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Abstract:  The “raison d’etre” of Self-Organising Fuzzy Logic Control (SOFLC) 
algorithms is the Performance Index table which normally issues the adequate 
corrections to the low-level control given certain performance criteria. In the standard 
SOFLC architecture, the Performance Index table is generic, fixed a priori, and is of a  
‘grid-partition’ structure making the whole scheme inefficient in terms of computational 
complexity and performance. In this paper we propose a new SOFLC architecture 
whereby the Performance Index table is ‘dynamic’, of a free structure, and starting from 
an empty table. The architecture includes 3 mechanisms for optimising the rules of the 
Performance Index table and enhancing the performance as well as the robustness of the 
algorithm in terms of disturbance rejection and noise. Results of experiments on a non-
linear muscle relaxation process showed that the proposed control scheme was superior 
to the standard SOFLC algorithm in terms of performance and robustness against 
parameter variations, stochastic activity, and sensitivity to the selection of scaling 
factors. Copyright © 2005 IFAC 
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1. INTRODUCTION  
  
 
The first Self-Organising Fuzzy Logic Controller 
(SOFLC) was proposed by Procyk and Mamdani 
(1979), and includes a control policy that can change 
with respect to the process it is controlling and the 
environment it is operating in. This is what is often 
called an adaptive or learning controller to stress that 
its operation relies on the acquisition of past 
experience, i.e. a suitable combination of past control 
actions and the effects they produced. One interesting 
characteristic of this controller is that it strives to 

improve its performance until convergence to a 
predetermined quality. In doing so, the SOFLC 
performs two tasks at the same time which are: a) 
observe the environment while ensuing the 
appropriate control action and b) use the results of 
these control actions to improve them even further. A 
considerable amount of work has been carried out 
using the SOFCLC, but perhaps, the most interesting 
application of the controller is Sugeno’s fuzzy car 
(Sugeno and Murakami, 1985). The car has the 
ability to learn how to park itself. 
 

mailto:q.lu@sheffield.ac.uk
mailto:m.mahfouf@sheffield.ac.uk


Due to its on-line features and model-free 
architecture, the SOFLC algorithm has been used in 
many application areas, demonstrating that it 
possesses the advantage of controlling uncertain, 
mathematically ill-understood, non-linear and time-
varying systems. However, it does suffer from 
several drawbacks, including the fact that the original 
fuzzy rules for the Performance Index measure has 
been left practically unchanged and expected to work 
with any system that exhibits second-order over-
damped dynamics! The basic reason for this is that 
such a table was not easy to alter, either individually 
or in blocks of cells (Mahfouf et al., 2000), leading 
therefore to problems relating to long convergence 
caused by inaccurate modification of rules and 
increased computation complexity with the increase 
of the dimensionality of the system under 
consideration.  
 
In this paper, we propose a new self-organising 
architecture that is similar to the standard SOFLC as 
proposed by Procyk and Mamdani except that: 1. The 
Performance Index table used for issuing the 
necessary corrections to the low-level simple fuzzy 
logic controller is of ‘free-partitioning’ rather than of 
‘grid-partitioning’. 2. The rules of this Performance 
Index table are elicited on-line via a computationally 
efficient Genetic Algorithm (GA) (Goldberg, 1989) 
using a new mechanism which also ensures that the 
solution is optimal. In the optimisation process, in 
addition to the error and its derivative, the change of 
the control effort is also included in the fitness 
evaluation to guarantee a constant control signal 
during the steady-state period. Using the credit 
assignment concept of the polarity of the trajectory 
error is also used as a criterion for reward and 
punishment of good and bad actions respectively. 
The remainder of this paper is organised as follows: 
Section 2 is a simple introduction to the standard 
SOFLC idea. The GA based rule elicitation 
procedure is reviewed in Section 3, where the on-line 
evaluation and credit assignment are both explored. 
Section 4 describes the simulation results carried-out 
on the non-linear muscle relaxation process, whereas 
Section 5 explores several extensions to the 
algorithm to enhance its performance and its 
robustness against noise and process parameter 
variability. Finally, Section 6 concludes this research 
study with several comments on the new proposed 
algorithm and plans for future research.  
 
 

 
2. A BRIEF DESCRIPTION OF THE STANDARD 

SOFLC ALGORITHM 
 
 
As shown in Fig. 1, the SOFLC architecture includes 
two basic levels: the first level ‘B’ is a simple fuzzy 
controller, whereas the second level ‘A’ consists of 
the self-organising mechanism, acting as a monitor 
and evaluator of the low-level controller 

performance. The self-organizing part ‘A’ consists of 
three main blocks: a performance measure, a model 
estimator, and a rule modification. The measure of 
system performance is represents a critical step in 
producing a successful ‘learning’ controller. Usually, 
two physical features, including the system output 
Error (E) and the Error Change (CE) are measured to 
establish a performance decision table. The model 
estimation block is used to find the relationship 
between the system output performance and the 
control input. The performance measure is then 
employed to calculate the correction value relating to 
each fuzzy rule based on the estimation model. As far 
as the rules modification procedure is concerned, it 
can be assumed that, the control action at sample 
time '' mTnT −  has contributed most to the process 
performance at the sampling instance ' . Thus, the 
rule included reads as follows:  
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IF E  is … and  CE is … THEN Control is … 
where is issued by the Performance Index 
table, E is the error and CE is the change of error.  
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Fig. 1 A schematic diagram depicting the architecture             
           behind the standard SOFLC algorithm 
 
The new rules with a new antecedent will be added 
into the fuzzy rule bank, while rules with a similar 
antecedent and a different consequent would be used 
to modify the existing rules in the rule bank. 
 
In the self-organizing level ‘A’, obtaining 

represents the main task that would affect the 
performance of the closed loop system directly. As a 
result, several issues need to be considered, 
including:  

)(nTPi

1. How to measure the tracking performance 
accurately?  
2. How to combine the operators’ or the experts’ 
knowledge?  
3. What improvement can be made to obtain a good 
control performance, including a quick convergence, 



a resistance to noise, and a low computational 
burden?  
 
The original and classic method used to calculate 

consists of using a linguistic Performance 
Index table. The typical rule in this table should read: 
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      IF change-in-error is NB, AND error is NB, 
THEN the performance index based change is NB. 
 
As already stated, most performance index tables are 
fixed and are of a ‘grid partition’ configuration, but 
in our proposed new architecture, the Performance 
Index table is dynamically changed from instant '  
to instant ' and its configuration is ‘free’. The 
next section will outline the philosophy behind the 
new proposed scheme. 
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3. A DYNAMIC PERFORMANCE INDEX TABLE 

USING AN ON-LINE GENETIC ALGORITHM 
 
The main purpose of the GA in the proposed 
algorithm is to generate a suitable Performance Index 
table output at each sampling instant with only one 
chromosome from a population being evaluated at 
that instant. The other chromosomes in the 
population are then estimated based on the 
relationships between the GA individuals. Since 
many of the processes involved have a stochastic 
influence from external as well as internal 
mechanisms, such ‘imprecise’ fitness estimation can 
however be deemed very reasonable.  
 
 
3.1 The GA Process Encoding 
 
In the proposed algorithm, a maximum of ‘M’ 
sequences of the GA algorithm are used to optimise 
the Performance Index rules, where the number ‘M’ 
is decided by the number of cells in the Performance 
Index table. Each GA sequence includes a small size 
of individuals, and does not depend on other GA 
sequences. At every sampling instant, only the 
individuals, which represent the consequence of the 
activated Performance Index cell, will carry out one 
iteration of the GA-based operations, i.e., evolution, 
selection, crossover and the creation of new 
individuals under certain conditions sequentially. The 
other ‘M-1’ sets of GA individuals should be kept 
unchanged. Fig. 2 gives an example of a Performance 
Index table with 25 rules. In our case, there is a 
maximum of 25 sequences of independent GAs 
which attempt to optimise their corresponding rule 
cells and each GA sequence includes 5 individuals at 
the most. At the sampling instant ' , the GA in 
cell ‘X44’, which is indexed to produce the 
modification value 

'nT

)( mTnTPi − , will be activated. 
Five individuals of set B, which correspond to the 
cell ‘X44’ will experience one iteration of the GA–

based operations, after which the estimated fitness 
values will provide the various rankings of these 
individuals. Once the cell ‘X44’ is indexed by the 
SOFLC algorithm again, the individual ‘0000101’ for 
instance, with the highest fitness, would be chosen to 
produce the modification value. Meanwhile, the cell 
‘X32’ is invoked to infer the modification for 
the low level simple fuzzy logic at this sampling 
instant. The shaded individual ‘0000111’ in set A has 
the highest fitness value at that time, so it will be 
chosen to calculate the modification . 
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Fig. 2 The coding of the GA sets  
 
 
3.2 Evaluation of the GA Population 
 
3.2.1 Performance Evaluation 
 
In order to improve the system’s performance, the 
performance-adaptive learning controller needs 
information as to how well it is performing at each 
sampling interval. The idea of “reinforcement 
learning” is stated as follows: “If a particular action 
is associated with a satisfactory state of affairs then 
the tendency to reproduce that action in a similar 
situation should be enhanced”. As shown in Fig. 3, 
all possible cases for the output threads in a particular 
sampling interval are classified into 3 Groups, A, B, 
and C which correspond to the position of the output 
in relation to the set-point as well as its gradient. 
 
A simple expression for the predictive error 
estimation can be given as: 
 

)()()( nTeKTnTekTnTe &
) +=+                               (2) 
where is the process error in the current 
sampling instant ' , and is the number of the 
intervals predicted ahead. 
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3.2.2. Credit Assignment 
 
The performance evaluation in Section 3.2.1 
represents a measurement for the individual which iI



is included within the real feedback environment. In 
order to compare the fitness values of all the 
individuals in this generation, it is crucial to rate the 
usefulness of the other '  individuals in the 
activated set of GA . The credit assignment in 
this section carries out this task with the 
reward/penalty concept. Since different individuals 
in one generation correspond to different degrees of 
modification of the low-level fuzzy logic rules, one 
can infer the possible performances (Good, 
Divergence or Over-Shoot) of the individuals 

 from the 
individual .  
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Fig. 3 Instant state performance classification 
 
 

4. SIMULATION RESULTS 
 

Simulation results of the implementation of the on-
line GA and the acquisition of the rules relating to the 
dynamic Performance Index table on a non-linear 
medical process are presented here. The necessary 
transfer function components for the model used in 
these studies have been obtained via various ways. 
The drug considered in the model for humans is 
atracurium, which produces muscle relaxation. 
Muscle relaxation can be monitored continuously via 
evoked EMG responses. The overall nonlinear model 
can be described by the following Wiener nonlinear 
structure (Mahfouf and Linkens, 1998): 
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where,  

is the drug concentration in the blood and is 

the effect the drug produces (muscle relaxation or 
actual paralysis). 
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The simulation study used a step length of 0.1 and 
the sampling interval of 1 minute. The initial 
condition is 0% relaxation. In our research, the low 
level simple fuzzy controller includes five fuzzy sets 
for the tracking error and the change of tracking 
error: negative big (NB), negative small (NS), zero 
(O), positive small (PS), positive big (PB), which 
were defined in a universe of discourse, which was 
equally partitioned. For consistency, the Performance 
Index table is also partitioned into 25 cells, each 
corresponding to one fuzzy rule. At the initial state, 
the Performance Index table is empty and then filled 
with 525×  GA individuals randomly generated; 
each individual codes the consequence part of one 
Performance Index rule. A set point profile of 85%, 
65% and then 85% is used and changed every fixed 
period. The controller used in this series of 
experiments is of an incremental type (linguistic 
Performance Index).  
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Fig. 4 Closed-loop control simulat
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merit can be attributed to the proposed algorithm’s 
ability of searching a more suitable Performance 
Index table output for the fuzzy rules modification 
block. 
 
Furthermore, system (B) seems to generate an offset 
during the time phase 100~200 min despite the 
integral action and the choice of an optimal set of 
scaling factors already included in the algorithm. 
Despite this, it is reckoned that the proposed dynamic 
SOFLC still has its own limitation in that it seems to 
find it difficult to reach a steady level in the control 
signal at time phases of 300~400 min and 500~600 
min. This is believed to be due to the fact that at that 
instant, the control effort modification was small and 
the populations of the invoked Performance Index 
cells were almost all identical. Section 5 will focus 
on extending the algorithm to improve its 
performance.  
 

 
 

5. ALGORITHM EXTENSIONS FOR 
PERFORMANCE IMPROVEMENTS 

 
 
5.1. Micro-GA and its restarting mechanism 
 
The simulation results shown in Fig. 4 prove that, the 
new SOFLC algorithm makes the system work well 
under closed-loop conditions albeit with some 
limitations. Further analyses of the results reveal that, 
the small size of individuals (5 or 6 generally), which 
is consistent with the optimization technique known 
as Micro-Genetic Algorithm (MGA) (Krishnakumar, 
1989), coupled with the credit assignment 
mechanism, make the system generate abrupt 
changes. In order to overcome this, an iterative 
strategy was included in which the resolution of the 
micro GA-based solution is improved significantly at 
each iteration. In order to avoid premature 
convergence, the MGA includes a distinctive feature 
to maintain a sufficient variety of genetic 
information, that is, when the population is about to 
converge closer to one solution, it is recomposed and 
restarted as shown in Fig. 5. 
 
Once the decomposition of the populations is 
triggered in the MGA (iteration k1, iteration k1+k2 in 
Fig. 5), new individuals are generated randomly 
covering the new area, where the best individual is 
taken as the centre, and the boundary will be zoomed 
at. simple form is expressed as follows: 
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where is the initial search interval, the newly 
constrained search interval, and 

0R iR
10 <<α is a constant 

value. 
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Fig. 5 Iterative search for the ‘optimal’ solution. 
 
 
As shown in Figs. 6 and 7, our improved SOFLC 
with the dynamic Performance Index table performed 
better than the standard SOFLC, even when a sudden 
disturbance is added. 
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Fig. 6 Closed-loop control simulation results 
           using the new improved SOFLC algorithm;  
           (a): output signal ; (b) input signal 
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Fig. 7 Closed-loop control simulation results 
           with added noise;  (a): output ; (b) input 
 
 
5.2. Robustness of the new SOFLC algorithm in the  
       stochastic case 
 
When a noise sequence of 5% is superimposed to the 
system output, the SOFLC with a dynamic 



Performance Index table fails to control the output as 
shown in Fig. 8. This is mainly due to the fact that, 
the information on the output trend (Error Change) is 
corrupted and hence the fuzzy controller infers the 
wrong output. A common method for dealing with 
noise under closed loop control, is to include a band 
pass filter before the measured signal is passed to the 
controller. However, a new method based on fitting a 
function to a certain number of output data points is 
proposed here. 

 
 
Fig. 8 Closed-loop control simulation results 
           when noise is added to the output; 
           (a): output signal ; (b) input signal 
 
 
Such a function can take the format of a polynomial 
function of the following form: 
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where )(xkϕ is the kth order polynomial function. 
According to the least square principle, the factors 

are subject to the following least-
square problem: 
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For the history tracking error data which deteriorate 
with the noise , , t is the current 
sample time iteration), n samples (that is, , 

are used to estimate the 

current tracking error  with the 

polynomial curve fitting method, and then the 
tacking error change can be replaced by 
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rd order polynomial was found to 
be adequate in this case as shown in Fig. 9. 
 
 

6. CONCLUDING REMARKS 
 

This paper has outlined a new approach for real-time 
learning of the Performance Index table in the much-
celebrated Self-Organising Fuzzy Logic Control 
(SOFLC) architecture. The variant of the GA 
optimisation technique, the Micro Genetic Algorithm 

(MGA), is applied to modify the consequent part of 
the Performance Index fuzzy rules. The results 
presented in this paper and others, which have not 
been included due to space constraints, have shown 
that the proposed scheme is superior to the standard 
SOFLC algorithm in terms of computational 
complexity, performance in the transient and steady-
state phases, as well as robustness against 
disturbances, system parameter variations, and the 
choice of the scaling factors which are so crucial in 
fuzzy logic based control. Future research on this 
subject work will include extensions to the 
multivariable case. 
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Fig. 9 Performance of the extended SOFLC 
           algorithm including a 3rd-order filter;  
           (a): output signal ; (b) input signal 
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