
 

     

 
 
 
 
 
 
 

DISCRETE-TIME H∞ MODEL MATCHING PROBLEM 
 IN TWO DEGREES OF FREEDOM CONTROL STRUCTURE 

 
 

Leyla GÖREN 

 
 

Istanbul Technical University Department of Electrical Engineering 
80626, Maslak, Istanbul/TURKEY    goren@elk.itu.edu.tr,  Fax:(+90) 212 285 67 00 

 
 
 

 
Abstract: In this study, the model-matching problem (MMP) in two degrees of freedom 
(2DOF) control structure is considered for discrete-time system in the sense of the H∞ 
optimality criterion. The problem is solved in Linear Matrix Inequality (LMI) framework 
using the results on the standard H∞ OCP and the recent results given by Gören (2003) on 
the MMP in 2DOF control structure for continuous-time systems. Copyright © 2005 
IFAC 
 
Keywords: Model Matching Problem; Linear Matrix Inequalities; H∞ Optimal Control; 
2DOF Control Structure; Discrete-Time Systems. 

 
 

 
1. INTRODUCTION 

 
The standard H∞ MMP (Francis & Doyle 1987) is 
defined as to find a controller transfer matrix R(s) 
which is stable and proper rational matrix, i.e., 
R(s)∈RH∞, that further minimizes the H∞ norm of 
Tm(s)-T1(s)R(s)T2(s), where the stable and proper 
rational matrices Tm(s) and [T1(s), T2(s)] are the 
model and the system transfer matrices, respectively. 
The H∞ norm of a transfer matrix is defined as the 
maximum value over all frequencies of its largest 
singular value.  This means the performance of the 
system described by T1(s)R(s)T2(s) approximates the 
desired performance as given in Tm(s), in the sense of 
the following criterion, 
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While this problem which is also known as the 
bilateral H∞ MMP, the unilateral H∞ MMP is defined 
as to find a controller transfer matrix R(s)∈RH∞ that 
minimizes the H∞ norm of Tm(s)-T(s)R(s), where the 
stable and proper rational matrices Tm(s) and T(s) are 
the model and the system transfer matrices 
respectively. In the literature, there are several results 
on the standard H∞ MMP. Two of them are based on 
Nevanlinna-Pick Problem (NPP) (Doyle, Francis & 
Tannenbaum, 1992) and Nehari Problem (NP) 
(Francis, 1987 and Francis & Doyle, 1987). In these 
studies, the H∞ MMP has been reduced to the one of 
these problems and then using the results on the 

solution of NPP or NP, first the value γopt defined in 
(1) is found and finally the controller transfer matrix 
R(s) is obtained in the form of stable and proper 
rational matrix.  Some studies concerning H∞ MMP 
are considered in the concept of the standard H∞ 
Optimal Control Problem (OCP). A complete state 
space solution to the standard H∞ OCP is given by 
Doyle, Glover, Khargonekar&Francis (DGKF, 
1989). The relationships between model matching 
problem and DGKF solution for generalized plant 
setting has been investigated by Green, Glover, 
Limebbeer and Doyle (1990) via J-spectral 
factorisation theory. A state space solution of the 
unilateral H∞ MMP is given by Hung (1989), and this 
solution is based on canonical spectral factorisations 
and solutions of the Algebraic Riccati Equations 
(ARE). Gahinet & Apkarian (1994) re-derived the 
solution of the standard H∞ OCP given by DGKF in 
the framework of LMI. In Gören & Akın (2002), an 
LMI-based solution of the unilateral H∞ MMP is 
presented; also a solution of a multi-objective H∞ 
control problem is obtained using the results given in 
Gahinet & Apkarian (1994). In all these studies on 
the standard H∞ MMP, the controller structures that 
could be used in feedback configuration have not 
been considered in the formulation of the problem. 
However, one can say that the controller R(s) with 
property of stable and causal rational matrix, which 
is found in the form of a pre-compensator as a 
solution of the unilateral H∞ MMP, can generally be 
established by dynamic state feedback (Kucera, 1992 
and Gören & Akın, 2002). 



 

     

 
To consider the control structures for the system to 
be controlled in the formulation of the problem, the 
H∞ MMP is defined as find a controller minimizing 
the H∞ norm of Tm(s)-Tcl(s) in the specific control 
structure, such that the rational matrices Tm(s) and 
Tcl(s) are the model and the closed loop system 
transfer matrices respectively. In Gören (2003), the 
continuous-time H∞ MMP in the 2DOF control 
structure is considered and the LMI-based solvability 
conditions of the problem are presented using the 
results given in Apkarian & Gahinet 1994, and 
Gören & Akın 2002.  
 
In recent years, there has been a rapid increase in the 
use of industrial digital controllers. With the 
complete continuous-time synthesis theory, a natural 
approach to discrete-time synthesis problem is to 
transform the continuous-time controller into 
discrete-time via the bilinear transformation. 
Although this procedure will lead to controller 
formulas for the discrete-time synthesis problem, it 
has a number of disadvantages. Especially, in 
practical implementation, choosing the sampling rate 
gives rise to difficulties when the continuous 
controller has both high and low speed modes. In 
addition, there are several theoretical advantages to 
be gained from a solution in “natural coordinates” 
(Green&Limebeer, 1995). Moreover, in industrial 
control situations wherever a digital computer is used 
to monitor and to control a system, the discrete-time 
framework is usually a very natural one in which to 
give a system model description.  
 
In this study, the method developed in Gören (2003) 
for continuous-time systems will be transferred to 
discrete-time context and will lead to qualitatively 
similar results. The following notation will be used 
throughout the paper: Ker M and Im M denote the 
null space and range of the linear operator associated 
with M respectively and N* for the transpose 
conjugate of N matrix. Finally, P>0 denotes that P 
matrix is positive definite. 
 

2. PROBLEM FORMULATION 

Consider a realization (A, B, C, D) of T(z), namely 
the discrete-time model of the system to be 
controlled, and (F, G, H, J) of Tm(z), namely model 
system, so the state space equations of these systems 
are given as follows, 
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Also consider the dynamic 2DOF control structure 
with output feedback, where the control input u(t) is 
generated by the reference input w(t) and the system 
output ys(t) such that, 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 1 
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are illustrated in Figure 1. 
 
At this point, H∞ MMP in 2DOF control structure 
defined in Gören (2003), has to be modified for the 
discrete-time systems and this is done in definition 1.  
 
Definition 1: The H∞ MMP in 2DOF control 
structure is to find the controller transfer matrices 
M(z), L(z)∈RH∞ that minimizes the H∞ norm of the 
transfer matrix Tzw(z) defined as, 
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such that the proper rational matrices  
Tm(z)=H(zI-F)-1+J and T(z)=C(zI-A)-1B+D are the 
model and the discrete-time system transfer matrices 
the respectively.�  
 
Note that H∞ norm of a stable discrete-time system is 
defined as, 
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3. THE SOLUTION of THE DISCRETE-TIME 
H∞ MMP in 2DOF CONTROL STRUCTURE 

 
In this section, the LMI based solvability conditions 
of the H∞ MMP in 2DOF control structure is derived.  
For this purpose, consider a plant P(z) described by, 
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and a controller K(z) defined as,  
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As exploited in Figure 2, the closed loop transfer 
matrix Tzw(z) is obtained according to Equation (9a),
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Figure 2 
 
Note that P(z) in Figure 2 is described as follows, 
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To use the results on standard H∞ OCP while solving 
H∞ MMP in 2DOF control structure, we assume 
D=0, in other words, the system to be controlled has 
to be strictly proper, thus the generalized plant will 
be well-posed. As it is known, the solution of the 
standard discrete- time H∞ OCP gives all admissible 
controllers K(z) for P(z) shown in Figure 2, such that 
||Tzw(z)||∞ is minimum. The following Preposition 
provides the existence conditions of internally 
stabilizing controllers for the plant defined by (10a). 
 
Preposition 1: A necessary and sufficient condition 
for the existence of internally stabilizing K(s) for 
Figure 2 and the plant P(s) given in (10) is that 
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characteristic polynomial of F is strictly Schur and 
(A, B, C) is stabilizable.   
 
Proof:  Zhou, K, J. C. Doyle &K. Glover (1995). � 
 
  
Throughout the paper, we assume that (A, B, C) is 
stabilizable, i.e., there exists a constant matrix K such 
that A-BK is strictly Schur, and (A, C) is detectable 
i.e., there exists a constant matrix L such that A-LC 
is strictly Schur.  The synthesis theorem for discrete-
time H∞ OCP in formulation of LMIs given by 
Gahinet & Apkarian (1994) can be written for the 
discrete-time H∞ MMP in 2DOF control structure as 
in the following Lemma.   
 

Lemma 1 A controller K(z)=[L(z) M(z)] with order 
nK≥dim A+ dim F which holds ||Tzw(z)||∞<γ, exists 
for the plant described by (5-7) and closed-loop 
system is internally stable for H∞ Optimal Control 
Problem if and only if there exist symmetric matrices 
X>0 and Y>0 such that 
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where No and Nc are full rank matrices whose images 
satisfy 
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Proof: The claims of the Lemma are the same as 
those of the synthesis theorem for discrete-time H∞ 
OCP in the framework of LMIs presented by Gahinet 
& Apkarian (1994), they are only rewritten for the 
system P(z) given in  (5-7).� 
 
In order to obtain some specific results for discrete-
time H∞ MMP, further work has to be carried on 
Lemma 1. To full fill this aim, the following Lemmas 
are given. 
 
Lemma 2 Suppose A and Q are square matrices and 
Q>0. Then A is strictly Schur if and only if there 
exists the unique solution, 
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for the Lyapunov equation 0QXAXA =+−∗ . 
Proof: Zhou, K, J. C. Doyle &K. Glover (1995). � 
 
Lemma 3 The block matrix, 
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if and only if N<0 and P-MN-1M∗<0. In the sequel, 
P-MN-1M∗ will be referred to as the Schur 
Complement of N.  
 
Proof: See Dullerud & Paganini 2000.� 
 
Lemma 4 Suppose A, C, X and Y are square matrices 
and γ∈R. If the matrix A is strictly Schur, then for 
every pair of γ>0 and Y>0, there always exists a 
matrix X>0 such that holds the following 
inequalities, 
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γ
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Moreover, some matrices satisfying (16) and (17) are 
generated by the following explicit relation,  
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inequality, 
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where L0 is Observabilty Gramian of (A,C) and is 
given by equation (20) 
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and,  P0>0 is a solution of the equation 
0QPAPA 00 =+−∗  for Q>0, and P is a non-

singular matrix with satisfying PPP0
∗= .  

 
Proof: Since A is strictly Schur, there always exist a 
matrix X>0 for every γ>0. Consider the following 
Lyapunov equation with Q>0, and +∈Rε , 
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γ

  

The unique solution of the equation can be found 
from Lemma 2 as in the following form, 
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where,  L0 is Observabilty Gramian of (A,C) as in 
(20). To complete the proof, it will be sufficient to 
show that there exists a matrix X>0 satisfying 

1YX −≥ , namely (17). In that respect, lets define the 
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Lemma 5 Suppose (A, C) is detectable and Im N = 
Ker C, there exist some X>0 such that the following 
inequality holds, 
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Furthermore, these matrices X>0 satisfying (21) can 
be generated by the following relation, 
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 where A1=A-LC and strictly Schur  and +∈Rε .  
 
Proof: Since (A, C) is detectable then there always 
exist the matrices L with compatible dimensions and 
X> 0, such that (A-LC) is strictly Schur and thus the 
following inequality holds, 

0X)LCA(X)LCA( <−−− ∗            (23) 
due to Lemma 2. Since (A-LC) N= A N and so N*(A-
LC)*= N*A* and the inequality (21) is obtained by 
pre- and post-multiplying (23) with N* and N 
respectively, then the proof is completed using 
Lemma 2.� 
 
It will be useful to give the following corollary as a 
straightforward result of last two Lemmas, to provide 
an easy proof of a theorem on the H∞ MMP in 2DOF 
control structure, which will be given later. 
 
Corollary 1: Suppose F is strictly Schur and (A, C) is 
detectable and Im N = Ker C, then for every pair of 
γ>0 and Y>0, there always exists a matrix X>0 such 
that hold the following inequalities, 
 

[ ]

0
I00
0I0
00N

IHC

H
CX

F0
0A

X
F0
0A

I00
0I0
00N

1

1

1

1

p

n

p

n

<






































−−








−
−

































∗

∗

∗

∗

∗

γ

       (24) 

0
YI
IX

≥






            (25) 

The matrices X>0 which satisfy (24) and (25) can be 
generated by the following relations, 
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so the proof is completed by applying Lemma 3 to 
(27) and using  Lemma 4 and Lemma 5.�  
 
The following theorem can be presented on LMI 
based solution of the H∞ MMP in 2DOF control 
structures as a reduced version of Lemma 1. 
 
Theorem 1 A controller K(z)=[L(z) M(z)] with order 
nK≥ dim A + dim F, which the transfer matrices 
Tzw(z) given in (9) hold ||Tzw(z) ||∞< γ, exists for the 
plant described by (5-7) and the closed-loop systems 
are internally stable, i.e., there exists a solution of the 
discrete- time H∞ MMP in 2DOF control structure 
for the system and model given by (2) and (3) 
respectively, if and only if there exists a symmetric 
matrix Y>0;  such that the following inequality 
holds, 
 

[ ] [ ]

[ ]

0
I0
0N

IJG0

J
H
CYHCI

F0
0A

YHC

G
0

H
CY

F0
0A

F0
0AY

F0
0A

I0
0N

c

c

<


































−








−
−+−








−
















−


































∗∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

γ

γ

 (28) 

    
where Nc is a full rank matrix with, 
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and (A, B, C) and (F, G, H, J) are the discrete state 
space description of the T(z) and Tm(z)∈RH∞  
respectively, such that (A, B ) is  stabilizable  and (A, 
C) is detectable .  
 
Proof: It is easily seen that the claim of the Theorem 
is the same as the condition (12) of Lemma 1. To 
complete the proof, it will be sufficient to show that 
the conditions (11) and (13) are already satisfied. For 

this purpose, the condition (11) in Lemma 1 can be 
rewritten as follows, 
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 such 

that Im N=Ker C. Furthermore, the inequality (29) 
can also be written as follows, 
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Since (A, C) is detectable and F is strictly Schur, it 
can easily be seen that there always exist some X>0 
with satisfying the inequalities (30) and (13) by using 
Conclusion 1. This means that the conditions (11) 
and  (13) given in Lemma 1, are already satisfied, 
hence the proof is completed. �   
 
In order to construct the controllers L(z) and M(z), it 
is useful to give a brief procedure; suppose the 
matrix Y>0 and the minimum value of γopt∈R+ are 
found as a solution of (28) by using LMI toolbox 
(Gahinet, Nemirovski & Chilali, 1994). Then a 
matrix X>0 is found by using (26), such that the 
inequalities given in (30) and (13) hold. Finally, the 
controller transfer matrix K(z), which minimizes the 

∞
)z(Tzw

given in (9a) is obtained as,  
 

k
1

kkk B)AzI(CD)z(K −−+=           (31) 
 
using the matrices X and Y, via the controller 
reconstruction procedure given by Gahinet & 
Apkarian (1994). Thus the transfer matrices of the 
feedback and the feed-forward controllers L(z) and 
M(z) respectively, i.e., the solution of the H∞ MMP 
in 2DOF control structure for the system and model 
given by (2) and (3) respectively, are found from the 
definition K(z)=[L(z)  M(z)].  



 

     

 
4. CONCLUSION 

 
In this paper, we have studied on the discrete time 
H∞ MMP in the 2DOF control structure. The method 
developed in Gören (2003) for continuous-time 
systems will be transferred to discrete-time context 
and will lead to qualitatively similar results. The 
LMI-based solution of the problem by using this 
control structure has been presented with including 
some relations with the solution of OPC.  
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