

DEPENDABLE SOFTWARE IN RAILWAY SIGNALLING

Timothy L. Johnson1, Hunt A. Sutherland1, Bart Ingleston1, and Bruce H. Krogh2

1Computing and Decision Sciences
GE Global Research (K-1, 5C30A)

1 Research Circle
Niskayuna, NY 12309

Corresponding Author: johnsontl@research.ge.com

2Chair, Dept. of Electrical & Computer Engineering
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

Abstract: Railway signalling software and safety requirements are summarized, and
three short examples of the application of new methods to the assurance of dependability
are provided. The strengths and shortcomings of existing methods relative to application
needs are illustrated. The analogy between railway signalling and other distribution
processes in manufacturing and supply chain management is noted. Copyright © 2005
IFAC

Keywords: Railways, formal verification, safety analysis, signals, software safety.

1. INTRODUCTION AND BACKGROUND –
RAILWAY SIGNALLING DEPENDABILITY

Dependable signalling has been an inherent
requirement of safe railway operation since the
inception of railways. Some of Thomas Edison’s
first inventions involved reliable telegraphy for
railroad communications (US Patent Office, 1886).
As railway signalling devices were digitized in the
1980’s and 1990’s, some of the burden of
dependability shifted from hardware to software: not
only did the computational hardware have to meet
high reliability standards, but also the logic of the
software (formerly contained in railroad relay
wiring) also had to be correct under all
circumstances. In addition, the scope of safety
concerns has increased beyond dependability of the
core program logic to its correct operation under a
variety of unusual circumstances (e.g., relative
timing of events, interoperability) that previously
were the responsibility of dispatchers to resolve.
Today, a number of dependability and safety
standards (e.g., CENELEC, 1997) govern railway
signalling equipment. Rigorous safety certification

and test procedures exist at many levels. Still,
serious accidents, such as a recent collision of two
passenger trains in New York City’s Penn Station,
can occur (CNN, 2004).

The purpose of this paper is to examine some
emerging approaches to achieving the higher level of
certainty that may be required as more and more
signalling operations become partially or fully
automated. Present test procedures for executable
code are extremely time consuming and expensive,
and are themselves subject to error; standard
methods of testing executable code require test sets
that grow rapidly in size with the complexity of
automated logic. Formal methods and other new
design process improvements may be applied at
many steps during the product development process,
from requirements definition through source code
logic verification, offering an opportunity to apply
high performance computing to improve both design
dependability and test coverage (Morel, et al, 2004).
They offer the assurance of logical consistency
across large, complex signalling applications.
Anticipating these needs, GE and Carnegie Mellon

University have explored potential uses of emerging
methods for improvement of dependability of future
railway signalling systems. Some of initial findings
and examples from this work are reported in this
paper.

Railway networks exhibit many conceptual analogies
with automated material handling systems that are
widely used in most advanced manufacturing plants,
and more broadly, with other wide area
transportation networks that implement supply
chains, and to product distribution systems and are
becoming more tightly integrated with “just in time”
manufacturing systems. This abstraction is
considered important in linking this topic to the area
of “dependable manufacturing systems”.

2. SAFETY REQUIREMENTS FOR RAILWAY
SIGNALLING SYSTEMS

Railway signalling is a large, complex, international
field, encompassing both private (mostly freight) and
public transit systems, as well as specialized
applications such as mining and inter-modal transit.
Some signalling areas where dependability research
has been done at GE include:
• A locomotive controller (braking function)
• A CAB signalling device (speed limit

determination)
• An interlocking controller (interlock logic)
• A computer-aided dispatch system (speed profile

planning)
The work reported here is preliminary in nature and
should not be interpreted as an endorsement of
emerging methods, or of the particular toolsets used
here.

Some of the safety/dependability standards that apply
to these applications include:
• IEEE Std. 1483-2000 (Verification of Vital

Functions in Processor-Based Systems)
• CENELEC Std. EN50128 (Software for

Railway, Control, and Protection Systems)
• IEC Std. 61508 (Functional Safety of

Programmable Electronic Safety Related
Systems)

The software certification process, in particular,
presents good opportunities for emerging verification
methods. Software certification has come to be the
one of the most expensive and time consuming
aspects of new product development in railway
signalling, and thus is of great concern to suppliers,
as it comes to dominate costs and schedules, and
entails significant new product risk. Emerging
methods offer the future prospect not only of
partially automating verification and validation
processes, but also of significantly improving safety,
test coverage, and the time taken for software testing.

3. SAFETY, VERIFICATION, AND
VALIDATION AND NEW PRODUCT

DEVELOPMENT

The “baseline development process” shown in Figure
1 is typical of new product development processes

used in the railway signalling industry. Defects
identified in later stages of the process require that
the entire design process be re-iterated (ideally, with
small changes from the original design); these
iterations are very expensive can increase time and
cost by 15-100% or more, over the initial iteration.

SYSTEM REQUIRMENTS
SPECIFICATIONS

FUNCTIONAL
SAFETY RQRMTS

CUSTOMER REQUIREMENTS

HAZARD ANALYSIS
PHA / FFT / FTA / SHA

DESIGN SPECS

SAFETY DESIGN
SPECIFICATIONS

SAFETY ASSURANCE
CONCEPTS

S/W IMPLEMENTATION
AND UNIT TEST

VITAL FUNCTIONS
AND CONCEPTS
IMPLEMENTATION

DESIGN TEST & V&V

SAFETY V&V BY SFMEA

SAFETY V&V BY TEST
AND ANALYSIS

SAFETY ASSURANCE
CONCEPT
TECHNIQUES

SAFETY CASE

DELIVERED SYSTEMSYSTEM-LEVEL
VALIDATION

CORRECTIONS

SAFETY
DESIGN

Figure 1: Baseline new product design process (Key
to figure abbreviations: PHA = Preliminary
Hazard Analysis; FTA= Fault Tree Analysis,
FFT=Fast Fourier Transform; SHA = Safety
Hazard Analysis; SFMEA = Software Failure
Modes & Effects Analysis)

Safety, in particular, is sometimes viewed as a “game
against nature” and properly results in detailed safety
requirements (based on the most likely forms of
unintended use of the system, or accidents) that are
expressed at the outset of a design process. In recent
upgrades to development processes, these give rise to
“safety” test cases that are initiated during the
requirements phase and used throughout the test and
certification processes. While there is not a
consistent definition among practitioners, software
verification & validation (V&V) is typically defined
in terms of process steps, as in the IEEE standard
1483 (IEEE, 2000). Verification is most closely
associated with the unit and subsystem test activities
concerned with verifying that a design meets stated
requirements. Validation usually occurs after system
integration and certification, and is concerned with
whether the formally stated requirements used in the
design in fact capture the intended product functions
under all conditions, and whether they are complete.

The dependability improvements in this process that
are the subject of the case studies used here, are
concerned with the early validation of requirements,
the verification of correctness of a preliminary
design, and with improving automatic testing of
logical correctness, consistency, and safety of source
code. These all have the benefit of detecting design
defects earlier in the product development process
and in reducing expensive design iterations.

The following sections provide brief synopses of
how emerging methods can be applied to the
reduction of test effort and improvement of
dependability of railway control product software

systems. Requirements capture using an ontology is
illustrated for an example drawn from rail yard
automation in Section 4. The use of a commercial
product, CodeCheck™,1 is illustrated for an example
of style guide design verification of a computer-aided
dispatch system, in Section 5. Several toolsets
developed at Carnegie Mellon University were
applied to problems of model checking, dependency
analysis, and automated test generation for a
braking/traction control system of a locomotive, as
described in Section 6.

4. SOFTWARE SPECIFICATION CAPTURE &
ANALYSIS

Software specification consists of both a description
of the desired functionality and often a set of use-
cases that describe the operational mission under
which the software must perform. If the specification
is captured as an executable specification, then it
may be analyzed in relation to the chosen application
domain through use of an ontology. This kind of
analysis can reveal two kinds of errors: (1) design
verification errors that can be related to the
mathematical language that describes the formal
design model, or (2) specification validation errors
that can be related to improper description of the
application domain itself.

The first type of error is often detectable during
initial unit and integration testing through use of unit
level testing techniques or through application of
design verification methods, as described in other
sections in this paper. The second type of
specification error is more difficult to detect since it
requires subjective and domain specific knowledge
about the correct formulation of the system or
operational mission as described in the specification.
This kind of error may lead to safety risks because it
may be propagated from early phases of
development and, if undetected, may not be
discovered until after the entire functionality of
system is operational. Some refer to this error as a
conceptual error. Two approaches that may be
applied to detect this error that are based upon
ontologies, as described in (Kalfoglou and
Robertson, 1999): (1) applying ontological
constraints that validate specifications against
potential conceptual errors through detection of
inconsistent or incomplete specification, and (2)
augmenting the executable specifications with
additional ontological constructs.

During the construction of an ontology, domain-
specific constraints may be built-in that subsequently
are used to test automatically whether parts of an
executable specification are inconsistent. The
structure of the specification may then be further
augmented in those sections where a completeness or
inconsistency check is required. Additional domain
specific error conditions can be defined using special
editors, such as in the Protégé system (Musen, et al,

).

1 CodeCheck™ is a trademark of Abraxis Software,
Inc.

2000), which facilitates customized error checking in
conjunction with a reasoner. Methods are needed
that automatically associate ontologies with the
knowledge domains implicit in the specifications.
Culley and McMahon (2002), for example, are
investigating use of ontologies in support of
requirements capture. Detection of a conceptual
specification error can be illustrated using a simple
example from rail-yard automation. One automation
function is a Yard Flow Analyzer that classifies
railcars relative to a route plan. For illustration,
consider the software logic specified in the hump
computer that routes cars as they arrive on the track.
The hump computer, normally, forms bad railcar
blocks from cars that must be repaired before leaving
the yard. A rule that determines whether a railcar is
bad might be:

()

(() (,)) (

badRailcar A

consistType C mission C M highSpeed M← ∨ ∧

This rule classifies bad railcars depending upon the
mission and the type of consist that the railcar is to
join. The demands of the mission along with the
speed that railcars must travel are considered. The
rule is correct as specified but may be incomplete.
Completeness and consistency depend upon correct
specification of the mission as well. For example, a
mission that is a local delivery could improperly be
assumed to be low speed travel when in fact
depending upon the route taken high-speed travel
still may be required, as for example may occur over
main line track. Ontological axioms can be used to
verify the correct use of ontological constructs
throughout the specification. Whenever a statement
in the specification will not satisfy the ontological
axioms an error is reported. In this case, the analysis
might raise an inconstancy error since high-speed
operation may be permitted when the mission is
local.

An adjunct to the use of ontology for detecting
conceptual error can be the use of temporal logic.
Ontologies are poorly suited to represent behavioral
and timing characteristics of software. For that
reason, a second approach can exploit the use-case
scenarios for overlay of temporal logic, possibly with
specific timing characteristics, within the
specification. Where an executable specification has
been captured then a-priori constraints on the time-
ordering may again augment the original
specification, as has been described for example by
Grabisch (2003) in use-case scenario analysis.

 Primary impediments to the use of ontologies and
temporal logic are presently the lack of standard
ontologies for railway signalling, and the significant
manual effort to needed to develop such ontologies
due to the large size of the set of relationships that
may exist, even for very restricted domains. Still,
investment in developing standard railway signalling
ontologies is becoming feasible through the use of a
common ontology language, such as the Web
Ontology Language (OWL), that promotes sharing of
knowledge domains and thus facilitates building
application-specific ontologies.

5. EXAMPLE OF CODECHECK™ APPLICATION

Application of formal methods normally presumes
that code is syntactically correct, or executable, but
this is often not the case in practice. This tool was
used to inspect a repository of source code for
adherence to style and standards guidelines as a
means of standardizing inputs for formal analysis.
The tool was required to capture a set of style rules
and to then identify, capture, and report instances
where these style and standards rules were violated
in the source code. CodeCheck™ was one such tool
that was evaluated.

CodeCheck™ runs with a user-written control
program defining the verification rules. It is executed
via command-line and takes a source file as a
command line argument to run the rule file against,
but all files that are used by (included by) the one file
are also inspected during the execution. and will
have an associated listing file (.lst) created during the
run. CodeCheck™ is executed by a format such as,

check <filename> -options

where <filename> is the name of the source file that
is to be inspected, and –options are any number of
command-line options that specify, but are not
limited to, the rules file, output directory, the dialect
of C/C++ (ANCI C/C++, Microsoft C++, etc…),
and/or designate the system to append all
CodeCheck™ output to the stderr.out file (see
below).

The environment in which CodeCheck™ is to be
executed needs to be same as the environment used
to compile the source code that is being inspected. If
the environment is not the same, errors may occur
that will result in a non-complete run of the
CodeCheck™ tool. After running CodeCheck™ on
a file, it will produce a number of files with
information concerning the inspection of the source
code. These files include:
• stderr.out - output from CodeCheck™ detailing

the file, line number, rule number, and
description of each found rule violation.

• <filename>.lst - is a copy of the source code file
that was inspected during execution, with
inserted comments from CodeCheck™ denoting
where the rule violation occurred.

The following coding style guideline and its
respective rule written in the CodeCheck™ language
is shown. The rule uses the aforementioned global
variables and helper functions.

Style Rule: File names shall not be longer than 32
characters including the file's extension.

CodeCheck™ syntax:
if (mod_begin)
{
 if (strlen(file_name()) > 32)
 {

 warn(9013, "%s File names shall not
be longer than 32 characters including the
file\'s extension",
 file_name());
 }
}

Though the CodeCheck™ tool provides rule-sets that
partially implement certain railway coding standards,
its use on a large system proved problematic. The
need to execute CodeCheck™ tests in the target
environment prevents its effective use on small
pieces of a large system when (during development)
it may be undergoing frequent revisions. The user
needs to manually verify the coding rules in a low
level language (C/C++), which is itself an error-
prone process. Finally, the error messages (.lst file)
are interspersed with the code, and the lack of
prioritization of error messages makes debugging
very time consuming. Nevertheless, the results
provide a rigorous and consistent style verification of
source code, comparable in quality to the verification
tests of a first-pass compiler. This illustrates one
dilemma of all verification tools: Is the extra time
and effort required to initially apply the tool larger
than the subsequent savings or quality improvement
in the code?

6. MODEL CHECKING, FORMAL
VERIFICATION, AND OPTIMAL TEST SET

GENERATION

6.1 Model Checking
Traditionally, validation and verification of
embedded control logic is accomplished by
simulation. Simulation can be very time consuming
because a given simulation run represents only one
particular trajectory and many simulations must be
performed to explore the control logic. Moreover, it
is usually not possible to know a priori the length of
time a simulation should run, or the number of
simulations that should be run to explore all of the
controller behaviors. Consequently, simulation
studies are typically based on the designer’s
knowledge of the system and possible errors that
could arise. To cover the cases that a designer did
not consider, additional simulation trajectories might
be generated randomly. Even with these two
strategies combined, it is impossible to guarantee
complete coverage of all critical situations.
Model checking is a technique for verifying
properties of finite-state systems (Clarke, 1999). In
contrast to simulation, model checking considers
every trajectory of arbitrary length. If a specified
property is false, the model checker returns a
counterexample, that is, a specific sequence of state
transitions that violates the property. One popular
model-checking tool is SMV, which was originally
developed at Carnegie Mellon University
(http://www.cs.cmu.edu/afs/cs.cmu.edu/project/modc
k/pub/www/). SMV uses a textual language to
describe a system composed of concurrent,
interacting finite state machines and uses fixed point
algorithms to determine whether the system satisfies
properties given by the user. In SMV, properties, or
specifications, are given in a computation tree logic
(CTL) syntax. The state variables that are input to

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/modck/pub/www/
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/modck/pub/www/

the model checker must be integer-only, and the state
machines can only have expressions that contain the
state variables, ‘&’, ‘|’, ‘*’, ‘+’,’=’,’>=’,’<=’,’>’,’<’,
‘/’, and ‘-‘. A prototype tool called SF2SMV was
developed for applying the model checking
capability of SMV to the state chart structures in
Stateflow™,2 a MATLAB™ toolbox for
implementing discrete-state transition systems within
Simulink™ models of continuous-state systems.
Stateflow™ diagrams (SFDs) are more complicated
than standard statecharts (Harel, 1998). SFDs can
have floating point numbers, arbitrary expressions,
hierarchy, events, and parallel states. In addition to
these extra elements, the execution rules for SFDs
are complicated. Testing a SFD by exhaustive
simulation is a difficult, if not impossible, task.

Figure 2 shows a basic SFD and Figure 3 shows the
associated SMV model generated by SF2SMV.
These figures illustrate how the hierarchy of the SFD
is reflected in the SMV modules. The SF2SVM user
interface supports the construction of CTL
specifications to be checked for the SMV model, and
makes it possible to play back counter examples on
the original SFD when the specification is not
satisfied. Our experience with SF2SMV in a
locomotive example exposed the difficulty of
creating a tool that will be able to perform model
checking on large-scale designs. One of the
principal sources of difficulty is the integration of
model checking capabilities with the existing
commercial design tools such as Stateflow™. It is
necessary to capture the semantics of the commercial
tool, often through reverse engineering. If this is not
done correctly, the value of the model checking
results will be compromised.

Nevertheless, even for small portions of the control
logic, model checking can expose problems the
designer has missed because it is not easy for the
designer to anticipate all possible combinations of
events and signal values. As with other control
applications, designers of software for railway
signalling typically think of normal operating
conditions when constructing the control logic.
Exceptions and safety conditions are often added to
this code, and it only takes a few new cases to make
the possible number of execution sequences explode
beyond the designer's capacity for thinking through
everything that might happen. Consequently, model
checking is an attractive tool for evaluating control
modules before they are composed into the complete
control package.

2 StateFlow™, Simulink™, and MATLAB™ are
Trademarks of The Mathworks, Inc.

Figure 2. A basic hierarchical Stateflow™ diagram.

6.2 Test case Generation
An essential aspect of a high-quality design process
is the development of test patterns, or sets of test
inputs, that can be applied to the final product to
identify faults and confirm correct system behavior.
In the design of embedded control systems, in
particular, the growing use of tools for computer-
aided design and simulation increases the prospects
for performing extensive testing of the control logic
before it is realized in software and implemented on
the target processor. The rapid growth in complexity
of embedded control systems and the demand for
short design cycles has increased the interest in
effective methods for automatic test generation.

MODULE main

VAR
state : {no_states,A3,A1,A2};
A3_child : A3_c(…);
A2_child : A2_c(…);

ASSIGN
init(state):=no_states;
next(state):=case
 t42_f : A3;
 t39_f | t41_f : A1;
 t43_f : A2;
 1 :state;
 esac;
�

MODULE A3_c(…)

VAR
state : {no_states,A3b,A3a};

ASSIGN
init(state):=no_states;
next(state):=case
 t41_f : no_states;
 t42_f : A3b;
 t40_f : A3a;
 1 : state;
 esac;

MODULE A2a_c(…)

VAR
state : {no_states,a1,a2,a3};

ASSIGN
init(state):=no_states;
next(state):=case
 t42_f : no_states;
 t44_f | t46_f : a1;
 t48_f : a2;
 t50_f : a3;
 1 : state;
 esac;

MODULE A2b_c(…)

VAR
state : {no_states,b1,b2,b3};

ASSIGN�
init(state):=no_states;
next(state):=case
 t42_f : no_states;
 t45_f | t47_f : b1;
 t49_f : b2;
 t51_f : b3;
 1 : state;
 esac;

MODULE A2_c(…)

VAR
A2a : and_state(…);
A2b : and_state(…);
A2a_child : A2a_c(…);
A2b_child : A2b_c(…);

.

.

.

Figure 3. Basic SMV modules for the Stateflow™

diagram in Figure 2.

Automatic test generation for embedded control
systems is challenging for two major reasons. First,
the problem is complex due to the hybrid nature of
the controller and plant composition, which contains
both logic (discrete states) and components with
continuous dynamics (continuous states). Un-
decidability results for hybrid systems indicate that
one should not expect to discover completely

algorithmic procedures for test-vector generation for
hybrid systems (Henzinger, 1998). Hence, global
search methods that use domain-specific heuristics
are used to produce test inputs for mixed-signal
circuits (Vinnakota, 2001; Tofte 2000, Gupta, 2001).
Similar methods are needed to generate test vectors
for embedded control systems. The second challenge
is practicality: To develop automatic methods, the
design must first be captured in a computer model
that includes a representation of the plant as well as
an embedded control algorithm. In contrast to
integrated circuits for which very structured models
using standard languages are developed during the
design process, it is extremely difficult to extract
formal models (such as automata) from existing
simulation models of embedded control systems.

To address these problems, a test case generation
tool was developed at CMU that provides (i) the
formulation of a coverage problem for hybrid
systems with discrete and continuous inputs and
outputs; (ii) a pragmatic solution to the problem that
uses a GA-based algorithm to produce a test input
with the specified coverage; and (iii) implementation
and demonstration of the method for industrial-sized
MATLAB™ Simulink™/Stateflow™ simulation
models. This work is described Zhao, et al (2003).

Figure 4 illustrates the basic structure of the
approach. Experimental results are shown in Tables
1 and 2. For the small applications shown in Table
1, the genetic algorithm always found a test input
that gave responses with the desired properties. The
results in Table 2 are for a locomotive model
consisting of 1478 Simulink™ blocks and 50
Stateflow™ states and 15 input signals. In this case,
the genetic algorithm did not always find an
appropriate test vector, but the maximum number of
model evaluations for each experiment was set to
3000. With a fixed limit on the number of
simulations, Table 2 shows that the population size
should not be too small or too large. If the population
size is too small, the power of the GA to explore
several possible locations in the search space in
parallel is not fully exploited. If the population size is
too large, the relative number of crossover and
mutation operations that can be performed is limited
because of the large number of chromosomes. At the
extreme case in which the population size equals the
model execution limit, GA will degenerate to pure
random search. Random search never found a
suitable test vector for this model.

Figure 4. Genetic Algorithm approach to test case generation.

Table 1: Automatic Test Generation results – Embedded real-time systems

Table 2: Locomotive Model Test Generation runs, showing GA Population sizes.

Experience with the GA approach to test case
generation is very positive. Although the tool is
currently only a research prototype, it has
demonstrated that test cases can be generated with
reasonable computation using the same models that
were developed for simulation and system design.
Such tools can have enormous impact on the overall
time can cost of controller design.

7. PRESENT LIMITATIONS AND FUTURE
POSSIBILITIES

The development of formal methods for the
statement and application of system requirements is
still a key bottleneck (Grimson and Kugler, 2000;
Jaffe, et al, 1991; Svedung, 2002). The B-formal
method (Abrial and Mussat, 1998) provides a
potential future means of carrying formal verification
through multiple stages of the control system design
cycle. A rail-control ontology is needed so that the
inferred relationships among entities in a
requirements document can be explored
automatically (e.g., by traversing relationship graphs
and inferring implied requirements from them).
However, such ontologies may be large, and the
problem of determining the transitive closure of
statements generated as a subset (e.g., “safety
statements”) of a formal grammar is yet to be
investigated. Use of ontologies for requirements
engineering support has been studied. e.g. in the
following project:
http://www.bath.ac.uk/~ensmjd/ORCS_blurb.html,
which confirmed the large size of ontologies needed
in problems of practical interest. The successor
project:http://www.bath.ac.uk/imrc/mechengineering
/Projects/SMIR.htm is also of interest.

Style checking (Section 5) can be used to assure
consistency of statements in formal languages such
as ANSI C/C++ source code, and might be
generalized to cover statements made in natural
language requirements documents: this would
remove spurious inconsistencies and typographic
errors.

In Section 4 it has been illustrated how an ontology-
based analysis of the software specification can be
applied to detect conceptual errors that normally
might not be found until after the system is
operational. Also proposed is the use of temporal
logic for analysis of the use-case scenarios. Often, it
is ironic that the controller or controlled object may
not be mentioned at all in requirements documents: it
is assumed to exist! This gap may be filled by the
use of standardized simulation languages, practices,
or graphic representation paradigms (Vain and
Kyttner, 2001). For instance, many libraries of
process control primitives, and application-specific
modelling packages now exist for steam pipe
systems, power plants, motors, batch process
operations, circuit design, and signal processing, and
these could be generalized to rail applications. In
this way, a requirement can be associated with a set
of preconditions on a high-level plant model, a set of
operations (or controlled modes), and a set of

outcomes. By using inference (or perhaps fuzzy
inference; Holmes and Ray, 2001) to traverse such
graphs or ontologies, a much more complete set of
inferred requirements (and also test cases) can be
automatically generated.

Formal methods are of interest in the verification of
design and simulation models, as well as controllers.
Initial feasibility of model checking has been
demonstrated for locomotive braking models, for
instance. This is a precondition for closed loop
testing, and for test generation via open loop models.
When a feedback loop is closed via a controller,
hybrid modes of behavior can occur, introducing
issues of decidability (Section 6). Often, it is
difficult to define precise quantitative behaviors that
are expected for specific quantified inputs to a
system: not only are the test cases difficult to
generate, but the expected performance in any
specific test case may be difficult to derive. In fact,
tracing-through various requirements that apply in a
given test case, may allow one to define – by
intersecting a number of qualitative performance
conditions, each derived from a different path
through the requirements network – a much more
precise statement of expected behavior.

In conclusion, the use of emerging source-code
verification methods to improve dependability of
railway signalling logic is still at an early stage of
evolution. Many gaps exist in the vision of linking
verification at earlier design process stages
(requirements definition) to verification at later
stages of design (source code). The use of formal
verification methods for individual design process
steps is expected to proceed when commercial grade
tools become available, and when these can be
constructed to save time and demonstrably improve
software quality.

REFERENCES

Abramovici M., M. Breuer, and A. Friedman (1995).

Digital Systems Testing and Testable Design,
IEEE Press.

Abraxas Software, Inc. (2004a). CodeCheck™
Home page, URL:
http://www.abxsoft.com/codchk.htm.

Abraxas Software, Inc. (2004b). CodeCheck™
User’s Guide, “C and C++ Source Code
Analysis using CodeCheck™”.

Abrial J.R., Mussat L., Introducing Dynamic
Constraints in B, Lecture Notes in Computer
Science 1393, Springer, ISBN 3-540-64405-9.

Banphawatthanarak, C., B. H. Krogh and K. Butts
(1999). Symbolic verification of executable
control specifications. Proceedings of the 1999
IEEE Conference on Computer Aided Control
System Design, Hawaii, Aug. 22-26.

Bensalem, S., et al. (1999). A methodology for
proving control systems with Lustre and PVS,
in C.B.weinstock and J. Rushby (eds.)
Dependable Computing for Critical
Applications, 7, pp.89-107.

http://www.bath.ac.uk/~ensmjd/ORCS_blurb.html
http://www.bath.ac.uk/imrc/mechengineering/Projects/SMIR.htm
http://www.bath.ac.uk/imrc/mechengineering/Projects/SMIR.htm
http://www.abxsoft.com/codchk.htm

Bullock, D. and C. Hendrickson (1994) Roadway
Traffic Control Software, IEEE Trans. On
Control Systems Technology, Vo. 2, No. 3, pp
255-264.

CENELEC (1997). Railway Applications: Software
for railway, control, and protections systems,
Standard EN 50128 (June)

Clarke, E. M., O. Grumberg, and D. A. Peled (1999).
Model Checking. The MIT Press, Cambridge,
Massachusetts.

CNN.com (2004). Trains Collide in New York’s
Penn Station (April 19, 2004). URL:
www.cnn.com/2004/US/Northeast/04/19/trains.
collie

Culley, S. J. and C.A. McMahon (2002).
Investigation into the Use of Ontologies for
Requirements Capture Support, URL:
http://www.bath.ac.uk/~ensmjd/ORCS_blurb.ht
ml.

Grabisch, M. (2003). Temporal scenario modeling
and recognition based on possibilistic logic.
IEEE Artificial Intelligence. 148 , Issue 1-2, pp
261 – 289.

Gorski, J. (1986). Design for Safety Using Temporal
Logic. In IFAC SAFECOMP '86, pp 149-155,
Sarlat, France.

Gupta A., S. Malik, and P. Ashar (2001). Toward
formalizing a validation methodology using
simulation coverage. IEEE/ACM International
Conference on Computer Aided Design, pp.
286-292.

Harel, D. (1987). Statecharts: A visual formalism for
complex systems, Science of Computer
Programming, 8, pp.231-274.

Henzinger, T., P.W. Kopke, A. Puri, and P. Varaiya
(1998). What's decidable about hybrid
automata. Journal of Computer and System
Sciences, 57, no.1, pp. 94-124.

IEEE (2000). Verification of Vital Functions in
Processor-Based Systems Used in Rail Transit
Systems. STD 1483-2000.

International Electro-technical Commission. (1998-
2000). IEC 61508: Functional safety of
electrical/electronic/programmable electronic
safety related systems.

Kalfoglou, Y. and D. Robertson (1999). A case study
in applying ontologies to augment and reason
about the correctness of specifications. 11th
International Conference on Software
Engineering and Knowledge Engineering
(SEKE99), Kaiserlauten, Germany,
URL:http://www.ecs.soton.ac.uk/~yk1/research
.html

Krogh, B. (2003) SliceMDL URL:
http://www.ece.cmu.edu/cecs/main/projects.html

The Mathworks, Inc. (1999). Stateflow User’s Guide,

URL:http://www.mathworks.com/access/helpde
sk/help/pdf_doc/stateflow/sf_ug.pdf

Morel G., Mery D., Leger J-B., Lecomte T. (2004).
Proof-Oriented Fault-Tolerant Systems
Engineering: rationales, experiments and open
issues. 7th IFAC Symposium on Cost Oriented
Automation, Gatineau, (Québec), Canada, June
6-9.

Musen, M., R. Fergerson, W. Grosso, N. Noy, M.
Crubezy, and J. Gennari (2000). Component-
Based Support for Building Knowledge-
Acquisition Systems. Conference on Intelligent
Information Processing (IIP 2000) of the
International Federation for Information
Processing World Computer Congress (WCC
2000), Beijing, China.

Nadjm-thrani, S. and J.-E. Stromberg (1999).
Formal verification of dynamic properties in an
aerospace-application. Formal Methods In
System Design, 14, pp.135-169.

Place, P.R.H., and K. C. Kang (1993). Safety-
Critical Software: Status Report and Annotated
Bibliography. CMU/SEI-92-TR-5.

Rausch, M., and B.H. Krogh (1998). Symbolic
verification of Stateflow™ logic. International
Workshop on Discrete Event Systems
(WODES98), Cagliari, Sardinia, August 26-28.

Silva, B. I., O. Stursberg, B. H. Krogh and S. Engell
(2001). An assessment of the current status of
algorithmic approaches to the verification of
hybrid systems. Proc. 40th IEEE Conference on
Decision and Control.

SMV(2004). URL:
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/

modck/pub/www/
Spencer, C. (2001) SF2SMV GUI Readme. See also

URL: http://www.ece.cmu.edu/~webk/sf2smv/
Suyama, K. (2003). Safety integrity analysis

framework for a controller according to IEC
61508. Proc. 42nd IEEE Conference on
Decision and Control.

Svedung, I. (2002). Graphic representation of
accident scenarios: Mapping system structure
and the causation of accidents. Safety Science,
40, Elsevier Science Ltd., pages 397–417.

Tofte, J., C.K. Ong, J.L. Huang, and K.T. Cheng
(2000). Characterization of a pseudo-random
testing technique for analog and mixed-signal
built-in-self-test. Proceedings. 18th IEEE VLSI
Test Symposium, pp. 237-246.

Vain, J. and R. Kyttner (2001). Model Checking – A
New Challenge for Design of Complex
Computer-Controlled Systems. Proc. 5th Int’l
Conf. On Engineering Design and Automation,
Las Vegas, pp. 593-598.

Vinnakota B. (2001), Analog and Mixed-Signal Test,
Prentice Hall, 2001.

World Wide Web Consortium (2004). OWL Web
Ontology Language Reference.
URL:http://www.w3.org/TR/owl-ref/.

Zhao, Q, and B.H. Krogh (2001) Formal verification
of statecharts using finite-state model checkers.
Proceedings of the 2001 American Control
Conference, Vol.1, pp. 313- 318.

Zhao, Q., B. H. Krogh and P. Hubbard (2003).
Automatic generation of test inputs for
embedded control systems. IEEE Control
Systems Magazine, 23, no. 4, pp. 49-57.

 U.S. Patent Office (1886). A System of Railway
Signalling. Patent 350234, issued to T. A.
Edison and E. T. Gilliland, 10/5/1886.

http://www.cnn.com/2004/US/Northeast/04/19/trains.collide
http://www.cnn.com/2004/US/Northeast/04/19/trains.collide
http://www.bath.ac.uk/~ensmjd/ORCS_blurb.html
http://www.bath.ac.uk/~ensmjd/ORCS_blurb.html
http://www.ecs.soton.ac.uk/~yk1/research.html
http://www.ecs.soton.ac.uk/~yk1/research.html
http://www.ece.cmu.edu/cecs/main/projects.html
http://www.mathworks.com/access/helpdesk/help/pdf_doc/stateflow/sf_ug.pdf
http://www.mathworks.com/access/helpdesk/help/pdf_doc/stateflow/sf_ug.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/modck/pub/www/
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/modck/pub/www/
http://www.ece.cmu.edu/~webk/sf2smv/
http://www.w3.org/TR/owl-ref/

	Timothy L. Johnson1, Hunt A. Sutherland1, Bart Ingleston1, a
	2. SAFETY REQUIREMENTS FOR RAILWAY SIGNALLING SYSTEMS
	3. SAFETY, VERIFICATION, AND VALIDATION AND NEW PRODUCT DEV
	4. SOFTWARE SPECIFICATION CAPTURE & ANALYSIS
	6. MODEL CHECKING, FORMAL VERIFICATION, AND OPTIMAL TEST SET
	7. PRESENT LIMITATIONS AND FUTURE POSSIBILITIES
	World Wide Web Consortium (2004). OWL Web Ontology Language

