
 
 

 
 

 
 
 
 
 
 
 
 
 

DEPENDABLE SOFTWARE IN RAILWAY SIGNALLING 
 

 
Timothy L. Johnson1, Hunt A. Sutherland1, Bart Ingleston1, and Bruce H. Krogh2  

 
1Computing and Decision Sciences 
GE Global Research (K-1, 5C30A) 

1 Research Circle 
Niskayuna, NY 12309 

Corresponding Author: johnsontl@research.ge.com 
 

2Chair, Dept. of Electrical & Computer Engineering 
Carnegie Mellon University 

5000 Forbes Avenue 
Pittsburgh, PA 15213 
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1. INTRODUCTION AND BACKGROUND – 
RAILWAY SIGNALLING DEPENDABILITY 

 
Dependable signalling has been an inherent 
requirement of safe railway operation since the 
inception of railways.  Some of Thomas Edison’s 
first inventions involved reliable telegraphy for 
railroad communications (US Patent Office, 1886).  
As railway signalling devices were digitized in the 
1980’s and 1990’s, some of the burden of 
dependability shifted from hardware to software:  not 
only did the computational hardware have to meet 
high reliability standards, but also the logic of the 
software (formerly contained in railroad relay 
wiring) also had to be correct under all 
circumstances.  In addition, the scope of safety 
concerns has increased beyond dependability of the 
core program logic to its correct operation under a 
variety of unusual circumstances (e.g., relative 
timing of events, interoperability) that previously 
were the responsibility of dispatchers to resolve.  
Today, a number of dependability and safety 
standards (e.g., CENELEC, 1997) govern railway 
signalling equipment.  Rigorous safety certification 

and test procedures exist at many levels.  Still, 
serious accidents, such as a recent collision of two 
passenger trains in New York City’s Penn Station, 
can occur (CNN, 2004). 
 
The purpose of this paper is to examine some 
emerging approaches to achieving the higher level of 
certainty that may be required as more and more 
signalling operations become partially or fully 
automated.  Present test procedures for executable 
code are extremely time consuming and expensive, 
and are themselves subject to error; standard 
methods of testing executable code require test sets 
that grow rapidly in size with the complexity of 
automated logic.  Formal methods and other new 
design process improvements may be applied at 
many steps during the product development process, 
from requirements definition through source code 
logic verification, offering an opportunity to apply 
high performance computing to improve both design 
dependability and test coverage (Morel, et al, 2004).  
They offer the assurance of logical consistency 
across large, complex signalling applications.  
Anticipating these needs, GE and Carnegie Mellon 

     



University have explored potential uses of emerging 
methods for improvement of dependability of future 
railway signalling systems.  Some of initial findings 
and examples from this work are reported in this 
paper. 
 
Railway networks exhibit many conceptual analogies 
with automated material handling systems that are 
widely used in most advanced manufacturing plants, 
and more broadly, with other wide area 
transportation networks that implement supply 
chains, and to product distribution systems and are 
becoming more tightly integrated with “just in time” 
manufacturing systems.   This abstraction is 
considered important in linking this topic to the area 
of “dependable manufacturing systems”. 
 

2. SAFETY REQUIREMENTS FOR RAILWAY 
SIGNALLING SYSTEMS 

 
Railway signalling is a large, complex, international 
field, encompassing both private (mostly freight) and 
public transit systems, as well as specialized 
applications such as mining and inter-modal transit.  
Some signalling areas where dependability research 
has been done at GE include: 
• A locomotive controller (braking function) 
• A CAB signalling device (speed limit 

determination) 
• An interlocking controller (interlock logic) 
• A computer-aided dispatch system (speed profile 

planning) 
The work reported here is preliminary in nature and 
should not be interpreted as an endorsement of 
emerging methods, or of the particular toolsets used 
here. 
 
Some of the safety/dependability standards that apply 
to these applications include: 
• IEEE Std. 1483-2000 (Verification of Vital 

Functions in Processor-Based Systems) 
• CENELEC Std. EN50128 (Software for 

Railway, Control, and Protection Systems) 
• IEC Std. 61508 (Functional Safety of 

Programmable Electronic Safety Related 
Systems) 

The software certification process, in particular, 
presents good opportunities for emerging verification 
methods. Software certification has come to be the 
one of the most expensive and time consuming 
aspects of new product development in railway 
signalling, and thus is of great concern to suppliers, 
as it comes to dominate costs and schedules, and 
entails significant new product risk.  Emerging 
methods offer the future prospect not only of 
partially automating verification and validation 
processes, but also of significantly improving safety, 
test coverage, and the time taken for software testing. 
 

3.  SAFETY, VERIFICATION, AND 
VALIDATION AND NEW PRODUCT 

DEVELOPMENT 
 
The “baseline development process” shown in Figure 
1 is typical of new product development processes 

used in the railway signalling industry.  Defects 
identified in later stages of the process require that 
the entire design process be re-iterated (ideally, with 
small changes from the original design); these 
iterations are very expensive can increase time and 
cost by 15-100% or more, over the initial iteration. 
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Figure 1: Baseline new product design process (Key    
to figure abbreviations: PHA = Preliminary 
Hazard Analysis; FTA= Fault Tree Analysis, 
FFT=Fast Fourier Transform; SHA = Safety 
Hazard Analysis; SFMEA = Software Failure 
Modes & Effects Analysis) 

 
Safety, in particular, is sometimes viewed as a “game 
against nature” and properly results in detailed safety 
requirements (based on the most likely forms of 
unintended use of the system, or accidents) that are 
expressed at the outset of a design process.  In recent 
upgrades to development processes, these give rise to 
“safety” test cases that are initiated during the 
requirements phase and used throughout the test and 
certification processes. While there is not a 
consistent definition among practitioners, software 
verification & validation (V&V) is typically defined 
in terms of process steps, as in the IEEE standard 
1483 (IEEE, 2000). Verification is most closely 
associated with the unit and subsystem test activities 
concerned with verifying that a design meets stated 
requirements.  Validation usually occurs after system 
integration and certification, and is concerned with 
whether the formally stated requirements used in the 
design in fact capture the intended product functions 
under all conditions, and whether they are complete. 
 
The dependability improvements in this process that 
are the subject of the case studies used here, are 
concerned with the early validation of requirements, 
the verification of correctness of a preliminary 
design, and with improving automatic testing of 
logical correctness, consistency, and safety of source 
code.  These all have the benefit of detecting design 
defects earlier in the product development process 
and in reducing expensive design iterations. 
 
The following sections provide brief synopses of 
how emerging methods can be applied to the 
reduction of test effort and improvement of 
dependability of railway control product software 

     



systems.  Requirements capture using an ontology is 
illustrated for an example drawn from rail yard 
automation in Section 4.  The use of a commercial 
product, CodeCheck™,1 is illustrated for an example 
of style guide design verification of a computer-aided 
dispatch system, in Section 5.   Several toolsets 
developed at Carnegie Mellon University were 
applied to problems of model checking, dependency 
analysis, and automated test generation for a 
braking/traction control system of a locomotive, as 
described in Section 6. 
 

4.  SOFTWARE SPECIFICATION CAPTURE & 
ANALYSIS 

 
Software specification consists of both a description 
of the desired functionality and often a set of use-
cases that describe the operational mission under 
which the software must perform. If the specification 
is captured as an executable specification, then it 
may be analyzed in relation to the chosen application 
domain through use of an ontology. This kind of 
analysis can reveal two kinds of errors: (1) design 
verification errors that can be related to the 
mathematical language that describes the formal 
design model, or (2) specification validation errors 
that can be related to improper description of the 
application domain itself.  
  
The first type of error is often detectable during 
initial unit and integration testing through use of unit 
level testing techniques or through application of 
design verification methods, as described in other 
sections in this paper. The second type of 
specification error is more difficult to detect since it 
requires subjective and domain specific knowledge 
about the correct formulation of the system or 
operational mission as described in the specification. 
This kind of error may lead to safety risks because it 
may be propagated from early phases of 
development and, if undetected, may not be 
discovered until after the entire functionality of 
system is operational. Some refer to this error as a 
conceptual error. Two approaches that may be 
applied to detect this error that are based upon 
ontologies, as described in (Kalfoglou and 
Robertson, 1999): (1) applying ontological 
constraints that validate specifications against 
potential conceptual errors through detection of 
inconsistent or incomplete specification, and (2) 
augmenting the executable specifications with 
additional ontological constructs. 
  
During the construction of an ontology, domain-
specific constraints may be built-in that subsequently 
are used to test automatically whether parts of an 
executable specification are inconsistent. The 
structure of the specification may then be further 
augmented in those sections where a completeness or 
inconsistency check is required.  Additional domain 
specific error conditions can be defined using special 
editors, such as in the Protégé system (Musen, et al, 
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1 CodeCheck™ is a trademark of Abraxis Software, 
Inc. 

2000), which facilitates customized error checking in 
conjunction with a reasoner.  Methods are needed 
that automatically associate ontologies with the 
knowledge domains implicit in the specifications. 
Culley and McMahon (2002), for example, are 
investigating use of ontologies in support of 
requirements capture. Detection of a conceptual 
specification error can be illustrated using a simple 
example from rail-yard automation. One automation 
function is a Yard Flow Analyzer that classifies 
railcars relative to a route plan.  For illustration, 
consider the software logic specified in the hump 
computer that routes cars as they arrive on the track. 
The hump computer, normally, forms bad railcar 
blocks from cars that must be repaired before leaving 
the yard. A rule that determines whether a railcar is 
bad might be: 

( )

( ( ) ( , )) (

badRailcar A

consistType C mission C M highSpeed M← ∨ ∧
 

This rule classifies bad railcars depending upon the 
mission and the type of consist that the railcar is to 
join. The demands of the mission along with the 
speed that railcars must travel are considered. The 
rule is correct as specified but may be incomplete. 
Completeness and consistency depend upon correct 
specification of the mission as well. For example, a 
mission that is a local delivery could improperly be 
assumed to be low speed travel when in fact 
depending upon the route taken high-speed travel 
still may be required, as for example may occur over 
main line track. Ontological axioms can be used to 
verify the correct use of ontological constructs 
throughout the specification. Whenever a statement 
in the specification will not satisfy the ontological 
axioms an error is reported. In this case, the analysis 
might raise an inconstancy error since high-speed 
operation may be permitted when the mission is 
local.  
 
An adjunct to the use of ontology for detecting 
conceptual error can be the use of temporal logic. 
Ontologies are poorly suited to represent behavioral 
and timing characteristics of software. For that 
reason, a second approach can exploit the use-case 
scenarios for overlay of temporal logic, possibly with 
specific timing characteristics, within the 
specification. Where an executable specification has 
been captured then a-priori constraints on the time-
ordering may again augment the original 
specification, as has been described for example by 
Grabisch (2003) in use-case scenario analysis. 
 
 Primary impediments to the use of ontologies and 
temporal logic are presently the lack of standard 
ontologies for railway signalling, and the significant 
manual effort to needed to develop such ontologies 
due to the large size of the set of relationships that 
may exist, even for very restricted domains. Still, 
investment in developing standard railway signalling 
ontologies is becoming feasible through the use of a 
common ontology language, such as the Web 
Ontology Language (OWL), that promotes sharing of 
knowledge domains and thus facilitates building 
application-specific ontologies. 

     



     

             
5. EXAMPLE OF CODECHECK™ APPLICATION 

 
Application of formal methods normally presumes 
that code is syntactically correct, or executable, but 
this is often not the case in practice. This tool was 
used to inspect a repository of source code for 
adherence to style and standards guidelines as a 
means of standardizing inputs for formal analysis. 
The tool was required to capture a set of style rules 
and to then identify, capture, and report instances 
where these style and standards rules were violated 
in the source code.  CodeCheck™ was one such tool 
that was evaluated. 
 
CodeCheck™ runs with a user-written control 
program defining the verification rules. It is executed 
via command-line and takes a source file as a 
command line argument to run the rule file against, 
but all files that are used by (included by) the one file 
are also inspected during the execution. and will 
have an associated listing file (.lst) created during the 
run.  CodeCheck™ is executed by a format such as, 
 

check <filename> -options 
 
where <filename> is the name of the source file that 
is to be inspected, and –options are any number of 
command-line options that specify, but are not 
limited to, the rules file, output directory, the dialect 
of C/C++ (ANCI C/C++, Microsoft C++, etc…), 
and/or designate the system to append all 
CodeCheck™ output to the stderr.out file (see 
below). 
 
The environment in which CodeCheck™ is to be 
executed needs to be same as the environment used 
to compile the source code that is being inspected.  If 
the environment is not the same, errors may occur 
that will result in a non-complete run of the 
CodeCheck™ tool.  After running CodeCheck™ on 
a file, it will produce a number of files with 
information concerning the inspection of the source 
code.  These files include: 
• stderr.out - output from CodeCheck™ detailing 

the file, line number, rule number,  and 
description of each found rule violation. 

• <filename>.lst - is a copy of the source code file 
that was inspected during execution, with 
inserted comments from CodeCheck™ denoting 
where the rule violation occurred. 

 
The following coding style guideline and its 
respective rule written in the CodeCheck™ language 
is shown.  The rule uses the aforementioned global 
variables and helper functions. 
 
Style Rule: File names shall not be longer than 32 
characters including the file's extension. 
 
CodeCheck™ syntax: 
if (mod_begin) 
{ 
    if (strlen(file_name()) > 32) 
    { 

        warn( 9013, "%s File names shall not 
be longer than 32 characters including the 
file\'s extension", 
                file_name() ); 
    } 
} 
 
Though the CodeCheck™ tool provides rule-sets that 
partially implement certain railway coding standards, 
its use on a large system proved problematic.  The 
need to execute CodeCheck™ tests in the target 
environment prevents its effective use on small 
pieces of a large system when (during development) 
it may be undergoing frequent revisions.  The user 
needs to manually verify the coding rules in a low 
level language (C/C++), which is itself an error-
prone process.  Finally, the error messages (.lst file) 
are interspersed with the code, and the lack of 
prioritization of error messages makes debugging 
very time consuming.  Nevertheless, the results 
provide a rigorous and consistent style verification of 
source code, comparable in quality to the verification 
tests of a first-pass compiler.  This illustrates one 
dilemma of all verification tools:  Is the extra time 
and effort required to initially apply the tool larger 
than the subsequent savings or quality improvement 
in the code?    
 

6. MODEL CHECKING, FORMAL 
VERIFICATION, AND OPTIMAL TEST SET 

GENERATION 
 
6.1 Model Checking 
Traditionally, validation and verification of 
embedded control logic is accomplished by 
simulation.  Simulation can be very time consuming 
because a given simulation run represents only one 
particular trajectory and many simulations must be 
performed to explore the control logic.  Moreover, it 
is usually not possible to know a priori the length of 
time a simulation should run, or the number of 
simulations that should be run to explore all of the 
controller behaviors.  Consequently, simulation 
studies are typically based on the designer’s 
knowledge of the system and possible errors that 
could arise.  To cover the cases that a designer did 
not consider, additional simulation trajectories might 
be generated randomly.  Even with these two 
strategies combined, it is impossible to guarantee 
complete coverage of all critical situations. 
Model checking is a technique for verifying 
properties of finite-state systems (Clarke, 1999). In 
contrast to simulation, model checking considers 
every trajectory of arbitrary length.  If a specified 
property is false, the model checker returns a 
counterexample, that is, a specific sequence of state 
transitions that violates the property. One popular 
model-checking tool is SMV, which was originally 
developed at Carnegie Mellon University 
(http://www.cs.cmu.edu/afs/cs.cmu.edu/project/modc
k/pub/www/). SMV uses a textual language to 
describe a system composed of concurrent, 
interacting finite state machines and uses fixed point 
algorithms to determine whether the system satisfies 
properties given by the user.  In SMV, properties, or 
specifications, are given in a computation tree logic 
(CTL) syntax.  The state variables that are input to 

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/modck/pub/www/
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/modck/pub/www/


the model checker must be integer-only, and the state 
machines can only have expressions that contain the 
state variables, ‘&’, ‘|’, ‘*’, ‘+’,’=’,’>=’,’<=’,’>’,’<’, 
‘/’, and ‘-‘.  A prototype tool called SF2SMV was 
developed for applying the model checking 
capability of SMV to the state chart structures in 
Stateflow™,2 a MATLAB™ toolbox for 
implementing discrete-state transition systems within 
Simulink™ models of continuous-state systems. 
Stateflow™ diagrams (SFDs) are more complicated 
than standard statecharts (Harel, 1998).  SFDs can 
have floating point numbers, arbitrary expressions, 
hierarchy, events, and parallel states.  In addition to 
these extra elements, the execution rules for SFDs 
are complicated.  Testing a SFD by exhaustive 
simulation is a difficult, if not impossible, task. 
 
Figure 2 shows a basic SFD and Figure 3 shows the 
associated SMV model generated by SF2SMV.  
These figures illustrate how the hierarchy of the SFD 
is reflected in the SMV modules.  The SF2SVM user 
interface supports the construction of CTL 
specifications to be checked for the SMV model, and 
makes it possible to play back counter examples on 
the original SFD when the specification is not 
satisfied.  Our experience with SF2SMV in a 
locomotive example exposed the difficulty of 
creating a tool that will be able to perform model 
checking on large-scale designs.  One of the 
principal sources of difficulty is the integration of 
model checking capabilities with the existing 
commercial design tools such as Stateflow™.  It is 
necessary to capture the semantics of the commercial 
tool, often through reverse engineering. If this is not 
done correctly, the value of the model checking 
results will be compromised.   
 
Nevertheless, even for small portions of the control 
logic, model checking can expose problems the 
designer has missed because it is not easy for the 
designer to anticipate all possible combinations of 
events and signal values. As with other control 
applications, designers of software for railway 
signalling typically think of normal operating 
conditions when constructing the control logic.  
Exceptions and safety conditions are often added to 
this code, and it only takes a few new cases to make 
the possible number of execution sequences explode 
beyond the designer's capacity for thinking through 
everything that might happen.  Consequently, model 
checking is an attractive tool for evaluating control 
modules before they are composed into the complete 
control package. 
 

     

                                                 
2 StateFlow™, Simulink™, and MATLAB™ are 
Trademarks of The Mathworks, Inc. 

 
Figure 2. A basic hierarchical Stateflow™ diagram. 

 
6.2 Test case Generation 
An essential aspect of a high-quality design process 
is the development of test patterns, or sets of test 
inputs, that can be applied to the final product to 
identify faults and confirm correct system behavior. 
In the design of embedded control systems, in 
particular, the growing use of tools for computer-
aided design and simulation increases the prospects 
for performing extensive testing of the control logic 
before it is realized in software and implemented on 
the target processor. The rapid growth in complexity 
of embedded control systems and the demand for 
short design cycles has increased the interest in 
effective methods for automatic test generation. 
  

MODULE main

VAR
state : {no_states,A3,A1,A2};
A3_child : A3_c(…);
A2_child : A2_c(…);

ASSIGN
init(state):=no_states;
next(state):=case
  t42_f : A3;
  t39_f | t41_f : A1;
  t43_f : A2;
  1 :state;
  esac;
�

MODULE A3_c(…)

VAR
state : {no_states,A3b,A3a};

ASSIGN
init(state):=no_states;
next(state):=case
  t41_f : no_states;
  t42_f : A3b;
  t40_f : A3a;
  1 : state;
  esac;

MODULE A2a_c(…)

VAR
state : {no_states,a1,a2,a3};

ASSIGN
init(state):=no_states;
next(state):=case
  t42_f : no_states;
  t44_f | t46_f : a1;
  t48_f : a2;
  t50_f : a3;
  1 : state;
  esac;

MODULE A2b_c(…)

VAR
state : {no_states,b1,b2,b3};

ASSIGN�
init(state):=no_states;
next(state):=case
  t42_f : no_states;
  t45_f | t47_f : b1;
  t49_f : b2;
  t51_f : b3;
  1 : state;
  esac;

MODULE A2_c(…)

VAR
A2a : and_state(…);
A2b : and_state(…);
A2a_child : A2a_c(…);
A2b_child : A2b_c(…);

.

.

.

 
Figure 3.  Basic SMV modules for the Stateflow™ 

diagram in Figure 2. 

 
Automatic test generation for embedded control 
systems is challenging for two major reasons.  First, 
the problem is complex due to the hybrid nature of 
the controller and plant composition, which contains 
both logic (discrete states) and components with 
continuous dynamics (continuous states).  Un-
decidability results for hybrid systems indicate that 
one should not expect to discover completely 



algorithmic procedures for test-vector generation for 
hybrid systems (Henzinger, 1998). Hence, global 
search methods that use domain-specific heuristics 
are used to produce test inputs for mixed-signal 
circuits (Vinnakota, 2001; Tofte 2000, Gupta, 2001). 
Similar methods are needed to generate test vectors 
for embedded control systems.  The second challenge 
is practicality: To develop automatic methods, the 
design must first be captured in a computer model 
that includes a representation of the plant as well as 
an embedded control algorithm. In contrast to 
integrated circuits for which very structured models 
using standard languages are developed during the 
design process, it is extremely difficult to extract 
formal models (such as automata) from existing 
simulation models of embedded control systems.     
 
To address these problems, a test case generation 
tool was developed at CMU that provides (i) the 
formulation of a coverage problem for hybrid 
systems with discrete and continuous inputs and 
outputs; (ii) a pragmatic solution to the problem that 
uses a GA-based algorithm to produce a test input 
with the specified coverage; and (iii) implementation 
and demonstration of the method for industrial-sized 
MATLAB™ Simulink™/Stateflow™ simulation 
models.  This work is described Zhao, et al (2003).  

Figure 4 illustrates the basic structure of the 
approach.  Experimental results are shown in Tables 
1 and 2.  For the small applications shown in Table 
1, the genetic algorithm always found a test input 
that gave responses with the desired properties.  The 
results in Table 2 are for a locomotive model 
consisting of 1478 Simulink™ blocks and 50 
Stateflow™ states and 15 input signals.  In this case, 
the genetic algorithm did not always find an 
appropriate test vector, but the maximum number of 
model evaluations for each experiment was set to 
3000.  With a fixed limit on the number of 
simulations, Table 2 shows that the population size 
should not be too small or too large. If the population 
size is too small, the power of the GA to explore 
several possible locations in the search space in 
parallel is not fully exploited. If the population size is 
too large, the relative number of crossover and 
mutation operations that can be performed is limited 
because of the large number of chromosomes. At the 
extreme case in which the population size equals the 
model execution limit, GA will degenerate to pure 
random search. Random search never found a 
suitable test vector for this model. 
 
 

 

 
 
Figure 4.  Genetic Algorithm approach to test case generation. 
 

Table 1: Automatic Test Generation results – Embedded real-time systems 

 
Table 2: Locomotive Model Test Generation runs, showing GA Population sizes. 

 

     



     

Experience with the GA approach to test case 
generation is very positive. Although the tool is 
currently only a research prototype, it has 
demonstrated that test cases can be generated with 
reasonable computation using the same models that 
were developed for simulation and system design.  
Such tools can have enormous impact on the overall 
time can cost of controller design. 
 

7.  PRESENT LIMITATIONS AND FUTURE 
POSSIBILITIES 

 
The development of formal methods for the 
statement and application of system requirements is 
still a key bottleneck (Grimson and Kugler, 2000; 
Jaffe, et al, 1991; Svedung, 2002). The B-formal 
method (Abrial and Mussat, 1998) provides a 
potential future means of carrying formal verification 
through multiple stages of the control system design 
cycle. A rail-control ontology is needed so that the 
inferred relationships among entities in a 
requirements document can be explored 
automatically (e.g., by traversing relationship graphs 
and inferring implied requirements from them).  
However, such ontologies may be large, and the 
problem of determining the transitive closure of 
statements generated as a subset (e.g., “safety 
statements”) of a formal grammar is yet to be 
investigated. Use of ontologies for requirements 
engineering support has been studied. e.g. in the 
following project:  
http://www.bath.ac.uk/~ensmjd/ORCS_blurb.html, 
which confirmed the large size of ontologies needed 
in problems of practical interest.  The successor 
project:http://www.bath.ac.uk/imrc/mechengineering
/Projects/SMIR.htm is also of interest. 
 
Style checking (Section 5) can be used to assure 
consistency of statements in formal languages such 
as ANSI C/C++ source code, and might be 
generalized to cover statements made in natural 
language requirements documents: this would 
remove spurious inconsistencies and typographic 
errors.  
 
In Section 4 it has been illustrated how an ontology-
based analysis of the software specification can be 
applied to detect conceptual errors that normally 
might not be found until after the system is 
operational. Also proposed is the use of temporal 
logic for analysis of the use-case scenarios.  Often, it 
is ironic that the controller or controlled object may 
not be mentioned at all in requirements documents: it 
is assumed to exist!   This gap may be filled by the 
use of standardized simulation languages, practices, 
or graphic representation paradigms (Vain and 
Kyttner, 2001).  For instance, many libraries of 
process control primitives, and application-specific 
modelling packages now exist for steam pipe 
systems, power plants, motors, batch process 
operations, circuit design, and signal processing, and 
these could be generalized to rail applications.  In 
this way, a requirement can be associated with a set 
of preconditions on a high-level plant model, a set of 
operations (or controlled modes), and a set of 

outcomes.   By using inference (or perhaps fuzzy 
inference; Holmes and Ray, 2001) to traverse such 
graphs or ontologies, a much more complete set of 
inferred requirements (and also test cases) can be 
automatically generated. 
 
Formal methods are of interest in the verification of 
design and simulation models, as well as controllers.   
Initial feasibility of model checking has been 
demonstrated for locomotive braking models, for 
instance. This is a precondition for closed loop 
testing, and for test generation via open loop models.  
When a feedback loop is closed via a controller, 
hybrid modes of behavior can occur, introducing 
issues of decidability (Section 6).  Often, it is 
difficult to define precise quantitative behaviors that 
are expected for specific quantified inputs to a 
system: not only are the test cases difficult to 
generate, but the expected performance in any 
specific test case may be difficult to derive.  In fact, 
tracing-through various requirements that apply in a 
given test case, may allow one to define – by 
intersecting a number of qualitative performance 
conditions, each derived from a different path 
through the requirements network – a much more 
precise statement of expected behavior.   
 
In conclusion, the use of emerging source-code 
verification methods to improve dependability of 
railway signalling logic is still at an early stage of 
evolution.  Many gaps exist in the vision of linking 
verification at earlier design process stages 
(requirements definition) to verification at later 
stages of design (source code).   The use of formal 
verification methods for individual design process 
steps is expected to proceed when commercial grade 
tools become available, and when these can be 
constructed to save time and demonstrably improve 
software quality. 
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