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Abstract: Reproducing kernel Hilbert spaces (RKHS) provide a unified framework
for the solution of a number of function approximation and signal estimation
problems. A significant problem with RKHS methods for real applications is the
poor scaling properties of the algorithms with the number of data. It is therefore
often necessary to use iterative algorithms. Steepest descent and conjugate gradient
solutions for approximation in RKHS are presented in this paper. Four different
approaches are described and compared on a benchmark system identification
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1. INTRODUCTION

Reproducing kernel Hilbert spaces (RKHS) pro-
vide a unified framework for the solution of a
number of function approximation, system iden-
tification and signal estimation problems. These
include splines (Wahba 1990), support vector ma-
chines (Cristianini and Shawe-Taylor 2000), cer-
tain classes of neural networks (Poggio and Girosi
1990), finite and infinite degree Volterra series and
bandlimited signal reconstruction (de Figueiredo
1983, Wan et al. 2003, Yao 1967).

A significant problem with RKHS methods for
real applications is the linear scaling of the al-
gorithms with the number of data which trans-
lates to a cubic scaling in terms of computation
of the resulting matrix inverses. It is therefore
often necessary to use iterative algorithms which
can reduce the computational effort (Cristianini
and Shawe-Taylor 2000). In the case of support
vector machines, the natural sparsity of the so-
lution allows for particularly efficient methods,
for example the sequential minimal optimisation

algorithm (Platt 1999). More generally, gradient
methods provide a set of possible solutions which
have been used with some success (Dodd and
Harrison 2002a).

The main contribution of the paper is to present a
detailed comparison of alternative formulations of
steepest descent and conjugate gradient methods
for the solution of RKHS approximation prob-
lems. In addition to a computable function-based
approach three different parametric versions are
described. It has been found that, whilst theoret-
ically solving the same problem, these different
approaches have significantly different numerical
and convergence properties. Preliminary results
on the application of these methods to a system
identification problem are presented. These results
provide initial guidance on which algorithms can
be expected to perform best and also highlight a
number of issues for further investigation.



2. PRELIMINARIES

We assume some unknown function, f, that we
are able to observe at a finite number of points.
f belongs to a RKHS, F, defined on a parameter
set, X, that can be considered as an input set in
the sense that, for any = € X, f(z) represents the
evaluation of f at x.

A finite set of (possibly noisy) observations,
{2}, of the function is made corresponding to
each {z;}¥,
zi=Lif +& (1)
where {L;}¥, is a set of linear evaluation func-
tionals, defined on F, which associate real num-
bers to the function, f and the ¢; are random
noise. We can represent the set of observations
{2}, thus
N
z=Lf+e=Y (Lif +e)e; (2)
i=1

where e; € RN is the ith standard basis vector.

By assuming that F is a RKHS the L; are continu-
ous (hence bounded) (Aronszajn 1950). It follows
from the Riesz representation theorem that we can

express the evaluations as (Akhiezer and Glazman
1981)

Llf = <f7 k(xla ))fa

where (-,-)# denotes the inner product in F. The
{k(z;, )}, form a set of functions each belonging
to F and uniquely determined by the functionals
L;.

i=1,...N (3)

The approximation problem can be formulated as
follows (Bertero et al. 1985): given the RKHS of
functions, F, the set of functions, {k(z;, )}, C
F, and the observations, {z;}%¥,, find a function
f € F such that (3) is satisfied.

The functions, k(x;,-), are positive-definite and
are known as the reproducing kernels of the
RKHS. Further, for every z,z' € X (where k(-,z")
is the function defined on X', with value at z in X
equal to k(z,z')):

(1) k(-,2') € F; and

(2) {f, k(- 2"))F = f(a')

for every f in F.

We now seek the regularised solution f,., € F to
(2) which minimises

greal) = SIS =2+ 1A @)

where p > 0 is known as the regularisation
parameter. The unique minimiser of (4) satisfies

freg(') = (pI + L*L)_IL*Z (5)
or, equivalently
Freg(t) = L*(pI + LL*) 'z (6)

where [ is the appropriate identity operator. To
compute the prediction at some new point x we
use

Freg(®) = (freg (), k(z, )
= <L*(pI + LL*)_IZ, k(l‘, )>
Equivalently
f'r't?g(x) = (Lk(l‘, ')7 (pI + LL*)_12>
In the case of finite dimensional RKHS we

have (Dodd and Harrison 2002b)

PP
LL* = ZZk(wi,xj)ejeiT

j=1 i=1

(7)
for any ¢ € RN. The expression for LL* is
equivalent to the kernel (Gram) matrix K where
[K];j = k(z;,x;). The expression L*c represents a
general function in the finite dimensional RKHS
spanned by the k(z;,-).

p
L*c= Z k(zi,-)ci,
i=1

Therefore
Freg(@) = KT (pI + K)~'2 (8)
where k is the vector

k= Lk(z,") = [k(zs,z),..., k(zp, ). (9)

3. ITERATIVE METHODS: LINEAR
OPERATOR EQUATIONS

We consider first the general formulation of
gradient-based iterative methods for solving linear
operator equations in Hilbert spaces. This general
formulation will then be specialised to RKHS in
subsequent sections. Consider

Au=1> (10)

where A : U — B is a bounded linear operator,
u €U, b e B and U, B are Hilbert spaces defined
on a common field, X.

We seek the solution which minimises the regu-
larised least squares cost function

Teeo(w) = 114w = bl + Bll?. (11
Now Jyeq(u) is Fréchet differentiable and we can
therefore find the gradient
Vreg(u) = A" Au — A*b + pu = A*(Au — b) + pu.
which we subsequently denote u"¢9.

The general form of a gradient iteration is then
given by
ug € ]R(A*): Un+1 = Up — NnDn (12)

where py, is related to the gradient V.J,.,(u). We
consider two specific cases:



Steepest Descent

n — ~ P .
1ADa|1? + pllpnl®

Conjugate Gradient

Pn = W57 + 6p—1Pp—1, Po =ty (15)

sl

On—1 = 7= (16)
[t 17
~regl|2

T = 5= —
" 11 Apall? + pllpall?

4. ITERATIVE METHODS: RKHS

We now specialise the methods of steepest descent
and the conjugate gradient to RKHS.

4.1 Steepest Descent

4.1.1. Function Form (SDF)

L,u= f,b =2z we have
Vireg(f) = L*(Lf = 2) + pf (18)

and, therefore,

fo€ R(LY),  fat1 = fo—mlL*(Lfn—2)+ pfal-

Since f,, = L*c, we can re-write this as

fnt1 = L*¢y, —qu[L*(LL*¢,, — 2) + pL¥c,)

Setting A =

and letting
Cnt1 = Cn — Mu[(LL*en — 2) + pey)
we have f,11 = L*cp41. Computationally
co €ERN, cup1 = cn—nu|(Ken—2) 4 pey. (19)
Denoting f1¢ = V.Jyeq(fn),
_ [LFnee]?
CNLEER + pll fatR

Therefore, using the fact that f, = L*c, and
defining ¢, = LL*¢c,, — z + pcp,

n

= 1L en]l*

n — — —
ILL*en|? + pl| L*ea][?

_ (LL*¢,, Cn)
ILL*¢n||* + p(LL*Cn, cp)

This can be written in terms of K = LL* as
el Ke,

' K?¢, + pcFKe,

n = (20)

where, in practice, ¢, = K¢, — z + pcy,.

4.1.2. Parameter Form I (SDPI)
LL* u = ¢, b=z we have

ViJyeg(c) = LL*(LL*c — z) + pc.  (21)
The general iteration is therefore
Co € ]RN,

Using A =

Cnt1 = Cn — N[ LL*(LL*c,, — 2) + pey)
(22)

which can be written in terms of K = LL* as

Cnt1 = Cn — [ K (Kep — 2) + pep]. (23)
Now ~ )

llen|]
|LL*&|1? + pllén™||?
where €9 = LL*(LL*c,, — z) + pcy,, which we
subsequently denote by ¢,. Therefore
éle,

ETK2¢, + péle,”

77n:|

n = (24)

Computationally we use ¢, = K (K¢, — z) + pcy,.

4.1.8. Parameter Form II (SDPII) The previ-
ous parametric form does not exactly correspond
to the functional form as it utilises a different cost
functional. We have actually solved

| STy P
Treg(€) = SILL e = 2| + Slel*  (25)
whereas we are really interested in

1
Jreg(c) = 3
In the former the regulariser is proportional to
llel|* whereas it should in fact be proportional to

IL%c]l* = || £II*.

ILL e =P + ZliL7el®.  (26)

Rearranging (26)

Treg(c) = %HLL*C — 2|2+ g(c, LL*¢). (27)
The gradient is now given by

VJeeg(e) = LL*LL*c — LL*z 4+ pLL*c.  (28)
The steepest, descent iteration is
co € RV,

where

Cn+1 = ¢ — M LL*(LL" ¢, — 2 + pey)

"L + AL

which makes use of the definition ¢/%7 = V. Jy.¢4(cp).

Computationally we have

Cnt1 = n — MK (Ke, — 2z + pey). (30)
Writing (29) in terms of &,
ILL*enl?
TIn,

~ ||LL*LL*G,||? + p||L*LL*¢,||?

or

_ |ILL*E, |

~ ||[LL*LL*G,||? + p{LL*LL*¢,, LL*¢,)
In terms of K = LL*

n

=T 2=
¢, K°¢,

erK4e, + pcL K3¢,

T = (31)



4.2 Conjugate Gradient

4.2.1. Function Form (CGF) Setting A = L,
u = f, b= z, the iteration is given by

fo € R(L*)a fat1 = fn — NMnbn (32)

where

Po=F% Pn=Fr9+ 6p_1Pn—1 (33)

and
frf9=L"(Lfp—2) +pfa (34)
The associated learning rates are
Freg||2 freg||2
SRR R
|| Fres, |2 | Lpnll? + pllpnll
Now let
fn = L*Cn, Dn—1 = L*bnfl- (36)
Then

Ppn = L*(LL*cp—2)+pL*cy+0p_1L*bp_1. (37)
Letting
by, = LL"¢p — 2+ pep + 6pn_1bp_1 (38)

then
Pn = L*by,. (39)
Note that, in practice, we have
bo =¢, b,==¢,+ 0y 1bp_1. (40)
Further, if we define
co € RV, Cnt1 = Cp — NMpbn (41)
then
fn+1 = L*Cn+1. (42)
Now
L*(Lf, — 2) + pfall?
PN (7 R 1
IL*(Lfn1—2) + pfaall
In terms of ¢,, this becomes
5 = MEeal® . (LL¢niCn)
"L AR (LT 1, 1)
which is equivalent to
érKe,
(snfl - 7Tn77 (44)
Cr_1Kcn—1

We also have
IL*(Lfn — 2) + pfall?

M =

Writing this in terms of é, and b,
|1L*E
|LL*bnl? + pl| L*bn |

M =
|

or
_ el Ke,
"~ bIK2b, + pbL Kb,

in

NL(Fre + 6no1Bn-)|I? + Pl Fnt + Gpi P |?

4.2.2. Parameter Form I (CGPI) We use A =
LL* x = ¢,b = z and the basic iteration is given
by

co € ]RNa Cn4+1 = Cp — MnPn (47)
where
ﬁn = 5269 + 6n—1ﬁn—1 (48)
and
& = LL*(LL*cn — 2) + pen.  (49)
Defining b, = p, we have
Cntl = Cp — Nnbn (50)
and
b, =LL*(LL*¢c,, — z) + pcp + 0n—1bp—1 (51)
=K(Kcp —2) +pcn + 6p—1bp_1.  (52)
Also .
[l CnCn
Ope1 = —nt = n . 53
G T A Y
For n,,
_ llenee|? _ CnCn
" L Bl + pllBalP DLy + pbTb,
(54)
4.2.3. Parameter Form II (CGPII)  Again, us-

ing the modified loss function, (26), the iteration
is now given by

co € ]RNa Cn4+1 = Cp — MnPn (55)
where
ﬁn = 5269 + 6n—1ﬁn—1 (56)
and, in this case,
ére9 = LL*(LL ¢y — z + pcy). (57)

As usual we use b,, = p,, and therefore

Cntl = Cp — Nnbn (58)
and
bp,=LL*(LL* ¢, — 2z + pcp) + 0n—1bpn—1 (59)
=K(Kcp — 2+ pcp) +0p—1bp—1.  (60)
Now
ol B (e — 2+ e
"TNEEIR T LA (LL ey — 2 + pen 1)

In terms of K this becomes

=T 772 =T
¢, K°¢c,

o1 = 57— 61
R (o1
For n, we have the following

[l en e

—IZLpall? + Pl Ll

i bTK?b, + pbT Kby,

(62)



5. SELF-ADJOINT, POSITIVE DEFINITE A

Consider now the case where A is self-adjoint and
postive definite. We can then minimise

Treg (u) =
The gradient is then given by
Vdreg (1) = Au — b + pu. (64)

We define @™ = V.J..(u) and the general
iteration is given by

1 P2
S u) = (u,B) + 2l (63)

up arbitrary ,  Upi1 = Up — NP, (65)
Steepest Descent
=" (66)
=112
ol o

(Ap,, 17,) + pll 12
Conjugate Gradient
o= 460 ab, 1, Bo=ap (68
IIU”Z“] [

(A
-1

[l

(Ap),, ) + pllPLIP
(69)

5.1 Steepest Descent (SDPIII)
We are restricted to the parametric case with
A=LL*,u=c,b=z and therefore

pr, = Vidyeg (en) = LL* — z + pe,,. (70)
The general iteration is given by
—nh(LL*cp, — 2+ pey) (71)

N
co €RY, cpp1=cp

which can be computed as
Cnt1 = Cn — 1 (Ken — 2 + pey). (72)

In the steepest descent case

SR
n;l = ~reg’ ~reg ~reg’ (|2 (73)
(LL*cn )+ pllen |l
where 5;69’ = Kc¢, — z + pc,,. We then have
ele
== 74
In erKey, + peley (74)
5.2 Conjugate Gradient (CGPIII)
The general iteration is given by
co €RY,  cnp1 = co =i, (75)

where

=85+ 0n 1 (76)
=LL*cy, — 24 pcy + Opn_1Py_q1.  (77)
) [[Enes’ |2
N = s = . (78)
(LL*Py_y, Prr) + plIDH—1 (12
Defining b,, = p,,
Cn+1 = Cp — niz,bn (79)
where
by, =LL*cp — 2+ pcp + 0p_1bp_1 (80)
=Kep— 24 pen + 6p—1bp—1. (81)
Now , o
ez CnCn
Op—1 = = 82
n—1 | ~reg1||2 Cgflcnfl ( )
Also
g el e,
" (LL*bp,by) + pllbnll> BT Kb, + pbT'b,”
(83)
6. RESULTS

We now investigate, empirically, the convergence
properties and numerical sensitivity of the gra-
dient methods described above. For brevity we
restrict our attention to the conjugate gradient
methods. For these we expect, theoretically, con-
vergence in, at most, N iterations. The follow-
ing nonlinear dynamical system was simulated in
Matlab

2(t) =0.5y(t — 1) + 0.3y(t — Du(t — 1) + 0.2u(t — 1)

+0.05y>(t — 1) + 0.6u>(t — 1) + €(t)

where €(t) ~ N(0,0.001), y(0) = 0.1 and u(t) ~
N(0.2,0.1). Results of modelling the system with
a Gaussian kernel (k(z,z') = exp(—f|z — 2'|])),
based on 25 data points and averaged over 50
realisations of the data are shown in Figures 1, 2.

Theoretically, the method of conjugate gradients
for each of the cases above should converge in,
at most, N iterations, i.e. the norm difference
between the true and iterated parameters should
be zero. However, round-off errors make this im-
practical and can reduce the rate of convergence.
In general, all the algorithms converged to an
acceptable error within N iterations with the ex-
ception of CGPII, for which the error was two
orders of magnitude greater. In many cases CGPII
converged only after a significantly higher number
of iterations - in Figure 1 even after 500 iterations
the error has only just reduced to the level after
25 iterations for the other algorithms.

The actual rate of convergence was found to de-
grade with increasing regularisation for all algo-
rithms, although most notably for PII. This is
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Fig. 2. Cost function values corresponding to
Figure 1.

counter to the normal view that regularisation
improves numerical sensitivity. The authors be-
lieve this is probably due to the multiplication of
round-off errors by the regularisation parameter
in the denominator of the learning rate equations.

In contrast, the values of the associated cost func-
tions all converged well within NV iterations, Fig-
ure 2. This result was not affected by the amount
of regularisation. In terms of the error in the
parameters, algorithm CGPIII tends to converge
earliest and to a lower norm error. However, if
early stopping is to be used then algorithm CGPI
may be preferred as it achieves better errors for
iterations 2-5. Computationally, CGPIII is also
the most efficient algorithm and CGPII the least.

These results are preliminary and a more detailed
investigation is currently underway. The numer-
ical sensitivity of the algorithms will be com-
pared using different machine precisions. Conver-

gence will be assessed on a number of problems
with varying amounts of regularisation and using
Monte Carlo simulations to assess the variability
of the results. The theoretical convergence rates of
the different algorithms will also be studied to pro-
vide further guidance on the expected convergence
rates of the algorithms. In particular these will
be compared with the computational overhead in
terms of floating point operations.
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