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Abstract: The present paper deals with the problem of reduced complexity model
estimation in the framework of conditional set-membership identification. The
measurement noise is assumed to be unknown but bounded, while the estimated
model quality is evaluated according to a worst-case criterion. Since optimal
conditional estimators are generally hard to compute, projection estimators are
often used in view of their better tractability from a complexity viewpoint. Tight
bounds on the suboptimality level of central projection estimators as compared
to optimal ones are derived for the case when FIR models are employed for
approximation. These bounds improve over known bounds holding for the general
class of linearly parameterized models. Copyright c©2005 IFAC
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1. INTRODUCTION

The objective of robust identification is to provide
a nominal model of an unknown plant, together
with an estimate of the uncertainty associated to
the model (see e.g. (Mäkilä et al., 1995; Garulli
et al., 1999a) and references therein). Nominal
models must belong to a pre-specified class of
limited complexity models, while uncertainty is
usually expressed in terms of norm bounds on the
unmodeled dynamics.
Conditional Set-Membership Identification(CSMI)
is a research line that falls into the above frame-
work (Giarrè et al., 1997; Kacewicz, 1999; Garulli
et al., 2000). Its main features are: i) the true
plant belongs to the set of feasible systems, i.e. all
systems compatible with input/output data and a
priori knowledge; ii) the model lies in a linearly pa-
rameterized subspace; iii) the size of the unmod-
eled dynamics is measured in terms of the worst-
case modelling error (in some norm) with respect
to all feasible systems. Since optimal identification
algorithms generally require the solution of non-
convex min-max optimization problems, a typical
challenge in CSMI is to devise suboptimal algo-
rithms and to assess their performance by finding
guaranteed bounds on their identification error. A
popular class of suboptimal algorithms is that of
projection estimators, in which the nominal model
is selected by projecting a suitable system onto
the model class. The worst-case suboptimality de-
gree of projection estimators has been studied in
(Garulli et al., 1999b; Garulli, 1999): tight bounds

on the ratio between the identification error of
projection estimators and the error provided by
optimal algorithms have been derived, in the case
of general feasible system sets and linearly para-
meterized model classes.
In this paper, it is shown how these bounds can
be significantly improved when the class of FIR
models is considered. The suboptimality degree
turns out to be further improved when the feasible
system set is balanced, i.e. it admits a symmetry
center. All `p norms, 1 ≤ p ≤ ∞, are considered.
Such results motivate the use of projection algo-
rithms in CSMI, in place of highly computation-
ally demanding optimal algorithms.
The paper is organized as follows. The CSMI
framework, including optimal and suboptimal
identification algorithms, is introduced in Sec-
tion 2. Tight bounds on the suboptimality degree
of central projection estimators for FIR model
classes, are given in Section 3 in the case of bal-
anced feasible system sets, and in Section 4 for
general feasible system sets. Concluding remarks
are provided in Section 5.

2. CONDITIONAL SET-MEMBERSHIP
IDENTIFICATION

In this paper, LTI discrete-time SISO systems are
considered. The impulse response of a system is
denoted by h = {hi}∞i=0, and belongs to a linear
normed space H, equipped with the norm ‖ · ‖H.
A priori knowledge on the system is expressed
as h ∈ S, where S is a set contained in H. Let



h̄ ∈ S be the true system generating the data.
Data consists of a set of n input/output pairs
z = {(uk, yk), k = 1, . . . , n}, related by

yk =

k∑

i=1

h̄iuk−i + ek (1)

where ek is the disturbance affecting the measure-
ment yk. Equation (1) can be written in compact
form as

y = T (u)h̄n + e (2)

where y = [y1 . . . yn]′, u = [u1, . . . , un]′, h̄n =
[h̄1 . . . h̄n]′, e = [e1 . . . en]′ and T (u) is the lower
triangular Toeplitz matrix of inputs, i.e.

T (u) =




u1 0 . . . 0

u2 u1 . . .
...

...
. . .

. . . 0
un . . . u2 u1




. (3)

It is assumed that e is unknown-but-bounded, i.e.

‖e‖Y ≤ ε (4)

where ‖ · ‖Y denotes a suitable norm in R
n and ε

is a known positive scalar. According to (2) and
(4), the feasible system set is defined as

F = {h ∈ S : ‖y − T (u)hn‖Y ≤ ε}. (5)

where hn = [h1, . . . , hn]′.
Following the terminology of the Information-
Based Complexity (IBC) theory (see (Milanese
and Vicino, 1991)), an identification algorithm φ
is a mapping from the output set to the space
of models. When the latter coincides with the
space of systems H, one has: φ : R

n → H. The
worst-case identification error associated to the
identification algorithm turns out to be

E[φ] = sup
h∈F

‖h − φ(y)‖H.

In robust identification, it is customary to identify
reduced-complexity models that are suitable for
robust control design techniques. A typical choice
is to select a linearly parameterized model class
such as M = {g ∈ H : g = Mθ, θ ∈ R

m}, where
M is a linear operator, M : R

m → H and θ is the
m-dimensional parameter vector to be identified,
m < n. A conditional identification algorithm is
defined as a mapping φ : R

n → M. The model
class M can be chosen as a collection of impulse
responses of linear filters, such as FIRs, Laguerre
or Kautz functions (Wahlberg, 1991; Wahlberg,
1994), or Generalized Orthonormal Basis Func-
tions (Van den Hof et al., 1995).
The identification of a model within the class
M has been addressed in the literature as con-

ditional set-membership identification (Giarrè et

al., 1997; Kacewicz, 1999; Garulli et al., 2000).
In particular, the optimal model is given by the
conditional central algorithm, which minimizes the
worst-case error among the elements of M, i.e.

φcc(y) = arg inf
g∈M

sup
h∈F

‖h − g‖H. (6)

The min-max optimization problem in (6) is gen-
erally very difficult to solve. A procedure for
computing φcc(y) has been given in (Garulli et

al., 2000) for the case ‖ · ‖H = ‖ · ‖Y = ‖ · ‖2,
while suboptimal identification algorithms have
been considered in (Garulli, 1999).
A typical suboptimal algorithm is the central pro-

jection algorithm given by

φcp(y) = arg inf
g∈M

‖g − c‖H, (7)

where c denotes the Chebyshev center of F ,

c = inf
x∈H

sup
h∈F

‖x − h‖H. (8)

For easiness of presentation, in the following we
set H = R

n and consider S and M as subsets of
R

n. This corresponds to assuming that the data
set length n is such that the impulse response
samples h̄n+1, h̄n+2, . . . can be neglected. This
assumption can usually be relaxed by making
suitable hypotheses on the tail of the system
impulse response and/or on the structure of the
model class M (see e.g. (Garulli et al., 2000)).
In this paper we consider FIR models, i.e. g ∈
H : gi = 0, i > m (this corresponds to choosing
M = [Im×m 0m×n]′). For this case, tight bounds
on the suboptimality degree of φcp with respect
to φcc are derived for both balanced and non-
balanced feasible sets, and for different H-norms.

3. SUBOPTIMALITY BOUNDS FOR
BALANCED FEASIBLE SYSTEM SETS

The following assumptions are made.

Assumption 1. Let M be an m-dimensional linear
manifold in R

n, with m < n, such that M = {g ∈
R

n : g = [g1, . . . , gm, 0, . . . , 0]′, gi ∈ R}.
Assumption 2. Let the feasible set F be balanced,
i.e. there exists c : c + v ∈ F implies c − v ∈ F ,
where c represents the symmetry center of F .

Remark 1. Notice that the set V = {h ∈ H : ‖y−
T (u)hn‖Y ≤ ε} is balanced for any norm Y .
Moreover, the a priori set S is usually assumed
to be balanced. Being F = S∩V, Assumption 2 is
verified for example if V ⊆ S (the so-called resid-

ual prior, i.e. no a priori constraint is given on the
first n samples of the system impulse response).

In the following we denote by ‖ · ‖p any `p norm,
1 ≤ p ≤ ∞. Let us define the following quantities:

ĉ , arg inf
g∈M

‖g − c‖p, (9)

ĥ , arg sup
h∈F

‖ĉ − h‖p, (10)

g̃ , φcc(y) = arg inf
g∈M

sup
h∈F

‖g − h‖p, (11)

Êp(M,F) , E[φcp(y)] = ‖ĉ − ĥ‖p, (12)

Ẽp(M,F) , E[φcc(y)] = sup
h∈F

‖g̃ − h‖p. (13)

Note that ĉ is the projection of c on M, ĥ is
the farthest point in F from ĉ, g̃ is the condi-
tional center, and Êp(M,F) and Ẽp(M,F) are



the central projection error and the conditional
error, respectively. Moreover, let k̂ = 2c − ĥ (the

symmetric of ĥ w.r.t. c). The aim of this section

is to evaluate the maximum ratio between Êp and

Ẽp, for every linear subspace M and F as in
Assumptions 1-2, i.e.

µp = max
M,F

Êp(M,F)

Ẽp(M,F)
. (14)

Let us now reformulate the problem in a simpler
way by choosing an appropriate coordinate frame.
Let c = [c1, . . . , cn]′ be the center of symmetry of
F . Without loss of generality, let us choose the
coordinate system so that ci = 0, 1 ≤ i ≤ m. It
follows that, for any norm p, ĉ = [0, . . . , 0]′ and

Êp = ‖ĥ − ĉ‖p = ‖ĥ‖p . (15)

Moreover, k̂ = [−ĥ1, . . . ,−ĥm, k̂m+1, . . . , k̂n]′,

where k̂i = 2ci − ĥi, m < i ≤ n. Let us first
analyze the case p = ∞.

Proposition 1. Let F be any set. Then, for every
M as in Assumption 1, one has

Ê∞(M,F) = Ẽ∞(M,F).

Proof: Let a be any point. It is well known that
suph∈F ‖h−a‖∞ = suph∈BOX(F) ‖h−a‖∞ where
BOX(F) denotes the minimum box containing F .
Let us choose the center of F as the symmetry
center of BOX(F); notice that BOX(F) is a
convex and symmetric set and thus satisfies As-
sumption 2. By (15), Ê∞ = ‖ĥ‖∞ = maxn

i=1 |ĥi|.
Let us consider the case that maxn

i=1 |ĥi| = |ĥs|,
s > m. Since g̃ ∈ M, g̃ = [g̃1, . . . , g̃m, 0, . . . , 0]′,

and Ẽ∞ ≥ ‖ĥ − g̃‖∞ = max{maxi≤m |ĥi −
g̃i|, |ĥs|} ≥ |ĥs|. Since Ẽ∞ can not be greater than

Ê∞, Ẽ∞ = Ê∞.
Let us now assume maxn

i=1 |ĥi| = |ĥd|, 1 ≤ d ≤ m.

Since k̂ = [−ĥ1, . . . ,−ĥm, k̂m+1, . . . , k̂n]′, it fol-

lows that Ê∞ = ‖ĥ‖∞ = ‖k̂‖∞ = |ĥd| and

Ẽ∞ ≥max{‖g̃ − ĥ‖∞, ‖g̃ − k̂‖∞}
≥max{|g̃d − ĥd|, |g̃d − k̂d|}
= max{|g̃d − ĥd|, |g̃d + ĥd|} ≥ |ĥd|.

Again Ẽ∞ can not be greater than Ê∞, and then
Ẽ∞ = Ê∞. 2

Remark 2. Proposition 1 states that, when the
`∞-norm is used, the conditional center coincides
with the central projection in `2-norm. Moreover,
this holds also when F is a generic set, not
necessarily balanced. Since the center of F may
not be unique, we choose the center of F as the
symmetry center of BOX(F).

In order to state the main result concerning `p

norms, 1 ≤ p < ∞, some lemmas are needed.

Lemma 1. Let M and F be given, and define
F̂ = {ĥ, k̂}. Then,

Êp(M,F)

Ẽp(M,F)
≤ Êp(M, F̂)

Ẽp(M, F̂)
.

Proof: Note that F̂ ⊆ F , due to Assumption 2,
and hence Ẽp(M, F̂) ≤ Ẽp(M,F). Moreover,

being ĥ ∈ F̂ , Êp(M, F̂) = Êp(M,F). 2

An immediate consequence of Lemma 1 is that we
can replace F by the set F̂ = {ĥ, k̂}.
Lemma 2. Let F = F̂ . Under Assumption 1,
g̃i = βiĥi, ∀i ≤ m, |βi| ≤ 1.

Proof: By contradiction, let us assume g̃ : g̃s =
γĥs, s ≤ m and |γ| > 1. Then,

‖g̃ − ĥ‖p
p =

∑

i6=s

|g̃i − ĥi|p + |γĥs − ĥs|p

=
∑

i6=s

|g̃i − ĥi|p + |γ − 1|p |ĥs|p,

‖g̃ − k̂‖p
p =

∑

i6=s

|g̃i − k̂i|p + |γĥs + ĥs|p

=
∑

i6=s

|g̃i − k̂i|p + |γ + 1|p |ĥs|p.

Let us define g : gi = g̃i, i 6= s, gs = δĥs,
δ = sgn(γ). Then,

‖g − ĥ‖p
p =





∑

i6=s

|g̃i − ĥi|p if γ > 0

∑

i6=s

|g̃i − ĥi|p + 2p|ĥs|p if γ < 0
,

‖g − k̂‖p
p =





∑

i6=s

|g̃i − k̂i|p + 2p|ĥs|p if γ > 0

∑

i6=s

|g̃i − k̂i|p if γ < 0
.

Therefore, g̃ cannot be the conditional center. 2

Lemma 3. Let F = F̂ . Under Assumption 1, if
‖g̃ − ĥ‖p > ‖g̃ − k̂‖p then g̃i = ĥi, i ≤ m.

Proof: Let ‖g̃ − ĥ‖p
p − ‖g̃ − k̂‖p

p = ν , ν > 0.
By contradiction let us assume ∃s, s ≤ m : g̃s 6=
ĥs. Then,

Ẽp
p = |g̃s − ĥs|p +

∑

i6=s

|g̃i − ĥi|p

= |ĥs + g̃s|p +
∑

i6=s

|g̃i − k̂i|p + ν. (16)

Let us assume ĥs > 0. By Lemma 2, one has
ĥs ≥ g̃s. Moreover, notice that g̃s ≥ 0, otherwise
g̃ is no more the conditional center. Indeed, if
g̃s < 0 it is possible to define t̃ : t̃i = g̃i, i 6= s,
t̃s = g̃s + ε, ε > 0 sufficiently small, such that

‖t̃ − k̂‖p ≤ ‖t̃ − ĥ‖p < ‖g̃ − ĥ‖p.

Let g : gi = g̃i, i 6= s, gs = g̃s + γ, γ > 0, and
Ep = suph∈F ‖g − h‖p = max{Ep1, Ep2}, where,

E
p

p1 = |ĥs − g̃s − γ|p +
∑

i6=s

|g̃i − ĥi|p, (17)

E
p

p2 = |ĥs + g̃s + γ|p +
∑

i6=s

|g̃i − k̂i|p. (18)

Let γ > 0 such that |ĥs + g̃s +γ|p = |ĥs + g̃s|p +ν,

and choose γ < min{(ĥs − g̃s), γ}. By comparing
(17)-(18) with (16) one has

Ẽp
p > E

p

p = max{Ep

p1, E
p

p2},



and then g̃ is not the conditional center, which
contradicts the hypothesis.
It is straightforward to repeat the previous rea-
soning for ĥs < 0. 2

Lemma 4. Let F = F̂ . Under Assumption 1,

Ẽp = ‖g̃ − ĥ‖p. (19)

Proof: Since Ẽp = max{‖g̃ − ĥ‖p, ‖g̃ − k̂‖p}, by
contradiction let us suppose that

Ẽp
p = ‖g̃ − k̂‖p

p = ‖g̃ − ĥ‖p
p + ν , ν > 0, that is

Ẽp
p =

m∑

i=1

|g̃i + ĥi|p +

n∑

i=m+1

|k̂i|p

=

m∑

i=1

|g̃i − ĥi|p +

n∑

i=m+1

|ĥi|p + ν.

Since by (10) and (15),

n∑

i=m+1

|ĥi|p ≥
n∑

i=m+1

|k̂i|p,

this means that ∃s, 1 ≤ s ≤ m : |g̃s + ĥs| > |g̃s −
ĥs|. Then,

Ẽp
p = |g̃s + ĥs|p +

∑

i6=s

|g̃i − k̂i|p

= |ĥs − g̃s|p +
∑

i6=s

|g̃i − ĥi|p + ν. (20)

So, g̃s and h̃s have the same sign. To simplify the
proof, let us assume g̃s > 0. By Lemma 2, one has
ĥs ≥ g̃s > 0.
Let us define g : gi = g̃i, i 6= s, gs = g̃s−γ, γ > 0,
and Ep =suph∈F ‖g−h‖p =max{Ep1, Ep2}, where

E
p

p1 = |g̃s + ĥs − γ|p +
∑

i6=s

|g̃i − k̂i|p, (21)

E
p

p2 = |ĥs − g̃s + γ|p +
∑

i6=s

|g̃i − ĥi|p. (22)

Let γ > 0 such that |ĥs− g̃s +γ|p = |ĥs− g̃s|p +ν,

and choose γ < min{(g̃s + ĥs), γ}. By comparing
(21)-(22) with (20) one has

Ẽp
p > E

p

p = max{Ep

p1, E
p

p2},
and then g̃ is not the conditional center, which
contradicts the hypothesis.
It is straightforward to repeat the previous rea-
soning for g̃s < 0. 2

Notice that the previous lemma implies

Ẽp
p = ‖ĥ − g̃‖p

p ≥ ‖k̂ − g̃‖p
p.

Lemma 5. Let F = F̂ . Under Assumption 1,
there always exists an optimal solution of (11)

such that g̃i = βĥi, ∀i ≤ m, and 0 ≤ β ≤ 1.

Proof: Let us suppose ‖g̃ − ĥ‖p > ‖g̃ − k̂‖p. By

Lemma 3, g̃i = ĥi, i ≤ m, and thus β = 1. Thanks
to Lemma 4, it remains to consider only the case
‖g̃ − ĥ‖p = ‖g̃ − k̂‖p. By Lemma 2, one gets

n∑

i=m+1

|ĥi|p ≤ ‖g̃ − k̂‖p
p =

m∑

i=1

|g̃i + ĥi|p +

n∑

i=m+1

|k̂i|p

=
m∑

i=1

|(βi + 1)ĥi|p +
n∑

i=m+1

|k̂i|p

≤
m∑

i=1

|2 ĥi|p +

n∑

i=m+1

|k̂i|p,

that is,
n∑

i=m+1

|ĥi|p −
n∑

i=m+1

|k̂i|p ≤ 2p

m∑

i=1

|ĥi|p. (23)

One has,

Ẽp
p =

m∑

i=1

|g̃i−ĥi|p+
n∑

i=m+1

|ĥi|p =

m∑

i=1

|g̃i+ĥi|p+
n∑

i=m+1

|k̂i|p

that is,
m∑

i=1

|g̃i + ĥi|p −
m∑

i=1

|g̃i − ĥi|p =

=

n∑

i=m+1

|ĥi|p −
n∑

i=m+1

|k̂i|p , γ. (24)

From (10) and (15), it is easy to see that γ ≥ 0.

Let g̃i = βĥi, 0 ≤ β ≤ 1. By substituting in (24),
m∑

i=1

|βĥi + ĥi|p −
m∑

i=1

|βĥi − ĥi|p =

= (β + 1)p

m∑

i=1

|ĥi|p − (1 − β)p

m∑

i=1

|ĥi|p = γ,

i.e., by (23),

0 ≤ (β + 1)p − (1 − β)p = γ

(
m∑

i=1

|ĥi|p
)−1

=

(
n∑

i=m+1

|ĥi|p −
n∑

i=m+1

|k̂i|p
)(

m∑

i=1

|ĥi|p
)−1

≤2p. (25)

It remains to prove that there always exists 0 ≤
β ≤ 1 such that (25) is achieved. Let us define
f(β) , (β + 1)p − (1 − β)p, one has f(0) = 0,
f(1) = 2p, and since f(β) is a continuous function,
∃β, 0 ≤ β ≤ 1 : f(β) = δ, 0 ≤ δ ≤ 2p, and the
lemma is proved. 2

Remark 3. Note that when β = 0, the conditional
center coincides with the central projection, giving
Êp/Ẽp = 1. Since we want to maximize this ratio,
in the next we will consider 0 < β ≤ 1.

It is now possible to state the main result.

Theorem 1. Let Assumptions 1-2 hold. Let 1 ≤
p < ∞. Then

µp ≤





3/2 if p = 1,

p

√
1 +

1
(
2 p−1

√
2 − 1

)p−1 if 1 < p < ∞.

Moreover, the bounds are tight.

Proof: Due to Lemma 1, we can consider the
feasible set F̂ = {ĥ, k̂}. From Lemma 4, one has
m∑

i=1

|ĥi−g̃i|p+
n∑

i=m+1

|ĥi|p≥
m∑

i=1

|ĥi+g̃i|p+
n∑

i=m+1

|k̂i|p.(26)

By (15) and (19), it follows that



Êp
p

Ẽp
p

=

m∑

i=1

|ĥi|p +

n∑

i=m+1

|ĥi|p

m∑

i=1

|ĥi − g̃i|p +

n∑

i=m+1

|ĥi|p

= 1 +

m∑

i=1

|ĥi|p −
m∑

i=1

|ĥi − g̃i|p

m∑

i=1

|ĥi − g̃i|p +

n∑

i=m+1

|ĥi|p

≤ 1 +

m∑

i=1

|ĥi|p −
m∑

i=1

|ĥi − g̃i|p

m∑

i=1

|ĥi + g̃i|p +

n∑

i=m+1

|k̂i|p
(27)

≤ 1 +

m∑

i=1

|ĥi|p −
m∑

i=1

|ĥi − g̃i|p

m∑

i=1

|ĥi + g̃i|p
(28)

where the first inequality follows from (26). By

Lemma 5, ĥi = αg̃i , ∀i ≤ m, α ≥ 1, and since
‖g̃‖p

p > 0, one has

µp
p ≤ 1 +

m∑

i=1

|αg̃i|p −
m∑

i=1

|αg̃i − g̃i|p

m∑

i=1

|αg̃i + g̃i|p

= 1 +

αp

m∑

i=1

|g̃i|p − (α − 1)p

m∑

i=1

|g̃i|p

(α + 1)p

m∑

i=1

|g̃i|p

= 1 +
αp − (α − 1)p

(α + 1)p
. (29)

Let us define f(α) , 1 + αp−(α−1)p

(α+1)p . We want to

maximize f(α) for α ≥ 1. Denoting by αmax the
value for which f(α) is maximum, one gets

αmax =





1 if p = 1,
p−1
√

2
p−1
√

2 − 1
if 1 < p < ∞.

Substituting αmax in (29), after some algebra,

µp ≤





3/2 if p = 1,

p

√
1 +

1
(
2 p−1

√
2 − 1

)p−1 if 1 < p < ∞.

It remains to prove that such bounds are tight.
This can be done by choosing ĥ and k̂ such that
the inequalities in (27)-(28) become equalities,

that is k̂i = 0, m < i ≤ n, and
m∑

i=1

|ĥi − g̃i|p +

n∑

i=m+1

|ĥi|p =

m∑

i=1

|ĥi + g̃i|p. (30)

The upper bound is achieved when ĥi = αmax g̃i,
1 ≤ i ≤ m. After some algebra, (30) becomes

n∑

i=m+1

|ĥi|p =
(αmax+1)p−(αmax−1)p

αp
max

m∑

i=1

|ĥi|p.(31)

Table 1. Upper bound (approximated)
on µp for balanced sets.

p = 1 p = 2 p = 3 p = 4 p = 5 . . . p = ∞

µp 1.5 ' 1.15 ' 1.09 ' 1.06 ' 1.05 . . . 1
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Fig. 1. Example 1: µ1 = 3/2.
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Fig. 2. Example 2: µ2 =
√

4/3.

Since ĥi, i > m, can be arbitrarily chosen, they
can be selected so that (31) is satisfied. 2

Table 1 reports upper bounds on µp for different
norms.
In the following, two examples showing cases
where the upper bound is achieved are reported
for p = 1 and p = 2.

Example 1. Let p = 1, n = 2, m = 1, c = [0, 1]′,

ĥ = [1, 2]′. It follows that k̂ = [−1, 0]′ and g̃ =

[1, 0]′. Moreover, one has Ê = 3 and Ẽ = 2 and
thus µ1 = 3/2 (see Fig. 1).

Example 2. Let p=2, n=2, m=1, c=[0,
√

2/2]′,

ĥ = [1,
√

2]′. It follows that k̂ = [−1, 0]′ and

g̃ = [1/2, 0]′. One has Ê =
√

3 and Ẽ = 3/2 and
thus µ2 =

√
4/3 (see Fig. 2).

4. SUBOPTIMALITY BOUNDS FOR
GENERAL FEASIBLE SYSTEM SETS

In this section, bounds similar to those previously
found are given for a generic set, not necessarily
convex and symmetric. In particular, we focus on
the `1, `2, `∞-norms.
In (Garulli et al., 1999b) it has been shown that,
for a generic set and for any linear M (not nec-
essarily obtained by FIRs), µ2 =

√
4/3. Since

this result coincides with that reported in Table 1
regarding balanced sets andMFIR, one can con-
clude that such a bound also holds for generic sets.
Since Proposition 1 holds for a generic F, one has
µ∞=1. In the following we analyze the case p = 1.

Theorem 2. Let F ⊂ R
n be any set and let M

satisfy Assumption 1. Then, µ1 ≤ 2.



−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.2

0

0.2

0.4

0.6

0.8

1

ĉ
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Fig. 3. Example 3: µ1 → 2 as α → 0.

Proof: Let us assume the same context considered
in the previous section, except for the fact that the
center may not be the symmetry center (when F
is balanced). Then,

Ê1 = ‖ĥ‖1 =

m∑

i=1

|ĥi| +
n∑

i=m+1

|ĥi|. (32)

Moreover,

Ẽ1 ≥‖ĥ−g̃‖1 =

m∑

i=1

|ĥi−g̃i|+
n∑

i=m+1

|ĥi| ≥
n∑

i=m+1

|ĥi|,

r ≥ ‖ĥ− c‖1 =

m∑

i=1

|ĥi|+
n∑

i=m+1

|ĥi − ci| ≥
m∑

i=1

|ĥi|.

Thus,

Ẽ1 + r ≥
m∑

i=1

|ĥi| +
n∑

i=m+1

|ĥi| = Ê1,

i.e., since Ẽ1 ≥ r,

µ1 ≤ Ẽ1 + r

Ẽ1

= 1 +
r

Ẽ1

≤ 1 + 1 = 2.
2

Table 2 summarizes the error bounds of central
projection estimators for different norms, model
classes and system feasible sets (see (Garulli et

al., 1999b; Garulli, 1999)). In the following, an
example which shows a case when the upper
bound of Theorem 2 is achieved is reported.

Example 3. Let p=1, n=2, m=1 and F be the
triangle of vertices ĉ, ĥ, t̂, where ĉ = [0, 0]′, ĥ =
[1, 1]′ and t̂=[0, α]′, 0 ≤ α ≤ 1 (see Fig. 3). Notice
that F is not balanced and there are different
possible choices of its Chebyshev center, according
to definition (8). Let us choose c = [0, 1]′. Then,

Ê = 2. Moreover, it is easy to show that the
conditional center is g̃ = [1 − α

2 , 0]′ and the

conditional error Ẽ = ‖g̃− ĥ‖1 = ‖g̃− t̂‖1 = 1+ α
2 .

Thus, µ1 = 4
2+α

, and µ1 → 2 when α → 0.

Remark 4. Note that the bound of Theorem 2
differs from that derived in Theorem 1 because

Table 2. Upper bound on µp for `1, `2
and `∞-norms.

`1 `2 `∞

Generic M,F 3
√

4/3 2

M FIR, generic F 2
√

4/3 1

M FIR, F balanced 3/2
√

4/3 1

in the case of unbalanced sets the choice of the
Chebyshev center is no more trivial. Since the
center may not be unique, Theorem 2 provides the
upper bound for the worst set and for the worst
choice of the center.

5. CONCLUSIONS

In this paper tight bounds on the suboptimal-
ity level of central projection estimators with re-
spect to optimal estimators are derived, for the
case when the class of FIR models is used in
conditional set-membership identification. These
bounds improve over known bounds holding for
the larger class of linearly parameterized models.
Some numerical examples showing tightness of the
derived bounds are also reported. The study of
more strict bounds for other classes of linearly
parameterized models, such as Laguerre or Kautz
filters, will be the object of future work.
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