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Abstract: Nonlinear identification using a novel neural network paradigm, namely eng-
genes, is investigated. A set of MATLAB functions for the training and simulation of 
eng-genes based neural models are described. These functions are then used to investigate 
the effectiveness of the technique applied to two nonlinear dynamical systems. 
Experimental data from a pH neutralisation plant and simulation data from a physical 
model of a CSTR process are used to generate ‘eng-genes’ models.  The results are 
compared with conventional neural models of these plants, showing that simple neural 
models with better performance and improved transparency are obtainable using the eng-
genes paradigm.  Copyright © 2005 IFAC 
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Grey-box techniques such as fundamental grey-box 
(FGB) modelling (Li, et al., 2004), attempt to include 
the advantages of both of the above concepts by 
incorporating some ‘a priori’ system knowledge into 
a black-box type model structure. In some grey-box 
techniques, physical modelling and system 
identification are combined to form two intersecting 
paths (Bohlin, 1994).  However, such methods would 
assume that the model structure is at least partially 
known a priori.  The modelling task is therefore to 
identify the unmodelled dynamics or unknown 
parameters using black-box methods such as neural 
networks (Psichogios and Ungar, 1992).  The eng-
genes concept, on the other hand, incorporates 
known system nonlinearities into a novel neural 
network structure. 

1. INTRODUCTION TO ENG-GENES 
 
 
1.1 Nonlinear System Modelling 
 
Current system modelling techniques fall into three 
broad categories: white-box models, black-box 
models and grey-box models. White-box modelling 
techniques, such as Computational Fluid Dynamics 
(CFD), use the physical equations governing the 
system in order to predict its behaviour under given 
conditions. While this method is very accurate 
provided the system equations are sufficiently well-
known, it is very computationally intensive for all 
but the simplest of systems, rendering it unsuitable 
for real-time use and unwieldy for many offline 
applications (Thompson and Li, 2003).  Black-box 
models, such as linear and nonlinear autoregressive 
models and conventional neural networks, are 
derived from plant data and may be as simple or 
complex as necessary, with obvious trade-offs in 
accuracy and complexity.  However, due to the 
absence of a mechanism for including ‘a priori’ 
physical knowledge, the accuracy of a black-box 
model of a given complexity is very strongly 
dependent on the quality of the training data used. 

 
 
1.2 Eng-genes concept 
 
As universal approximators, artificial neural 
networks (ANN) such as the multi-layer perceptron 
(MLP) and radial basis function (RBF) networks 
have many successful applications. These neural 
networks utilise a set of hidden nodes with 
homogeneous nonlinear activation functions in order 

     



to give the network its capability to approximate 
nonlinear systems. Thus, a logical way to incorporate 
a priori system information into a neural network 
structure is to use the system’s nonlinearities, or 
variations more suitable for neural network 
manipulation, as activation functions. This leads to a 
novel neural network paradigm – ‘eng-genes’ 
networks.  These could be heterogeneous networks, 
in which different hidden layer nodes have different 
activation functions. 

targets inputs 

 
The most pressing problem in implementing the eng-
genes concept is to select activation functions which 
reflect the specific nonlinearities present in the 
system. It is proposed to do so by encoding the set of 
possible functions and parameters into chromosome 
representations, and to evolve these solutions using 
genetic algorithms to produce an ‘optimum’ solution. 
This idea is behind the name ‘eng-genes’. 
 
 
2. ENG-GENES FRAMEWORK AND SOFTWARE 
 
 
2.1 Eng-genes modelling framework 
 
In a conventional neural network structure, once the 
number of hidden layers and nodes has been 
selected, the only adjustment made to the network is 
the modification of the intra-neuron connection 
weight and bias values. This may be achieved 
through standard back-propagation algorithms and is 
relatively straightforward. However, in an eng-genes 
network, not only the values of the weights, but also 
the type of activation function of each hidden layer 
neuron, may be changed in order to best approximate 
plant the behaviour. Thus, the following series of 
steps are required for eng-genes construction: 
 
Selection of potential activation functions: These 
must be derived from the first principle laws for the 
engineering system in question. Appropriate ranges 
are required for the parameters appearing in these 
functions. 
 
Determination of neural network structure:  As in a 
conventional neural network, the number and size of 
hidden layers and the number of inputs to the 
network must be chosen. The set of activation 
functions and parameters to be used by the eng-genes 
network must also be selected.  Due to the size of the 
potential solution space, genetic algorithms will be 
used to select functions and optimise parameters. 
 
Training: The network created above must be 
trained, ie. its weights adjusted so as to provide an 
acceptable model. This can also be done using 
genetic optimisation in conjunction with structure 
selection if desired. Training can also be done using 
revised neural network training algorithms 
specifically designed for eng-genes models. In this 
paper, MATLAB functions for training eng-genes 
models using back-propagation principles are 
applied. 

 
Fig. 1 Flowchart showing usage of eng-genes 

software (Version 1, Sept. 2004) 
 
 
2.2 Software Implementation  
 
To date, software has been implemented in the 
MATLAB environment to create an eng-genes 
network structure and to train the network from given 
input/output plant data. The fundamental difference 
between this set of functions, and others designed to 
manipulate neural networks in the same environment, 
is the capability of using different nonlinear 
functions in a heterogeneous hidden layer. 
 
Fig. 1 illustrates typical usage of the new software in 
the form of a flowchart. 
 
Initialisation:  A new eng-genes network is created 
using the function new_eng_nn. This takes as its 
inputs an input matrix, a target output vector, and a 
vector of integers representing the hidden layer 
activation functions. It returns an eng_nn data 
structure. 
 
This function may call one of two other functions to 
initialise the network weights.  The most basic of 
these, init_eng_nn, simply initializes the members of 
the weight matrices to random numbers between zero 
and one. The other, nw_init_eng_nn, uses the 
Nguyen-Widrow method (Nguyen and Widrow, 
1990) to scatter the hidden nodes evenly across the 
input space.  This is done by initialising the weight 
matrix W such that 
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where W is the matrix of weights, h is the number of 
hidden nodes, n is the number of input nodes, R is a 
matrix of random values with normalised rows, and  
0 < k < 1 is used to provide some overlap between 
neuron responses in the input space (usually k = 
~0.7). 
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Training:  The Levenberg-Marquardt algorithm 
(Hagan and Menhaj, 1994) is a very commonly used 
second-order training method which relies on a 
Jacobian matrix, given in equation (2). 
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where  is the vector of weights (both hidden layer 
and output layer), ei are the instantaneous errors at 
each sample, N is the number of training samples, 
and m is the number of weights in the network.  

w

 
In a conventional neural network, derivative values 
to be used in the Jacobian are back-propagated 
through the network according to: 
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where q = 1,…,N, wk(i,j) is the weight between node 
i in layer (k-1) and node j in layer k, yk(j) is the 
output of node j in layer k, xk(j) is the sum of 
weighted inputs to node j of layer k, and f k is the 
activation function used in layer k. 
 
However, for the eng-genes structure, where hidden 
node activation functions are not necessarily 
homogeneous, the back-propagation formula 
becomes: 
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where  is the activation function of the jth node in 
layer k. 

k
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The weight update for each node is then given by: 
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where e(w) is the vector of instantaneous errors, I is 
an m × m identity matrix, and µ is a small scalar. 
 
This algorithm is implemented for eng-genes 
networks in the function lm_train_eng_nn. 
 

 
3. TWO APPLICATIONS OF THE ENG-GENES 

METHOD 
 
 

3.1 Continuously Stirred Tank Reactor (CSTR) 
 
This is a simulated continuously stirred tank reactor 
(CSTR) (Morningred, et al., 1990), a chemical 
engineering process exhibiting a high degree of 
nonlinearity. 
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A simulation of the physical plant
the Simulink environment using t
given in Table 1. 
 

Table 1 Nominal values for CS
 

Parameter 
Process flowrate q 1
Reactor volume v 1
Reaction rate constant k0

 7
Activation energy E/R 1
Feed temperature T0 3
Inlet coolant temperature Tco 3
Heat of reaction ∆H −
Specific heats Cp, Cpc 1
Liquid densities ρ, ρc 1
Heat transfer coefficient ha 7
Inlet feed concentration Cao  1

 
Fig. 3 illustrates the nonlinear na
note the increasingly oscillatory
output as the magnitude of the inp
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Here  is the liquid level, W  and W are the 
reaction invariants of the effluent stream, and , 

 and  are the acid, buffer and base flowrates 
respectively. The pH measurement is assumed to be 
delayed by a transportation lag 

h 4a 4b

1q

2q 3q

β  so 
)( β−= t44 pHpH m .  The output time delay is 

0.5min and the sampling rate used is 0.25 min.   

Fig.3 Nonlinearity evident in the CSTR system. 
 
Generation of modelling data:  For a steady-state 
output concentration of Ca(t) = 0.1 mol/l, equations 
(6), (7) yield values of T(t) = 438.54 K and qc(t) = 
103.41 l/min. The system was simulated with a 
sampling interval of 0.2 seconds, and subjected to 
input consisting of uniformly distributed random 
perturbations in the input qc(t) over the range [-10, 
10] l/min from the operating point with a zero-order-
hold of 2 seconds. A normally distributed random 
signal was added to the output to simulate 
measurement noise. Statistics of the data compared 
to their nominal values are shown in Table 2. 

 
A data set of 2100 samples was available from the 
experimental plant, from which 500 samples were 
used for training, and 1600 for validation. Nominal 
values for all parameters are given in Table 3. All 
input data was zero meaned and normalised. 
 

Table 3 Nominal pH system operating conditions 
 

A = 207 cm2 

Cv = 8.75 ml cm-1 s-1 

pK1 = 6.35 
pK2 = 10.25 
Wa1 = 3×10-3 M 
Wa2 = -3×10-2 M 
Wa3 = -3.05×10-3 M 
Wb1 = 0  

Wb2 = 3×10-2 M 
Wb3 = 5×10-5 M 
q1 = 16.6 ml s-1 
q2 = 0.55 ml s-1 
q3 = 15.6 ml s-1 
h = 14.0 cm 
pH4 = 7.0 
θ = 0.5 mi  n 

 
Table 2 Statistics of CSTR data 

 
Data Nominal Mean Variance 

qc(t) (l/min) 103.41 103.42 23.41 
Ca(t) (mol/l) 0.1000  0.1029 0.0005 

 
The plant data was split into two sets; the first 100 
samples were used for modelling, the remaining 
2900 as test data to analyse the generalization 
performance of the models produced. All data was 
zero meaned and normalized such that its variance is 
equal to 1. 

 
 

4. RESULTS 
 
  
4.1 CSTR results  

3.2 The pH neutralisation process  
On inspection of equations (6) and (7) governing the 
CSTR system, it becomes evident that the plant 
derives its nonlinear nature from the Arrhenius terms 
of the form given in equation (12). 

 
While the CSTR data was generated from physical 
equations, actual plant data is available for the pH 
neutralisation process (Hall and Seborg, 1989; 
Brown, et al., 1997).  
 








 −
×=

RT
 E

 Ak aexp   (12) In this process, acid, buffer, and base solutions are 
mixed in a tank, similar to the CSTR plant shown in 
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Here k is the rate coefficient, A is a constant, Ea is the 
activation energy, R is the universal gas constant, and 
T is the temperature (in degrees Kelvin). The 
activation function given in equation (13) was chosen 
for use in the hidden-layer neurons. 

 
This plant is highly nonlinear, as gain and dynamics 
vary significantly with operating point. Equations (8) 
– (11) govern the system behaviour.  
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where y is the neuron output and x is the weighted 
sum of neuron inputs.  The set of values for the 
constant parameters a and b which have been chosen 
by genetic optimisation for this case study are given 
in Table 4. 

]q)WW(

q)WW(q)WW[(
Ah
1W

34a3a

24a2a14a1a4a

−+

−+−=&
         (9) 

     



0 0.5 1

-0.2

0

0.2

0.4

0.6

0.8

Standard sigmoid neuron

Neuron input x

N
eu

ro
n 

ou
tp

ut
 y

-4 -2 0 2

0.93

0.94

0.95

0.96

0.97

0.98

0.99
Eng-genes neuron

Neuron input x

N
eu

ro
n 

ou
tp

ut
 y

 

50 100 150 200 250 300 350 400 450 500 550

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Time (s)

P
ro

du
ct

 C
on

ce
nt

ra
tio

n 
(m

ol
/l)

Plant data
Model prediction
 

Error 

 

Fig. 4 Standard MLP neuron vs. eng-genes neuron 
 

Table 4 CSTR activation function parameters 
 

Neuron a value b value 
1 8.8469x10-2 6.8697 
2 8.4694x10-3 7.6782 
3 2.0781x10-1 6.2040 

Fig. 5 Long-term prediction performance of a (5,3,1) 
eng-genes network 

 
Fig. 5 shows the long-term prediction performance of 
the eng-genes network over the validation data.  
 The set of inputs to the neural networks to be created 

was also chosen via genetic algorithms, yielding the 
set qc(t-2), qc(t-4), qc(t-5), Ca(t-1), Ca(t-5).  Neural 
networks with two and three hidden neurons were 
created, of both eng-genes and MLP types.  The eng-
genes networks used hidden nodes with activation 
functions of the form given in equation (13).  The 
two hidden node eng-gene network used parameters 
from rows 1 and 2 in Table 4, and the three hidden 
node network used parameters from rows 1, 2 and 3. 

 
4.2 pH neutralisation process results 
 
Inspection of equations (8) – (11) resulted in the 
selection of two activation functions. The function 
given in equation (14) reflects the power function 
present in the system in equation (8). 
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 Figure 4 shows the distribution of input-output pairs 
from a standard sigmoidal MLP neuron and a neuron 
of type 1 in Table 4 after the networks had been 
trained for 5 epochs. Because of the less bounded 
nature of the eng-gene response, the networks were 
initialised using the Nguyen-Widrow method with 
the value of k (see equation (1)) reduced to 0.1 in 
order to begin training from smaller weight values. 

As before, y is the neuron output, x is the neuron 
input, and a and b are constant parameters. The 
second activation function is given in equation (15), 
and is used to reflect the relationship of the output 
pH4 with the other variables. 
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Five single hidden layer networks of both types (eng-
genes and MLP) with 2 or 3 hidden neurons were 
trained for five epochs each, and evaluated for both 
one-step-ahead and long-term prediction on both the 
modelling and validation sets. Table 5 gives the 
average rooted mean squared errors (RMSE) for the 
predictions for each of the two network paradigms. 

 
Here c is a constant parameter. 
 
Sets of a, b and c values were again obtained using 
genetic optimisation, and are given in table 6. The 
network inputs were q3(t-1), q3(t-4) and pH4(t-1). 
 

Table 6 Activation functions for the pH process   Table 5 CSTR modelling results 
 

 One step ahead Long-term 
 Mod. Val. Mod. Val. 

Eng (5,2,1) 0.0046 0.0063 0.0057 0.0078 
MLP(5,2,1) 0.0047 0.0065 0.0062 0.0082 
Eng (5,3,1) 0.0044 0.0058 0.0048 0.0065 
MLP(5,3,1) 0.0045 0.0070 0.0063 0.0091 

Neuron Type a value b value c value 
1 Log - - 10.084 
2 Power 12.835 1.128 - 
3 Power 13.529 0.560 - 

 
Again, both eng-genes and MLP networks were 
created, containing both 2 and 3 hidden nodes.  
Stability considerations in this case required the use 
of small initial weight values. 

 
As can be seen in Table 5, the eng-genes network 
shows an improvement over the MLP in this 
application, with only a few hidden nodes used. 
Moreover, as the activation function for the eng-
genes representation was extracted from the 
engineering equations governing the CSTR, this a 
priori information was preserved in the eng-genes 
network. 

 
Five networks of each type were trained until the 
one-step-ahead root-mean-square error fell below 
0.5. Table 7 gives the average rooted mean squared 
errors (RMSE) for each type of network for one-step-
ahead and long-term prediction using both the 
modelling and validation datasets. 
 

     



Table 7 pH Process modelling results 
 

 One step ahead Long-term 
 Mod. Val. Mod. Val. 

Eng(3,2,1) 0.4930 0.7889 0.7834 1.2502 
MLP(3,2,1) 0.4063 0.6813 1.0617 1.3553 
Eng(3,3,1) 0.4451 0.5852 0.7003 0.9498 
MLP(3,3,1) 0.3965 0.7317 0.8681 1.3444 

     

 
While the MLP generally performs better in the one-
step-ahead case, the eng-genes network is 
consistently more accurate in the long-term case, 
which is a more rigorous test of modelling accuracy.  
Figure 6 shows the long-term prediction performance 
of the (3,3,1) eng-genes network and the (3,3,1) MLP 
network over the validation data. 
 
 

5. CONCLUSION AND FUTURE WORK 
 

This paper has described briefly the concept behind 
the eng-genes modelling framework, before giving a 
detailed description of a MATLAB software toolbox 
for creating and manipulating eng-genes 
heterogeneous neural networks. Two nonlinear 
engineering systems were then introduced and 
described, and data from these systems obtained for 
use in a case study to verify the modelling potential 
of the eng-genes technique. Activation functions 
were derived from known system equations, and 
these were used to construct eng-genes networks to 
be used in long-term modelling of the systems. 
Standard multi-layer perceptron networks were also 
constructed to act as a point of comparison.  
 
Note that in the CSTR case, as the data were 
generated from the physical equations, the long-term 
prediction performances of both the eng-genes and 
MLP are satisfactory. With the pH plant, as the data 
were acquired from the real system, many 
unaccounted factors will have coloured the data, thus 
producing a satisfactory neural model is more 
difficult. In both cases, however, the eng-genes 
networks generally performed better than the MLP’s. 
 
Future work will include refining the activation 
functions for the eng-genes framework and testing its 
on-line performance.  
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Fig. 6 Long-term prediction performance 

comparison of a (3,3,1) eng-genes network and a 
(3,3,1) MLP network 


