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1. INTRODUCTION

The problem of observer design for standard sys-
tems with unknown inputs has received consider-
able attention in the last two decades (Darouach
et al., 1994; Guan and Saif, 1991; Hou and Müller,
1992; Hou and Müller, 1999; Syrmos, 1993; Yang
and Wilde, 1988). This problem is of great impor-
tance in theory and practice, since there are many
situations where part of inputs or disturbances are
inaccessible.

Recently, a great deal of work has been de-
voted to the observer design for descriptor sys-
tems (Muller and Hou, 1993; Paraskevopoulos and
Koumboulis, 1992; Shafai and Carroll, 1987), but
only in few works the problem of the design of
unknown-input observer for descriptor systems
(Darouach et al., 1996; Yang and Ta, 1989) was
considered. Many practical systems can be de-
scribed by descriptor models, and the fault di-
agnosis of these systems may be based on the
unknown input observer design. Descriptor sys-
tems give many not obvious opportunities, one of
which is a recently developed new concept of per-

fect observers(Kaczorek, 2000). The idea has been
extended for standard linear systems (Kaczorek,
2001a), singular 2-D linear systems (Kaczorek,
2001b) and functional observers (Kaczorek, 2002).
Recently (Krzemiński and Kaczorek, 2003) the
problem of perfect unknown-input observer for
singular systems has been formulated and solved.

In this paper the concept of a perfect reduced-
order unknown-input observer is extended for
standard systems or in other words the concept
of a perfect observer for standard linear systems
(Kaczorek and S lawiński, 2002) is extended for
unknown inputs.

2. PROBLEM FORMULATION

Let R
n×m be the set of n × m real matrices and

R
n = R

n×1.

Consider the continuous-time linear system

ẋ = Ax + Bu + Dv (1)

y = Cx



where ẋ = dx
dt

, x ∈ R
n is the state vector,

u ∈ R
q - input vector, v ∈ R

m - unknown input
(disturbance) vector, y ∈ R

p - output vector and
A ∈ R

n×n, B ∈ R
n×q, D ∈ R

n×m, C ∈ R
p×n.

The initial condition for (1) is given by x0.

It is assumed that rank C = p < n. It is
not a strong assumption, because we can always
eliminate linearly dependent outputs or in case
rank C = n find x from y using x = C−1y. From
the same reasons it is assumed rank D = m.

We are looking for an r order observer of the form

E1ż = Fz + Gu + Hy (2)

x̂ = Pz + Qy

that for t > 0 reconstructs exactly semi-state
vector x without knowledge of v, where z ∈ R

r

is observer state vector, x̂ is the estimate of x,
E1, F ∈ R

r×r, det E1 = 0, G ∈ R
r×q, H ∈ R

r×p,
P ∈ R

n×r and Q ∈ R
n×p. The initial condition

for (2) is given by x̂0 and in general is different
from x0.

Let e ∈ R
r be the observer error and

e = z − Tx (3)

where T ∈ R
r×n. Differentiating (3) with respect

to time and using (1) and (2) we get

E1ė = E1ż − E1T ẋ

= Fz + Gu + HCx − E1TAx − E1TBu − E1TDv

= Fz − FTx + FTx + HCx + Gu − E1TAx

−E1TBu − E1TDv

= F (z − Tx) + (FT − E1TA + HC) x +

+ (G − E1TB) u − E1TDv

If

E1TB = G (4)

FT − E1TA + HC = 0 (5)

E1TD = 0 (6)

then
E1ė = Fe. (7)

Note that

x̂ − x = Pz + QCx − x =

= Pz + QCx + PTx − PTx − x =

= P (z − Tx) + (QC + PT − In) x =

= P (z − Tx) = Pe

if

PT + QC =
[

P Q
]

[

T

C

]

= In. (8)

It is possible to show (Kaczorek, 2002), that if

det (E1s − F ) = α 6= 0, (9)

where α does not depend on s, then error e is
equal zero for all t > 0.

Problem: Given matrices A, B, C, D. Find E1,
F , G, H, T , P , Q such, that (4), (5), (6), (8) and
(9) are satisfied.

3. THE MAIN RESULT

The condition (5) can be rewritten as

[

F H
]

[

T

C

]

= E1TA

If rank F = r then from Sylvester inequality we
get r + n − (r + p) ≤ rankE1TA, and because
det E1 = 0 the conclusion is r > n − p.

Due to the fact, that rank E1TD = 0 we get
rank E1T + m − n ≤ 0 and rank E1T ≤ n − m.
From this we get rank E1 ≤ n−m. Hence we have
p ≥ m.

Lemma 1. There exists pair (L,R) of nonsingular
matrices that allow us to transform the matrices
of the given system (1) to the forms

LAR = Ã =

[

A1 A2

A3 A4

]

, (10)

CR = C̃ =
[

0 Ip

]

,

LD = D̃ =

[

D1

D2

]

,

where A1 ∈ R
(n−p)×(n−p), A2 ∈ R

(n−p)×p,
A3 ∈ R

p×(n−p), A4 ∈ R
p×p, D1 =

[

In−p 0
]

∈

R
(n−p)×m, D2 =

[

0 Im+p−n

0 0

]

∈ R
p×m if and

only if rank C = p and rank D = m and p 6 m.

Proof. There exists a nonsingular matrix R1,
such that CR1 =

[

C1 C2

]

, where C2 ∈ R
p×p

and rank C2 = p, if and only if rank C = p. Then

CR = CR1R2 =
[

C1 C2

]

[

In−p 0
−C−1

2 C1 C−1
2

]

=
[

0 Ip

]

.

Using similar method with

L2 =

[

D̂−1
1 0

−D̂−1
1 D̂2 In−m

]

and proper division into blocks we get the forms
of D1 and D2. The form of Ã is the consequence
of use of above transformations. �

The state vector of the system in the canonical
form (10) is given by x̃ = R−1x.



Using the fact that p < n we can conclude that
rank D2 is not full.

Let r = 2n − m − p. Let us choose E1 and F in
forms

E1 =

[

In−p 0
0 0n−m

]

, F =

[

0 In−p

αIn−m 0

]

.

(11)
It is easy to check (Kaczorek, 2002) that such
choice satisfies the condition (9).

Let

T =

[

T1 T2

T3 T4

]

where T1 ∈ R
(n−m)×(n−p), T2 ∈ R

(n−m)×(p),
T3 ∈ R

(n−p)×(n−p), T4 ∈ R
(n−p)×(p) and

X = FT − E1TÃ. (12)

It is possible to find H from the equation HC =
−X if and only if

rank C̃ = rank

[

X

C̃

]

(13)

From (13) it follows that all entries of the first
n − p columns of X must be equal 0.

Let T = [tij ] ; i = 1, . . . , r; j = 1, . . . , n and

Ã = [aij ] ; i = 1, . . . , n; j = 1, . . . , n. Using (11)
and (12) we get

X =

[

0 In−p

αIn−m 0

]







t11 . . . t1,n

...
. . .

...
tr,1 . . . tr,n







−





















t11 . . . t1,n

...
. . .

...
tn−p,1 . . . tn−p,n

0 . . . 0
...

. . .
...

0 . . . 0



























a1,1 . . . a1,n

...
. . .

...
an,1 . . . an,n







=





















tn−m+1,1 . . . tn−m+1,n

...
. . .

...
t2n−m−p,1 . . . t2n−m−p,n

αt11 . . . αt1,n

...
. . .

...
αtn−m,1 . . . αtn−m,n





















−





















c1,1 . . . c1,n

...
. . .

...
cn−p,1 . . . cn−p,n

0 . . . 0
...

. . .
...

0 . . . 0





















(14)

where ci,j =
∑n

k=1 ti,kak,j .

Because α 6= 0, to satisfy (13) and the condition,
that first n − p columns of X must be equal

0, we need ti,j = 0 for i = 1, . . . , n − m and
j = 1, . . . , n − p, which is equal to T1 = 0, what
implies rank D2 < m (what is satisfied due to the
canonical form).

From the equation (8) it comes that

rank

[

T

C

]

= rank





T1 T2

T3 T4

0 Ip



 = n (15)

If T1 = 0 then we need rank T3 = n − p.

Let

T̄2 =







t1,n−p+1 . . . t1,n

...
. . .

...
tn−p,n−p+1 . . . tn−p,n






∈ R

(n−p)×p,

so it is T2 without last p − m rows. What
we need is tn−m+i,j = ci,j =

∑n

l=1 ti,lal,j =
∑n

l=n−p+1 ti,lal,j for i, j = 1, . . . , n − p which is
equivalent to

T3 = T̄2A3. (16)

If, as we show above, T1 = 0 and we have to satisfy
the condition (15) then we need rank T3 = n− p.
If p < n − p then this can not be satisfied. If, in
opposite case, p ≥ n−p, then because T̄2 was build
on the basis of the kernels of D and its rows are
linearly independent, then T̄2 has full rank equal
to n − p and what we need is rank A3 = n − p.

In this moment it becomes obvious why we have
to set r = 2n − m − p: it is needed to have
rank T3 = n − p.

Let X1 be a matrix constructed from columns
number n − p + 1, . . . , 2n − m − p of X. Because
HC = H

[

0 Im

]

= X =
[

0 X1

]

we get

H = X1 (17)

From (8) we have

R =
[

P Q
]

[

T

C

]

R =
[

P Q
]

[

TR

C̄

]

.

Due to the fact that R is a nonsingular matrix
it does not change the rank of the matrices it
multiplies. So we get

[

P Q
]

= R

[

TR

C̄

]+

(18)

where + stands for Moore-Penrose’s inverse.

From the above considerations we have:

Procedure.

1. Find nonsingular matrices L and R trans-
forming the system (1) to the form (10).
2. Choose E1 and F according to (11).
3. Choose T1 = 0 and T2 of rank n − m.
4. Using ti,j found in step 3 and (16) find ti,j
(i = n−m+1, . . . , 2n−m−p; j = 1, . . . , n−p).



5. Take any values as ti,j (i = n − m +
1, . . . , 2n − m − p; j = n − p + 1, . . . , n) and
find G using (4) and H from (17).

6. Find P and Q from the formula (18).

Using (10) we get
[

L 0
0 I

] [

Is − A D

C 0

] [

R 0
0 I

]

=

=





LRs − A1 −A2 D1

−A3 LRs − A4 D2

0 Ip 0





(19)

At the beginning we assumed rank D = m. Be-
cause of the canonical forms of D1 and D2, using
elementary operations we can eliminate entries
depending on s from LRs−A1 using D1 and from
Is − A4 using Ip. Hence

rank

[

Is − A D

C 0

]

= n + m for all s ∈ C

if and only if rank A3 = n − p.

Another conclusion coming from (19) is that as-
sumption p ≥ n − p needed for the Procedure is
satisfied if p ≥ m because p + m ≥ n.

Therefore we have proved the following theorem:

Theorem. The observer (2) may be constructed
using the Procedure if and only if the conditions

a) p > m,

b) rank

[

Is − A D

C 0

]

= n + m for all s ∈ C,

are satisfied.

4. EXAMPLE

Find the perfect reduced-order unknown-input
observer for the system of the form (1) with

A =













−1 0 0 0 0
0 −2 0 0 0
1 0 −3 0 0
0 1 0 −4 0
0 0 1 0 −5













, B =













0 0
0 0
1 0
0 1
0 0













,

D =













1 0
0 1
0 0
0 0
0 0













, C =





0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



 .

The given system is in the canonical form. It is
easy to check that it satisfies the conditions of the
Theorem. Number of disturbances is m = 2 and
number of outputs is p = 3 so from (11) we get

E1 =













1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













, F =













0 0 0 1 0
0 0 0 0 1
α 0 0 0 0
0 α 0 0 0
0 0 α 0 0













.

According to the third step of the Procedure we
choose

[

T1 T2

]

=











0 0
... 1 0 0

0 0
... 0 1 0

0 0
... 0 0 1











.

Using (16) we get all other entries of matrix T

T =













0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0













. (20)

Using (20) and (12) we obtain

X =













0 0 −3 0 0
0 0 0 −4 0
0 0 −α 0 0
0 0 0 −α 0
0 0 0 0 −α













. (21)

Using (17) and (21) we get

H =













−3 0 0
0 −4 0
−α 0 0
0 −α 0
0 −α 0













.

Using (4) and (20) we obtain

G =













1 0
0 1
0 0
0 0
0 0













.

Using (18) and (20) we get

P =













0 0 0 1 0
0 0 0 0 1

0.5 0 0 0 0
0 0.5 0 0 0
0 0 0.5 0 0













and Q =













0 0 0
0 0 0

0.5 0 0
0 0.5 0
0 0 0.5













.

5. SIMULATIONS

Simulations were prepared in Matlab and Simulink.
Although they are the most sophisticated software
available, they can not deal with simulations of all
singular systems (Shampine et al., 1999). How-
ever, the choice of the form of the observer (11)
allows us to transform the system (2) into







ż1

...
żn−p






=







zn−m+1

...
z2n−p−m






+ G1u + H1y

0 = F̂







z1

...
zn−m






+ G2u + H2y



where F̂ = αIn−m, G =

[

G1

G2

]

, G1 ∈ R
(n−p)×q

and H =

[

H1

H2

]

, H1 ∈ R
(n−p)×p. Because F̂ is

square and nonsingular, we can find z1, . . . , zn−m

from






z1

...
zn−m






= −F̂−1 (G2u + H2y)

and using the derivative of just found z1, . . . , zn−m

find the rest of the vector z with






zn−m+1

...
z2n−p−m






=







ż1

...
żn−p






− G1u − H1y.

The realization of ideal derivative mentioned
above is the only problem with simulations in
Matlab, but by reducing the solver step size we
can make this error negligible.

Then, for the observer constructed in section 5,

with initial conditions x0 =
[

1 2 3 −1 −2
]T

and
for α = 10, we get:

−2 0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Fig. 1. The state vector of the given system

−2 0 2 4 6 8 10
−4

−2

0

2

4

6

8

10

[s] 

Fig. 2. The estimates (the outputs of the observer)

The figures 2 ÷ 4 show that at t = 0, the
state variables of the observer change their values
impulsively due to the difference between the
initial conditions of the system and the observer.

This is also the reason for the huge error of the
estimation at t = 0. But, as it is for perfect
observers, for t > 0 we have error equal almost
0 (due to the numerical realization of the ideal
derivative) - as it can be seen on the figure 5.

−2 0 2 4 6 8 10
−1

0

1

2

3

4

5

6

7

8

[s] 

Fig. 3. The error of the estimation of the first state
variable

−2 0 2 4 6 8 10
−6

−5

−4

−3

−2

−1

0

1

[s] 

Fig. 4. The error of the estimation of the second
state variable

−2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4
x 10

−16

[s] 

Fig. 5. The error of the estimation of the state
variable number 3-5

It is important to notice that choice of α does not
influence the result.



6. CONCLUSIONS AND OPEN PROBLEMS

The problem of the design of a perfect reduced-
order unknown-input observer for standard sys-
tems has been formulated and solved. The proce-
dure of designing the observer using well-known
canonical form has been proposed. Necessary and
sufficient conditions for the solvability of the pro-
cedure were given. The method was illustrated
by a numerical example and by the plots of the
system states, observer outputs and errors.

The most important open problem are necessary
and sufficient conditions for the existence of the
observer. Other open problems are extensions of
the considerations for 2D systems and for the
perfect functional reduced-order unknown-input
observers.
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