct eng-genes networks to
be used in long-term modelling of the systems.
Standard multi-layer perceptron networks were also
constructed to act as a point of comparison.

Note that in the CSTR case, as the data were
generated from the physical equations, the long-term
prediction performances of both the eng-genes and
MLP are satisfactory. With the pH plant, as the data
were acquired from the real system, many
unaccounted factors will have coloured the data, thus
producing a satisfactory neural model is more
difficult. In both cases, however, the eng-genes
networks generally performed better than the MLP’s.

Future work will include refining the activation
functions for the eng-genes framework and testing its
on-line performance.

ACKNOWLEDGEMENTS

Patrick Connally wishes to acknowledge the
financial support of the European Social Fund. Dr K.
Li wishes to acknowledge the financial support of the
UK Engineering and Physical Sciences Research
Council (EPSRC Grant GR/S85191/01).

REFERENCES

Bohlin, T. (1994). A case study of grey-box

identification. Automatica, 30, pp. 307-318.
Brown, M.D., G. Lightbody, and G.W. Irwin (1997).

Nonlinear internal model control using local

model networks. IEE Proc. Control Theory
Appl., 144, pp. 505-514.

Hagan, M.T. and M.B. Menhaj (1994). Training
Feedforward Networks with the Marquardt
Algorithm. IEEE Transactions on Neural
Networks, 5, pp. 989-993.

Hall R.C. and D.E. Seborg (1989). Modelling and
self-tuning control of a multivariable pH
neutralisation process. Part I: Modelling and
multiloop control, Proc. of American Control
Conf, pp. 1822-1827.

Li, K., S. Thompson and J. Peng (2004). Modelling
and prediction of NOx emission in a coal-fired
power generation plant. Control Engineering
Practice, 12, pp. 707-723.

Morningred J.D. et al (1990). An adaptive nonlinear
predictive controller. Proc. of the American
Control Conference, 2, pp. 1614-1619.

Nguyen, D., and B. Widrow (1990). Improving the
learning speed of 2-layer neural networks by
choosing initial values of the adaptive weights.
1990 International Joint Conference on Neural
Networks. 3, pp. 21-26.

Psichogios, D.C., and L.H. Ungar (1992). A Hybrid
Neural Network – First Principles Approach to
Process modelling. AIChE Journal, 38, pp. 1499-
1511.

Thompson, S. and K. Li (2003). Modelling of NOx
emission, In: Thermal power plant simulation,
monitoring and control. (D. Flynn. (Ed)) pp: 243-
268. IEE, London.

0 100 200 300 400
-2

0

2

4

6

8

10

Time (m)

E
ffl

ue
nt

 p
H

Eng-genes long-term prediction

0 100 200 300 400
-2

0

2

4

6

8

10
MLP long-term prediction

Time (m)

E
ffl

ue
nt

 p
H

Plant data
Model prediction

Plant data
Model prediction

Error

Error

Fig. 6 Long-term prediction performance

comparison of a (3,3,1) eng-genes network and a
(3,3,1) MLP network

