

OFFLINE SERVICE DISCOVERY IN HUMAN, ROBOT, ENVIRONMENT INTERACTION

Dong To Nguyen, Sang-Rok Oh, Bum-Jae You

Intelligent Robotics Research Center - Korea Institute of Science and Technology

Abstract: In this paper, an offline service discovery method is proposed with an
interaction framework of humans, robots, and environments. It creates a dynamic robot
control system with flexible and uncomplicated configuration. A number of experiments
have been conducted successfully. The experiments show that this framework works well
and provides some advantages to existing systems. Copyright © 2005 IFAC.

Keywords: Mobile Robots, Agents, Interaction, Interfaces, Intelligent control.

1. INTRODUCTION

Nowadays, besides direct human robot interface
(HRI), Internet HRI, that explores Internet to
communicate, has become important. The Internet
HRI can be implemented by using a client-server
model, a distributed model or using agent technology.
The Internet HRI using agent technology is
mentioned in some publications recently. Hideaki
Hideaki et al (1997) introduced an agent-based
architecture where users communicate with robot via
a video camera located outside of the robot. They
focused on a ubiquitous access method that explores
the agent as a means to communicate human and
robots via the distributed sensors. Maxim Makatchev
and Tso (2000) proposed a framework using a proxy
agent architecture. They focused on solving the
communication problems by using the proxy agent as
a mediator between robots and users. Similar to the
above researches, our research explores the agents
for the HRI using distributed sensors and multi-agent
communication method. Different from these, our
research targets the service in offline situation.

In our Internet HRI approach, the world is considered
as a set of workspaces. Each workspace is controlled
by a multi-agent system. Firstly, this multi-agent
system is used for fusing distributed sensors to
monitor the environment. Secondly, it works as the
center to dynamically coordinate with robots and
users in the environment. When robots enter a
workspace, they register their services, explore the
information of this workspace and provide their
ability to the system and users. Users use their
Personal Digital Equipment (PDA) or notebook to
access the system, discover and access the services
provided by robots in the workspace. This system is
able to organize, discover and explore the services of
each partner.

Service discovery methods are very important in
agent technology. In the agent-based standard such as
Foundation for Intelligent Physical Agents (FIFA
2000), service discovery in an agent platform (AP) is

provided by a special agent, which named as
Directory Facilitator (DF). Agent can register,
deregister and modify service information in DF. DF
provides the service management mechanism to
design an Internet HRI interface system. However,
DF does not provide the ability to interact with the
offline service. The presence of a robot in the system
is not permanent. The robot may be offline at the
time when the users want to assign the tasks, but it
may be available later. Therefore, a mechanism to
discover the services, assign the tasks to the robots,
and provide the interface for service interaction when
robotic agents are offline, is needed. Our framework
supports a method to deal with the offline situation.

The responsive environment is the environment that
can provide information about itself to the other
partners working in it. Turning an environment into a
responsive environment by installing sensors around
the environment is one approach that is used in some
human tracking systems, where a number of cameras
are installed and connected together. Huang and
Trivedi (2003) proposed a system, where the camera
array is installed around the workspace for human
movement tracking. In the implementation described
later, environment sensor information and local
sensor information are combined by exploring a
multi-agent architecture. Developed from the idea of
exploring a central control system to control a group
of robots by changing the behaviour of the whole
group that proposed by Ali and Arkin (2000), our
responsive environment can change the behaviour of
any robot placed in its environment to make this
robot adaptive to the environment.

2. PROPOSED FRAMEWORK

2.1 Overall Framework

In the Internet HRI, one problem is the offline
situation, when a robot is temporally out of control
due to recharging of battery or suffering from

Main Container located on a computer
that controls the whole environment

User Container
on User PDA

Robotic Agent Software located on Robot

Software related to the robot only

Service
Agent 1

AMS, DF, RMA Agent(Default Management Agent)

Direct Human-Robot,
Environment-Robot,

and Robot-Robot
Interface

Internet Human-Environment Robot Interface

Human-Robot
Service Agent

Group

Environment-
Robot

Interface
Agent

Robot-
Robot

Interface
Agent

Service
Agent 1

Service
Agent 2

Service
Agent 2

Coordinator and mediator
Agent

VDF Agent (Internet HRI ServiceManagement)

User Agent
(Service Query
and exploration

tool)

Service
Agent 1

Service
Agent 2

Coordination using
ACL Message and

cooperation protocol

Clone service
through
Internet

Service
agent 3

Service
Agent n

Environment
Sensor
Agent

Environment
Sensor
Agent

Migration and
Synchronization through

InternetHuman, Robot

network problems. Our framework is designed to
solve this problem. Figure 1 describes the system
with robotic, user and environment agents.

Figure 1. The overall framework of an Internet-

based HRI system

Robotic agents: The software is designed to separate
two parts: the control part and the interface part. In
the interface part, all behaviour and services are
arranged as agents. In this paper, only the Internet-
based services are considered. The internet-based
services can be categorized into some types and with
each type the system processes the service in
different ways.

� The Internet human-robot interface services are
services that require human interaction. With
these types of services, robots create the slave
agents for the services and migrate them to the
main container. These services require no
predefined algorithm and configuration. At the
main container, user can manage, send command
and work with the services.

� The robot and environment interface services are
services that require coordination with each other
or with the distributed sensors. These services use
the predefined coordination agents and algorithms
to connect these agents together in a special
protocol. The coordination protocol should take
into account the possibility of communication
problem.

Responsive Environment: The responsive
environment is controlled by a main container and
environment agents so that it can respond to the
change in the environment. It gathers information
from distributed sensors and works as the
management part for the services of each robot in the
environment. It also provides the interface of the
services on request. The coordinator agent should be

located on the main container to coordinate robots
and distributed sensors.

User Agents: Users access the system via a User
Agent (UA) located on their PDA. On the PDA, there
is no information about the robots. UA will query
and clone the available services from the main
container. With this UA, users can also interact with
the services via Agent Communication Language
(ACL) communication.

2.2 Virtual Directory Facilitator (VDF)
Software

Agent
Agent

Management
System

Directory
Facilitator

Message Transport System

Message Transport System

Agent Platform

Agent Platform
a. FIPA Agent Platform

Software

Agent

Agent
Manag-
ement

System

Directory
Facilitator

Message Transport System

Message Transport System

Virtual
Directory
Facilitator

Slave
Agent

Robotic Agent

Agent Platform

Agent Platform
b. FIPA Agent Platform with VDF extension

Figure 2. Management architecture of FIPA

standard and VDF extension

The FIPA standard is selected to implement the
system. The central part in the FIPA standard is the
definition of a management standard using a central
control in the main container. In our framework, the
implementation part and the interface part of a
service are separated so that the interface part can be
moved around the network by migrating and cloning.
Each robot appears in the system as an agent. Each
time this agent registers to the AP, it will create its
service slave agents. Using the mobility feature of the
AP, slave agents will migrate to locate on the main
container. These agents work as slaves for the robotic
agents. They are created at the time the robotic
agents appear in the system and remains for a
particular period of time that specifies by the robotic
agents. The slave agents collect information when the
robotic agents are offline, get the requirement or
interact with users and other robotic agents. It can

provide complicated graphic interface. Therefore,
users with no experience about the robot can interact
with it because after being migrated to the user
device, it can be used as a normal application
program. Then the slave agents synchronize with the
robotic agent when it is online. Each robotic agent
can visit many workspaces and drop slave agents
there. The existence of this slave agent is temporal.
To control such a slave agent group, a special agent
in the agent platform is created. This is called a VDF
agent. VDF works similarly to DF in FIPA standard
but all these services are provided by slave agents.
VDF is responsible for synchronizing the slave agent
and robotic agent. The UA located on the user’s PDA
works as a service query-and-display tool. UA can
query all the services currently available on a system
and then select the service that the user wants to use.
After a service is selected, VDF will clone a copy of
the service interface, move it to the container in PDA.
After users interact with the interface, all data will be
synchronized among interface agent.

This system helps each robot to broadcast its service
even after it deregisters from the system temporally.
Users save the time for interaction with services
because they can access the system at any time, work
with the interface they find in the VDF and explore
this service by invoking the interface. The
availability of the system increases since the demand
of long term or permanent Internet connection is
reduced and each robot only needs to be connected
for a short time to migrate its service interface or to
synchronize the data.

2.3 Robot-Environment interaction
A mobile robot normally uses only its local sensors.
It is hard for robotic agents to work and cooperate in
the unknown environment because it does not know
the change in the environment beyond its sensors’
range and the existence of the other robotic agents.
With a multi-agent system, our environment becomes
a responsive environment. This multi-agent system
helps to overcome these problems by using
coordinator agent to coordinate distributed sensors
with robot agents. By installing sensors around the
workspace and connecting these sensors to the multi-
agent platform, the information about environment
can be provided. Using this information, the
responsive environment can discover the position of
each robot and control the behaviours of a robot.

3. EXPERIMENTS AND RESULTS

3.1 Experiment design:

Figure 3. ISSAC Robot Model

Human-Robot Interface Experiment: The first
experiment validates the human-robot interface using
slave agents, VDF and user agents. To do this
experiment, two service interfaces on ISSAC,
cleaning service and behavioural customisation
service, are selected. The input for the cleaning
service is time and zone to be cleaned. When the
conventional control system is used, ISSAC should
have a permanent wireless connection to maintain the
high available level. Because it is difficult to satisfy
this, the service shows the useful point of the multi-
agent system in sense of increasing the availability of
the system. The behavioural customisation service
illustrates the other application of the framework. By
assigning option to a group of slave agents in VDF,
the behaviour of all the robots with the same types
can be changed. If there are some ISSAC robots in
the same environment the behaviour of the whole
group can be changed by using only one service
interface. When the option is changed on the main
container, every robots placed in this environment
will change its behaviour and the robot becomes an
environment awareness robot. Whenever ISSAC
reaches the system again, its behaviour will change
accordingly. As the framework is not only for ISSAC
but also for any robot, a common offline control
system such as a store and forward type system could
not create the interface of the service because the
features and behaviour lists of each robot are
different. Thus, the service interface should be
designed on the ISSAC and then migrate to the AP
later. The experiment is conducted with the UA on a
PDA, iPAQ 5450, using JadeLeap (Bellifemine, et al.,
2003). This iPAQ connects to the network via an 11
Mbps wireless connection. The UA is written as an
agent in an agent container on JadeLeap platform. In
contrast to the conventional robotic control system,
this UA does not have any particular information
about robot or environment. After registering to the
AP, the UA can search for the existing VDF, query
the VDF on available services. VDF contains the
services of robotic agents that are currently online
and offline. After getting the list of services available
in the system, UA may send query VDF to request a
special service such as cleaning service. This service
interface is cloned from the main container and
migrated to locate on the user container. Then users
run the interface on the user PDA, work with the
service interface and leave the system.

Figures 4. 21 regions in the environment

Robot Controller System
User Interface

Mobile Robot Controller System

VideoData

VideoControl

servicedata

Cl ient Syst em Ser ver Pa c k 1: Video

SeRVer Pa c k 2: DATA a nd
Co mma nd

Client UDP Port
Video RTP (Port

2000)

Client TCP Port
Video flow control
(Port Randomize)

Client TCP Port
Data and command flow
(Po r t Ran d o mize)

Command and Data
Manager, schedulling,
virtual mode interface

Video manager
package

User Interface and
display frame.

V
ideoD

ata

V
ideoC

ontrol

User
Client
Side

Server
Side

Server
UDP Port

Video RTP
Port 1000

Multithread
ing server
TCP Port

6080

Capture
DataSource

Manager

Win2000
Video Driver

USB Camera
on Mobile

Robot

Command DataOut

Network
Manager
on TCP

 Port 6081

RS 232 C

SQL sharing Data
1.For user, pass
2. Map Data sharing
if neccessary

Java
Apple

t

Decision
system,

Schedulling,
authentication

Message
center

Environment-Robot Interface Experiment: The
second experiment validates the coordination with
the distributed sensors using coordinator agent.
ISSAC should go to some target points assigned
dynamically by users via Internet HRI. ISSAC
should plan to go to the list of targets by using map
data and environment information. During the time
ISSAC performs the task, the plan may need to be
changed because users add or remove the task, or
environment is changed. To implement the task, our
multi-agent framework is explored. There are three
main types of agents involved in the coordination:
Robotic agent (RA), environment-agents (EA),
Environment Monitor Agent (EMA). Along the
corridors, a group of EA is installed. These EAs work
as the external sensors for RAs. Cameras are used as
the distributed sensors. It is difficult for environment
sensors to locate exactly the position and the shape of
obstacles. The regions in the sub-environment are
therefore only classified by complexity level. Three
levels: Free, Obstacles and Block levels are defined.
In the main container of the AP, an EMA is located.
The environment sensors should provide information
about the area under their control. The EMA works
as a coordinator agent for robotic agent services and
at the same time works as a user interface for user
agents. It is the place where the targets and the track
of all RAs in the system, are stored. Users use UA on
their PDA to assign the tasks to the system by
cloning the interface for assigning tasks from VDF.
Our lab environment is divided into 21 observable
regions as in Figure 4 below.

The conventional tele-robotic system for
comparison:

Figure 5. Conventional control System on ISSAC

A conventional tele-robotic control system on the
same robot model (ISSAC) is also developed to
compare with the proposed framework. The full
implementation of the system is described in
(ToDong, et al., 2002). This system solves many
situations in online and offline mode. This
conventional system includes two parts. On the right
side of Figure 5 is the server part, which is located on
the mobile robot. The code for controlling the robot
and obtaining sensor data is located on the embedded
board. This board connects to the server program on
the controlling computer through serial port. The
server is coded in two separate packs. One is for
sending audio/video data to client using Java Media
Framework and the other is for receiving command,

service requirement data from client, storing this data
locally to implement later. On the left side of Figure
5 is the client part. This client part is also located on
the ISSAC as an applet. At the time users visit the
ISSAC control pages, this applet is downloaded and
executed on the client computer.

Using this system, users can control the ISSAC and
work with its services. Users can customize ISSAC
behaviour option but only with one robot at a time.
Users can assign the cleaning task to the robot using
the interface in the applet downloaded from ISSAC.
However, users can only work with the robot service
when both the user and the robot are online
simultaneously. The service requirements are then
stored locally. During the time users connect with the
robot, a permanent stable network connection is
required. This problem can be overcome by writing
the application on client computer instead of
downloading this program as an applet through the
network. However, in that case, users should know
whether this robot is working on this environment. If
it is, then users obtain the client program of this robot
and send our requirement.

Experiment result:

6.a Cleaning service, migrated to main container

6.b. Behaviour customisations services

Figure 6. Service Interface

Figure 6 shows the result of implementing our
framework for cleaning service and behaviour
customisation service. Both the proposed framework

and conventional framework can offer cleaning
services and customisation services. However, with
cleaning service, the proposed framework gives the
ability of working offline with the services, which
users cannot do on the conventional system. The
behaviour customisation system shows the ability of
changing the behaviour of a group of robots.
Moreover, the interface for changing this behaviour
is provided by the robots themselves, so many types
of robots can provide this service if these robots are
designed according to the architecture without
changing the code at the VDF and UA. Each service
of the proposed system is cloned and moved to user
container separately on request. On the contrast, all
the interface code of the conventional system should
be loaded when users connect with ISSAC.

In Table 1, the size for each service in the proposed
system is smaller than the size of the service in the
conventional system because the service interfaces in
the proposed system are separated from each other.
Meanwhile, users should download the whole applet
with all services in the conventional system. The time
for starting any service in the conventional system is
the same as the time for downloading the whole
client program. The time to complete a service seems
to be similar. However, the conventional system
requires users and robots to be online at the same
time.

Table 1. Service experiment result

Average
service
starting

time

Average
time to

complete
a service

Time that
both user
& robot

require to
be online

Behaviour
Service

Slave Agent
18.6 Kb

18
(second)

60
(second)

0
(second)

Cleaning
Service

Slave agent
28 Kb

20
(second)

120
(second)

0
(second)

Behaviour
Service on

conventional
system 96Kb

85
(second)

60
(second)

145
(second)

Cleaning
Service on

conventional
system 96Kb

85
(second)

120
(second)

205
(second)

Figure 7 show the results of using coordinator agent
in dynamic path planning. After locating all the
targets via EMA, the path planning is created by
using the Floyd algorithm for finding shortest path.
The path-planning task can be done on the RA side
or on the EMA side. The travelling code
corresponding to the environment map is stored on
the EMA. If the path planning is performed on RA
side, the initial estimated travelling cost should be
sent before starting. This information is stored as a
two dimensional table of 21 nodes, which shows the

travelling time between each node couple. Then
during the navigating time, if some change in the
environment is detected, this information is sent to
the RA from EMA. If the path planning is done on
EMA side, the next targets from EMA should be sent
during the navigating tasks. The number of messages
in that case is smaller. However, the stable
communication is required during the time of
performing tasks.

7a. Initial State at EMA

7b. Archive path-planning

7c Path change at Node 1 due to environment

change and one more destination added

7d. Path change again at node 5 due to

environment change (Blocked)

Figure 7. Dynamic path planning using the
responsive environment coordination.

The path planning system should upgrade the Floyd
table when RA arrives at each node so that any
change in the environment creates a change of path
planning at each node. Each time RA arrives at a
node, the plan needs to be changed. System
recalculates the Floyd table so any new change in the
environment is calculated. The environment sensors
may change the travelling cost value between nodes
during the last move. This cost depends on the
complexity of the region and neighbourhood region.
From the new Floyd table, a new graph containing
remaining target points and current robotic positions
is formed. The edges of this graph are the shortest
paths found in Floyd algorithm. Now it becomes a
traditional Travelling salesman problem (TSP). TSP
is a NP-complete problem so no solution can offer
real-time performance. The shortest path on this
graph is found using full search if there is less than 8
points. If the number of remaining nodes is bigger
than eight, some heuristic methods can be used to
reduce the calculation time.

To create the dynamic Floyd table, the relation
between the environment state and the travelling
code is needed. The travelling code can be calculated
by the distance between nodes. However, obstacles
may change this value. The state space of n regions
with only m complexity levels is mn. Therefore, to do
the path planning in real time, an estimation of
travelling cost is proposed. In our implementation,
the simplest case, where the EA recognizes three
states {Block, Empty, Obstacle} levels, is chosen.
The value table contains just the initial value.
Statistical information is used to recalculate it later
on. The initial value table V[21][21][4] is calculated
using the state couple of Si and Sj by:
� V[i][j][0] = 　 for free-block, block-free,

obstacle-block, block-obstacle and block-block.
� V[i][j][1] = distance between nodes i and j for

free-free state couple of Si-Sj.
� V[i][j][2] = distance between nodes i,j * 4 for

free-obstacle and obstacle-free couple of Si-Sj.
� V[i][j][3] = distance between nodes i,j * 8 for

obstacle-obstacle couple of Si-Sj.

Table 2. ACL Message Load

Path

planning
on RA

Path
planning
on EMA

Initialisation Message 441 0

Messages if there is a
change in environment

number of
node

change
0

Message transfer when
robot arrive at a node 0 2

Time to get information
at each node. 0 1

(second)

Table 2 shows the number of messages needed in
path planning process. Doing the path-planning on
EMA requires not many messages. However, during
the navigation, the next targets are sent to RA.
Therefore, this method fails when network problem
occurs. On the other hand, doing the path-planning

on RA requires many messages at the first time. In
case, network problem happens, it follows its current
path planning to finish the tasks.

4. CONCLUSION

The Internet HRI solution using a responsive
environment and service management is good for
autonomous robot working in dynamic environments
with dynamic assigning tasks. To explore these
environments and working with robots, the use of
VDF, slave agents and EMA is proposed. Through
experiments, the proposed framework shows some
advantages to the conventional tele-robotic control
system. Users can access services of the system
without installing the specific program for each robot.
Total time for agent migration and synchronization is
small enough to give the system a high ability level
and help users save a lot of time to control the system.
This method also reduces the time that robots need to
be connected to the network and can tolerate some
levels of connection disruption.

REFERENCES

Ali, K. and Arkin, R.C. (2000), "Multi-agent
Teleautonomous Behavioural Control", in
Machine Intelligence and Robotic Control, Vol. 1,
No. 2, 2000, pages 3-10.

Bellifemine, F., G. Caire, A. Poggi and G. Rimassa
(2003), “JADE - A White Paper”, in Journal
"EXP - in search of innovation", September 2003,
volume 3, pages 6-19.

Bum-Jae You, Myung Hwangbo, Sung-On Lee,
Sang-Rok Oh, Young Do Kwon, San Lim (2003),
"Development of a home service Robot ‘Issac”, in
Proceeding of the International Conference on
Intelligent Robots and System (IROS2003), Vol.
3, pages 2630-2635.

Dong To Nguyen, Sang-Rok Oh, Bum Jae You
(2002), Myung Hwang Bo and Brian Kwang-Ho
Lee, “A Control architecture for an Internet-
based robot system”, in Proceeding of the
International Conference on control, automation
and system (ICCAS 2002), pages 1677-1683.

FIPA – Foundation for Intelligent Physical Agents
(2000) http://www.fipa.org.

Hideaki Takeda, Nobuhide Kobayashi, Yoshiyuki
Matsubara and Toyoaki Nishida (1997),
“Towards ubiquitous human-robot interaction”,
in Working Notes for IJCAI-97 Workshop on
Intelligent Multimodal Systems, pages 1-8, 1997.

Huang K. and M. Trivedi (2003), "Video arrays for
real-time tracking of person, head, and face in an
intelligent room" in Machine Vision and
Applications, vol. 14, June 2003, pages 103-111.

Maxim Makatchev and S. K. Tso (2000), "Human-
Robot Interface Using Agents Communicating in
an XML-Based Markup Language", in
Proceedings of the 2000 IEEE International
Workshop on Robot and Human Interactive
Communication, Osaka, Japan, September 27-29,
2000, pages 270-275.

