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1. INTRODUCTION

Disturbance decoupling has been studied for a
long time. For linear systems, the problems of dis-
turbance decoupling with state feedback (DDP),
with state feedback and stability (DDPS) and
with dynamic measurement feedback and inter-
nal stability (DDPMS) have been solved (refer
to (Wonham, 1979)). The problem of disturbance
decoupling with constant or static measurement
feedback (DDPCM) for linear systems is a very
difficult problem. There have been some results on
this problem, for example, (Hamano and Furuta,
1975; Koumboulis and Tzierakis, 1998; Chen,
1997; Chen, 2000). The problem of disturbance
decoupling with measurement feedback(DDPMF)
for nonlinear systems is much more complicated
than that of linear systems.

Consider the following nonlinear system with dis-
turbance:

ẋ = f(x) + g(x)u + p(x)w
y = h(x), z = hm(x)

(1)

where x ∈ Rn, y ∈ Rp1 , u ∈ Rm, z ∈ Rp2 and w ∈
Rq are the state, controlled output, control input,
measurement output and disturbance input of the
system, respectively. In this paper, we consider
that all functions, vector fields and maps in system
(1) are analytic over an open and dense subset of
its state space Rn.

The problem of disturbance decoupling with mea-
surement feedback (DDPMF) for nonlinear sys-
tems is stated as follows. Find, if possible, a
measurement feedback u = α(z) + β(z)v such
that the disturbance w has no effect upon the
controlled output y of the closed loop system.
For nonlinear systems there are only few results
on the DDPMF. An early work was given by
(Andiarti and Moog, 1996) and a complete solu-
tion of the DDPMF for single-input single-output



(SISO) nonlinear systems was presented by (Xia
and Moog, 1999). (Pothin, 2001) studied the dis-
turbance decoupling problem by static feedback
of measured variables for some square-invertible
nonlinear system.

In this paper, we study the solvability conditions
of the DDPMF for more general MIMO nonlin-
ear systems, which may be not square-invertible.
Some algorithms are presented for checking the
solvability conditions and finding the feedback
laws. Using the algorithms one can check-up the
insolvability of DDPMF in a finite number of
steps. If the DDPMF is solvable, then one can find
an exact solution or an approximation solution
with sufficient accuracy.

2. SUBSPACES IN A DIFFERENTIAL
VECTOR SPACE

In this work we use the notions of the differential
field and differential vector space ((Di Benedetto
and Moog, 1989); Conte, et al., 1999). Let K be
the quotient field of analytic functions, i.e. the
meromorphic function field (Conte, et al., 1999),
of the variables xi, wj , and u, u̇, ü, · · · , u(k) for
i ∈ n, j ∈ m and k ≥ 0. Then K is defined
by the nonlinear control system (1). Over the
differential field K, the system (1) defines two
most fundamental linear vector spaces.

D = spanK{
∂

∂xi

,
∂

∂u
(k)
j

,
∂

∂w
(s)
r

;

i ∈ n, j ∈ m, r ∈ q k, s ≥ 0}

and its dual space of D over K

D∗ = spanK{dxi, du
(k)
j , dw(s)

r ;

i ∈ n, j ∈ m, r ∈ q, k, s ≥ 0, }

The dual space D∗ is defined by the nonlinear
control system (1) and is a differential linear
vector space over K.

X ∗ := spanK{dx}

U∗ := spanK{du, du̇, dü, · · · , du
(k), · · ·}

W∗ := spanK{dw, dẇ, · · ·}

Y∗ := spanK{dy, dẏ, dÿ, · · · , dy
(k), · · ·}

Z∗ := spanK{dz, dż, dz̈, · · · , dz
(k), · · ·}

where dx stands for {dx1, dx2, · · · , dxn}, du
(k)

stands for {du
(k)
1 , du

(k)
2 , · · · , du

(k)
m }; k = 0, 1, 2, · · ·,

and so on. X ∗, U∗, Y∗ and Z∗ are called the
dual state space, dual input space, dual controlled
output space and dual measurable output space,
respectively, where the superscript ∗ is to empha-
size that these dual spaces are vector spaces in the
differential form.

Let C∗ be a s-dimensional integrable subspace of
X ∗, i.e. we can write C∗ = spanK{dφ(x)} , where
φ(x) := (φ1(x), φ2(x), · · · , φs(x))

τ , φi(x) ∈ K, i ∈
s. The derivative subspace of C∗, denoted by Ċ∗,
is defined as Ċ∗ = spanK{dφ̇(x)}.

Without disturbance, the nonlinear system (1) is
written as

ẋ = f(x) + g(x)u
y = h(x)

(2)

Definition 2.1 Given system (2), an integrable
subspace C∗ of X ∗ is called controlled invariant
if there are m′ ≤ m functions affine in u and
written as φi(x, u) = ai(x)+

∑m

j=1 bij(x)uj ; i ∈ m′

with {dφi(x, u); i ∈ m′} (mod X ∗) being a set of
independent vectors, such that

C∗ + Ċ∗ = C∗ ⊕ spanK{dφi; i ∈ m′}

The controlled invariant subspace of X ∗ was de-
fined by (Huijberts and Andiarti, 1997) with non-
exact one-forms and it is a dual-notion of the
controlled invariant distribution in the differential
geometry approach ((Isidori, 11995).

Definition 2.2 (Zheng and Evans, 2000) A func-
tion of the system state ϕ(x) ∈ K is observable
for system (2) if under the condition ϕ(xa(0)) 6=
ϕ(xb(0)), for two initial states xa(0) and xb(0),
there exists a control u(t) such that the system
output satisfies

y(t, xa(0), u(t)) 6≡ y(t, xb(0), u(t))

The observable dual state space, denoted by O∗,
of the nonlinear system (2) is defined as

O∗ = spanK{dϕ(x);ϕ(x) is observable}

Definition 2.3 (Zheng and Evans, 2000) A func-
tion of the system state ϕs(x) ∈ K is strongly
observable for system (2) if for any state feedback
control u = α(x) + us it is an observable function
for its closed loop system.

The strongly observable dual state space, denoted
by O∗

s , of the nonlinear system (2) is defined as
O∗

s = spanK{dϕs(x);ϕs(x) is strongly observable}

Proposition 2.1 (i) The subspace O∗
s(⊂ O∗) of

X ∗ is invariant under state feedbacks. (ii) O∗
s is

a controlled invariant subspace of X ∗, i.e. there
exists a φτ

u = (φ1(x, u), · · · , φm1
(x, u)) with dim

spanK{dφu} = m1 ≤ m (mod X ∗) such that

O∗

s + Ȯ∗

s = O∗

s ⊕ spanK{dφu} (3)

Remark 2.1 In Proposition 2.1, φu may not be
uniquely defined, but O∗

s + Ȯ∗
s is invariant.

As p(x) in system (1) can be written as p(x) =
(p1(x) p2(x) · · · pq(x)), where pi; i ∈ q are



vector fields, the distribution spanned by p(x) is
denoted by P = spanK{p1, p2, · · · , pq}(⊂ D). The
observable subspace O∗

s of X ∗ can be constructed
by O∗

s -Algorithm (see (Zheng, 1993)) and the
DDP of system (1) is solvable if and only if

O∗

s ⊂ P⊥ (4)

The (4) is not a sufficient condition for the
DDPMF (see (Xia and Moog, 1999)). In the re-
mainder of this paper, it is assumed that the
system (1) is observable from the measurement
of y and its DDP is solvable. Furthermore, we
introduce a controlled invariant subspace Ω∗ of
X ∗, which is equivalent to that of 4.3 in (Huijberts
and Andiarti, 1997) or (Xia and Moog, 1999) and
constructed by applying an Ω∗-Algorithm, such
that

O∗

s ⊆ Ω∗ := {dψ ∈ X ∗; dψ̇ ∈ Ω∗ + Ȯ∗

s}

Ω∗ + Ω̇∗ = Ω∗ ⊕ spanK{dφu}

= Ω∗ + Ȯ∗

s ⊂ P⊥ (5)

Lemma 2.1 Given system (2) there exists an
controllability decomposition in dual-state space
X ∗ such that

X ∗ = X ∗

c ⊕X ∗

c̄

where X ∗
c is controllable subspace and the uncon-

trollable subspace X ∗
c̄ is uniquely defined, inte-

grable and invariant under coordinate transforma-
tion.

The algorithm for constructing X ∗
c̄ named X ∗

c̄ -
Algorithm is given by (Zheng and Zhang, 1999).

We now recall the notion of covering space from
(Cao and Zheng, 1992). Let dψ(x) ∈ O∗

s and
dψ̇ ≡ ω (mod U , then ω can be represented by
ω = dξ0 + u1dξ1 + u2dξ2 + · · · + umdξm where
dξi ∈ X ∗, i = 0, 1, 2, · · · ,m as system (2) is affine
in u. We define [ω] := spanK{dξ0, dξ1, · · · , dξm}
to be the covering space of the vector ω.

Using the definition of the covering space, we have

[Ȯ∗

s ] := spanK{[ω];

ω ≡ dψ̇ (mod U∗) ∀ dψ ∈ O∗

s}

Given system (1) and a function ψ(x), the relative
degree of dψ(x) with respect to input u, denoted
by degu(dψ), is degu(dψ) = r (≥ 1) if dψ(r−1) ∈
X ∗ (mod W∗) and dψ(r) /∈ X ∗ (mod W∗) are
satisfied. Similarly, the relative degree of dψ(x)
with respect to input w, denoted by degw(dψ), is
degw(dψ) = r (≥ 1) if dψ(r−1) ∈ X ∗ (mod U∗)
and dψ(r) /∈ X ∗ (mod U∗) are satisfied.

Now we are in the position to define a new
controlled invariant subspaces Q∗ of X ∗ based on

the controlled subspaces O∗
s and introduce Q∗-

Algorithmbased on the three algorithms, O∗
s -, Ω∗-

and X ∗
c̄ -Algorithms.

Q∗ Algorithm (1) Define a set of functions de-
noted by ye = he(x) such that spanK{dye} :=
spanK{dy} + [Ȯ∗

s ], where ye is considered as an
extended controlled output.

(2) Apply O∗
s -Algorithm to system (1) with the

extended output ye to obtain an extended strongly
observable subspace O∗

es of X ∗. O∗
es is a controlled

invariant subspace of X ∗ and satisfies O∗
es +

Ȯ∗
es = O∗

es+spanK{dφu1, dφ̃u2} (mod W∗), where
φu1, φ̃u2 are independent (mod X ∗). (Notice that
the φu in (3) is replaced by φu1 here.)

(3) Apply X ∗
c̄ -Algorithm to O∗

es to obtain the
uncontrollable subspace O∗

esc̄ of O∗
es with respect

to the control input w, i.e. O∗
esc̄ + Ȯ∗

esc̄ =
O∗

esc̄ (mod spanK{dφu1, dφ̃u2}). We write

O∗

esc̄ + Ȯ∗

esc̄ = O∗

esc̄ + spanK{dφu1, dφu2}

(4) Apply Ω∗-Algorithm to O∗
esc̄ to construct

controlled invariant subspace Q∗ of X ∗, which
contains O∗

esc̄ and is contained in P⊥.

Thus, we have constructed three controlled invari-
ant subspaces in P⊥ with respect to the controlled
output y, i.e.

O∗

s + Ȯ∗

s = O∗

s ⊕ spanK{dφu1}

Ω∗ + Ω̇∗ = Ω∗ ⊕ spanK{dφu1}

Q∗ + Q̇∗ = Q∗ ⊕ spanK{dφu1, dφu2}

(6)

where dim spanK{dφu1, dφu2} = m1 + m2 ≤
m (mod X ∗) and O∗

s ⊆ Ω∗ ⊆ O∗
esc̄ ⊆ Q∗ ⊂ P⊥.

Let ȳ =

(

y
z

)

be an augmented output of the

system (1). With respect to the output ȳ we can
construct the strongly observable subspace Ō∗

s .
It is controlled invariant and that O∗

s ⊂ Ō∗
s ,

but ”Ō∗
s ⊂ P⊥” may not not satisfied. Thus,

we construct the uncontrollable subspace Ō∗
sc̄ of

Ō∗
s with respect to the input w, which satisfies

that Ō∗
sc̄ + ˙̄O

∗

sc̄ = Ō∗
sc̄ ⊕ spanK{dφ̄u}. Apply

Ω∗-Algorithm to Ō∗
sc̄, we obtain the controlled

invariant subspace Ω̄∗ satisfying

Ω∗ ⊆ Ω̄∗ ⊂ P⊥

Ω̄∗ + ˙̄Ω
∗

= Ω̄∗ ⊕ spanK{dφ̄u1}
(7)

where dφ̄u1 is a set of independent vectors (mod
X ∗).

3. SOLVABILITY CONDITIONS FOR
DDPMF AND ALGORITHM

Let the dual controlled output subspace of the
closed loop system of (1) be Ỹ∗, where Ỹ∗ :=



spanK{dỹ, d ˙̃y, d¨̃y, · · ·}. By definition, the distur-
bance decoupling for the closed loop system of (1)
implies

Ỹ∗ ⊂ P⊥ (8)

If we define dye such that spanK{dye} = spanK

{dy, dz}+[ ˙̄Ω
∗

] in the step 1 of Q∗-Algorithm,
then the application of Q∗-Algorithm yields a
controlled invariant subspace Q̄∗ of X ∗ in P⊥ such
that

Q̄∗ + ˙̄Q
∗

= Q̄∗ + spanK{dφ̄u1, dφ̄u2} (9)

For a measurement feedback control u = u(z, v),
let φ̃u(x, v) = φu(x, u(z, v)), where the φu satis-
fied (3).

Theorem 3.1 Under the condition Q̄∗ = Ω̄∗, the
DDPMF of system (1) is solvable if and only if
there exists a measurement feedback u = u(z, v)
such that

spanK{dφ̃u, d
˙̃
φu, · · · , dφ̃

(s)
u }

⊂ spanK{dφ̃u, d
˙̃
φu, · · · , dφ̃

(s−1)
u } + Ω∗

⊂ Ω̄∗ (mod V∗)

(10)

is satisfied for some s ≤ r = dim Ω̄∗ − dim Ω∗

The proof is omitted as space limitation.

When condition Q̄∗ = Ω̄∗ is not satisfied, let
O∗

s , Ω∗, Q∗, Ω̄∗, Q̄∗ be constructed such that
the conditions (6), (7), (9) are satisfied. One has

Theorem 3.2 The DDPMF of system (1) is
solvable if there exists a measurement feedback
u = u(z, v) satisfying one of the following condi-
tions.

{dφ̃u1(x, v)} ⊂ Ω∗ + spanK{dv}

{dφ̃u1(x, v), dφ̃u2(x, v)} ⊂ Q∗ + spanK{dv}

{d˜̄φu1(x, v)} ⊂ Ω̄∗ + spanK{dv}

{d˜̄φu1(x, v), d
˜̄φu2(x, v)} ⊂ Q̄∗ + spanK{dv}

(11)

where φ̃u1 = φu1(x, u(z, v)), φ̃u2 = φu2(x, u(z, v))

and ˜̄φu1 = φ̄u1(x, u(z, v)),
˜̄φu2 = φ̄u2(x, u(z, v)).

If the system is left-invertible, then it easy to show
that Q∗ = Ω∗, Q̄∗ = Ω̄∗.

Corollary 3.1 If the nonlinear system (1) is
left invertible, the DDPMF of (1) is solvable if
and only if there exists a measurement feedback
u = u(z, v) such that

dφu(x, u(z, v)) ⊂ Ω∗ + spanK{dv} (12)

All conditions appeared in Theorems 3.1 and 3.2
are of the form (12). The Algorithm of DDPMF
checks if the DDPMF is solvable and finds an
exact or an approximate solution with arbitrary

accuracy, which satisfies the condition in the form
(12), if it is solvable.

Assume that dz ∩ Ω∗ = 0 and write Ω∗ =
spanK{dξ}. If (12) is satisfied, then φu must
be a vector function of ξ, z and u. Since φu =
(φ1, · · · , φm)τ is affine in u, each φi, i ∈ m, can be
written as

φi = φi0(ξ, z) +

m
∑

j=1

φij(ξ, z)uj (13)

where φij , j = 0, 1, · · · ,m, are locally analytic
functions.

With an abuse of notation, let {z} be the vector
z = (z1, z2, · · · , zp2

)τ , {z}2 be a column vector
containing all the entries {zizj; i ≤ j, i, j ∈ p2},

{z}3 be a column vector containing all the entries
{zizjzk; i ≤ j ≤ k, i, j, k ∈ p2} and then {z}l, for
l = 1, 2, · · ·, are defined in the similar way. Then,
we can expand the locally analytic functions φij

into a Taylor series locally as follows.

φij(z) = βij0 + βij1{z}+ βij2{z}
2 + · · · , (14)

where i ∈ m, j = 0, 1, · · · ,m, each βijk is a row
vector of appropriate dimension with the entries
being functions of ξ.

Let the output feedback be written as

uj(z, v) = ψj0(z) +
m

∑

l=1

ψjl(z)vl, j ∈ m (15)

Then ψjl, for j ∈ m and l = 0, 1, · · · ,m, are
analytic functions of z around some operation
point. Each ψjl can be expanded into a Taylor
series around the operation point as

ψjl(z) = γjl0 + γjl1{z} + γjl2{z}
2 + · · · , (16)

where j ∈ m, l = 0, 1, · · · ,m, each γjlk is a
row vector of appropriate dimension over R.
Thus to define an output feedback control in the
form (15) for the DDPMF is equivalent to define
the coefficient vectors γ := {γjlk, j ∈ m, l =
0, 1, · · · ,m, k = 1, 2, 3, · · ·} in the form (16).

Substitute (16), (15) and (14) into (13) for each
i ∈ m, we obtain

φ̃i = φi0(ξ, z) +

m
∑

j=1

φij(ξ, z)(ψj0(z)

+
m

∑

l=1

ψjl(z)vl)

= φ̃i0(z) +

m
∑

l=1

φ̃il(z)vl

(17)

where φ̃ij(z) = β̃ij0 + β̃ij1{z} + β̃ij2{z}
2 +

β̃ij3{z}
3 + · · · , j = 0, 1, · · · ,m, and coefficient

vectors β̃ijk are functions of ξ and γ.



Condition (12) implies that in φ̃i all the coeffi-
cients {β̃ijk; k > 0} of {z}, {z}2, {z}3, · · · are zero.
Thus, the solvability condition (12) is equivalent
to if one can find the real coefficient vector set

{γjls} such that β̃ijk(ξ, γ) = 0 for k ≥ 1. If (12)
does not hold under any feedback, then in some
steps β̃ijk(ξ, γ) 6= 0 holds for any real coefficients

{γjls}. If (12) is solvable, then by properly choos-
ing the coefficients γjls we can obtain an exact
solution or an approximate solution with sufficient
accuracy for the DDPMF.

When dz ∩ Ω∗ 6= 0, we decompose the space
spanK{dz} into two integrable subspaces, i.e.

spanK{dξ̂} ∈ Ω∗ and spanK{dẑ} with dẑ∩Ω∗ = 0,

such that spanK{dz} = spanK{dẑ, dξ̂}.

With an abuse of notation, we denote {z} =

{ξ̂, ẑ}, where {ξ̂} = (ξ1, ξ2 · · · , ξn′

1
)τ is a sub-

vector of ξτ := (ξ̂τ , ξ̄τ ), and {ẑ} = (z1, · · · , zq′)τ

with n′
1 + q′ = q. Further denote {z} =

{ξ̂, ẑ}, {z}2 = {ξ̂, ẑ}2, {z}3 = {ξ̂, ẑ}3, · · · .

Thus, (13), (14), (15) and (16) can be rewritten
as follows.

φi = φi0(ξ, ẑ) +

m
∑

i=1

φij(ξ, ẑ)uj (18)

For j = 0, 1, · · · ,m

φij(ξ, ẑ)
= βij0 + βij1{ẑ} + βij2{ẑ}

2 + · · ·
(19)

where the coefficients βijk are functions of ξ. The
feedback control can be written as

uj(z, v) = ψj0(ξ̂, ẑ) +

m
∑

l=1

ψjl(ξ̂, ẑ)vl (20)

ψjl(z)

= γjl0 + γjl1{ξ̂, ẑ} + γjl2{ξ̂, ẑ}
2 + · · ·

(21)

where each γjlk is a real coefficient vector. ψjl can
be written in terms of {ẑ}, {ẑ}2, {ẑ}3, · · · as

ψjl(z)

= γjl0 + γ̄jl1(ξ̂){ẑ} + γ̄jl2(ξ̂){ẑ}
2 + · · ·

(22)

Substitute (22), (20) and (19) into (18). Then (18)
has a representation of Taylor’s series in terms
of {ẑ}, {ẑ}2, {ẑ}3, · · ·. Compare the coefficients of
{ẑ} {ẑ}2, {ẑ}3, · · ·. The solvability condition (12)
for the DDPMF implies that all the coefficients of
{ẑ}, {ẑ}2, {ẑ}3 are zero with v being considered as
a parameter vector. This is equivalent to finding
the real coefficients {γjlk} to satisfy a set of
equations.

The following example is from (Xia and Moog,
1999), by which we shall illustrate how to check
(12) using Taylor expansion.

Example 5.1

ẋ1 = x2, ẋ2 = x3 sinx2 + u cosx2

ẋ3 = w, y = x1, z = x3

It is left-invertible system and by Ω∗-Algorithm
one has O∗

s = Ω∗ = spanK{dx1, dx2} and φ =
ÿ = x3 sinx2 + u cosx2 = φ0 + φ1u. Notice that
x3 = z and φ1 6= 0 at z = x3 = 0, let

u= u(z, v) = (γ00 + γ01z + γ02z
2 + · · ·)

+(γ10 + γ11z + γ12z
2 + · · ·)v

where all {γij} are real numbers. Substitute u =
u(z, v) into φ(x, u) one obtains

φ̃ = φ(x, u(z, v)) = γ00 cosx2 + (sinx2

+γ11 cosx2)z + γ12 cosx2z
2 + · · ·

+(γ10 + γ11z + γ12z
2 + · · ·) cosx2v

Condition (12) implies that the following equa-
tions must hold.

γ11 = γ12 = · · · = 0, sinx2 + γ11 cosx2 = 0, · · ·

But they have no real solution for γ11. Thus, the
system has no solution for its DDPMO.

Example 5.2 Consider the following non-
invertible nonlinear system.

ẋ1 = x2 + x3u1, ẋ2 = cosx5 · u2,
ẋ3 = −x2

4x
2
2 + x2

2u3, ẋ4 = x2
3 + w,

ẋ5 = x1x2

y =

(

x1

x2

)

, z = x4

(23)

We haveO∗
s = spanK{dx1, dx2}, Ω

∗ = spanK{dx1,
dx2, dx5}, Ω∗

z = 0. By Q∗-Algorithm we have
Q∗ = spanK{dx1, dx2, dx3, dx5}. Thus, Q̄∗ 6= Ω̄∗.

To check if the first condition in Theorem 3.2

is satisfied, we let φu(x, u) =

(

x2 + x3u1

cosx5 · u2

)

and

u = u(x4, v) =

(

u1(x4, v)
u2(x4, v)

)

.

It is seen that

dφu(x, u(x4, v)) = d

(

x2 + x3u1(x4, v)
cosx5 · u2(x4, v)

)

∈ span{dx1, dx2, dv}

is not satisfied under any output feedback control.

We further check the second condition of Theorem

3.2, where φu1(x, u) =

(

x2 + x3u1

cosx5 · u2

)

and φu2 =

−x2
4x

2
2 + x2

2u3.

Let

u = u(z, v)
= (γ00 + γ01x4 + γ02x

2
4 + γ03x

3
4 · · ·)

+(γ10 + γ11x4 + γ12x
2
4 + γ13x

3
4 · · ·)v

where



γij := (γij1, γij2, γij3), i = 0, 1, j = 0, 1, 2, · · ·.

As Q∗ = spanK{dx1, dx2, dx3, dx5}, to meet the
second condition of Theorem 3.2 one has to find
a roper measurement output feedback in the form
u = u(x4, v) such that in left part of the condition
contains no dx4. A simple calculation shows that
if we let

u1 = v1,
u2 = v2,
u3 = u3(x4, v),
= (γ013x4 + γ023x

2
4 + γ033x

3
4 · · ·)

+(γ103 + γ113x4 + γ123x
2
4 + γ133x

3
4 · · ·)v3,

(24)

then, by substituting (24) into equation φu2 =
−x2

2x
2
4 + x2

2u3 and comparing the coefficients of
x4 of the formula

φ̃u2 = −x2
2x

2
4 + x2

2u3(x4, v)

one gets γ023 = γ103 = 1 and for the others
γijk = 0. It yields a solution u1 = v1, u2 = v2
and u3 = x2

4 + v3 for the DDPMF of (23).

4. CONCLUSION

We studied solvability of the DDPMF for MIMO
nonlinear systems which may not be square and
left invertible. Using the differential vector space
framework, we have constructed some subspaces
of the nonlinear system and used the subspaces
to present necessary and sufficient conditions for
the DDPMF. A computational method is further
presented for checking the solvability condition
and finding a solution for the DDPMF.
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