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1. INTRODUCTION

Many physical dynamical systems can be de-
scribed by differential equations depending on
parameters, which are either not exactly known
(i.e., uncertain) or are time-varying. The design
of robust controllers for such systems ensuring
the stability and performance requirements for
all allowable parameter variations and over the
whole range of operating conditions is a highly
complex task and can be addressed only by
employing advanced synthesis techniques like µ
(Zhou et al., 1996) or the linear parameter varying
(LPV) control. The key aspect of these linear
system based synthesis approaches is employing
special model uncertainty descriptions based on
linear fractional transformation (LFT) (Zhou et

al., 1996).

Recall that for a partitioned matrix

M =

[
M11 M12

M21 M22

]
∈ R(p1+p2)×(m1+m2)

and ∆ ∈ Rm1×p1 , the upper LFT is defined as

Fu(M,∆) = M22 +M21∆(I −M11∆)−1M12 (1)
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Fig. 1. LFT-Representation

and represents the input-output mapping between
u and y after closing the upper loop in Fig. 1.

The following LFT-modelling problem is consid-
ered in this paper: given a p2×m2 real matrix G(δ)
depending rationally on k parameters grouped
into the real vector δ = ( δ1, . . . , δk ), find an
equivalent LFT-representation (M,∆) such that
G(δ) = Fu(M,∆) with

∆ = diag (δ1Ir1
, . . . , δkIrk

) (2)

and m1 = p1 =
∑k

i=1 ri. Here, m1 represents the
order of the LFT-representation (M,∆) of G(δ).

Of paramount importance in many robust con-
trol design applications is to obtain low order

LFT-representations of parametric system mod-
els. However, obtaining an LFT-representation
of a multivariate rational model is essentially



a multi-dimensional (n-D) realization problem
(Bose, 1982) for which a minimal realization the-
ory is still lacking. Therefore, in practice dif-
ferent order reduction techniques are employed
in conjunction with an object oriented LFT-
realization approach like that one described in
(Terlouw et al., 1993). Typically, exact or ap-
proximate order reduction based on numerical
techniques (D’Andrea and Khatri, 1997; Varga
and Looye, 1999) is performed as the final step
of LFT-modelling, while the first step consists
of a symbolic preprocessing which tries to find
transformed parametric expressions which lead to
lower order LFT representations via automated
object-oriented LFT-realization procedures.

In this paper we present an overview of sym-
bolic transformation methods which can be useful
for generating low order LFT-representations and
propose several new techniques and enhancements
of existing symbolic preprocessing methods. The
corresponding software tools have been imple-
mented in the recent version 2 of the LFR-toolbox
(Hecker et al., 2004). The effectiveness of sym-
bolic preprocessing is illustrated by a challenging
aircraft uncertainty modelling example.

Before starting with the description of the sym-
bolic methods, we briefly present an extension
of the object-oriented LFT-realization described
in (Terlouw et al., 1993), which allows to repre-
sent arbitrary multivariate rational expressions in
LFT-form. For example, G(δ) = 1/δ has no LFT-
representation with ∆ of the form (2) because
of singular M22 in the LFT-representation of δ.
In practice, to avoid such difficulties, a symbolic
normalization of parameters is performed first,
which however often tends to significantly increase
the order of the resulting LFT-representation
(Cockburn and Morton, 1997). To prevent the
need for such early normalization, the following
inverse free formula for the inversion of an LFT-
representation can be employed: (Fu(M,∆))−1 =
Fu(Minv,∆inv), where

Minv =



M22 + Ip2

M21 Ip2

M12 M11 0
−Ip2

0 0


,∆inv =

[
Ip2

0
0 ∆

]
(3)

This formula easily follows from the definition
of a more general descriptor LFT-representation
proposed in (Hecker and Varga, 2004). The new
constant block Ip2

in ∆inv can be interpreted
as an additional dimension in a multidimensional
system representation. Note that this block will
vanish after a final normalization of the LFT-
representation (Hecker et al., 2004).

By employing systematically (3), together with
the operations for addition/subtraction, multipli-
cation and row/column concatenation for LFT-
objects from (Terlouw et al., 1993), we can
directly generate LFT-representations of arbi-

trary rational matrices. Avoiding the preliminary
symbolic normalization leads usually to LFT-
representations of lower order.

2. SYMBOLIC PREPROCESSING

2.1 Problem statement

We discuss several symbolic transformation tech-
niques which are potentially useful in obtaining
low order LFT-realization of several classes of
rational parametric matrices. Let δ = (δ1, . . . , δk)
be a parameter vector with k components and
we denote by δ

−1 = (δ−1
1 , . . . , δ−1

k ) the vector of
reciprocal variables. We consider three classes of
matrices depending of δ for which symbolic trans-
formation techniques are discussed: R[δ]m×n – the
set ofm×nmatrices with multivariate polynomial
entries ; R(δ)m×n – the set of m×n matrices with
multivariate rational entries; and R[δ, δ−1]m×n –
the set of m × n matrices with multivariate Lau-
rent polynomials entries. This last case is explic-
itly considered since many aircraft and automo-
tive related uncertainty modelling problems are
described in terms of such type of matrices.

A multivariate Laurent polynomial g(δ) has the
expanded form

g(δ) =

l∑

r=1

crδ
nr,1

1 δ
nr,2

2 . . . δ
nr,k

k , (4)

where cr are real coefficients and nr,1, . . . , nr,k ∈ Z

for r = 1, . . . , l are integer exponents. We can
associate to this polynomial the order of the LFT-
realization which results when applying an object-
oriented realization approach as in (Terlouw et al.,
1993; Hecker and Varga, 2004) to the polynomial
in the above expanded form. This order is given
by

ord(g(δ)) =

l∑

r=1

k∑

s=1

|nr,s|

where we assumed that negative and positive pow-
ers of indeterminates contribute in the same way
to the order. This assumption is valid when em-
ploying inversions formulas with constant blocks
as in (3) to realize the elementary reciprocal vari-
ables. If g(δ) is a general multivariate rational
function of the form

g(δ) =
a(δ)

b(δ)

where a(δ) and b(δ) are polynomials in expanded
forms, the associated order is given by

ord(g(δ)) = ord(a(δ)) + ord(b(δ))

We can also associate to an m×n rational matrix
G(δ) with elements gij(δ) the total order

ord(G(δ)) =

m∑

i=1

n∑

j=1

ord(gij(δ)) (5)



which corresponds to realize G(δ) element-wise
using row and column concatenations via the
object-oriented LFT-realization approach.

The practical importance of symbolic methods
for generating low order LFT-realizations lies in
the lack of a minimal realization theory for mul-
tidimensional systems. This is why, the role of
symbolic preprocessing in building low order LFT-
realizations of a given rational matrix G(δ) is
to find equivalent representations of individual
matrix elements, entire rows/columns or even the
whole matrix which lead to LFT-representations
of lower orders than given by (5). In the follow-
ing subsections we present several transformation
techniques which can be used for this purpose.

2.2 Single Element Conversions

Several conversion can be performed on single
rational functions which can be useful to obtain
equivalent representations which lead automati-
cally to reduced order LFT-representations via
an object oriented realization. These conversions
can be performed either iteratively with respect
to selected single variables or can be performed
simultaneously for several variables in a specified
order. Using such conversions, it is in principle
possible to determine in each case a least achiev-
able order of the corresponding LFT-realizations
over all permutations of the variables. However,
performing such exhaustive searches leads gener-
ally to combinatorial problems with exponential
complexity. Therefore, unless the number of vari-
ables is small (say below 10), exhaustive searches
are impracticable. In what follows we illustrate via
examples some of possible conversions.

2.2.1. Horner Form. The conversion of a mul-
tivariate polynomial to a nested Horner form
is useful for an efficient numerical evaluation of
polynomials. This conversion can be also help-
ful to generate low order LFT-representations by
applying it to the numerator and denominator
polynomials of a rational function (Varga and
Looye, 1999). For a multivariate rational func-
tion with k variables an exhaustive search for
the least order of corresponding LFT-realizations
involves 2k! conversions. This approach is effective
especially when a few variables have significantly
larger powers than the rest of variables. Thus, in
the case of many variables, exhaustive searches
are meaningful only for the few variables with the
highest powers. For many variables, code genera-
tion techniques for optimized evaluation of poly-
nomial/rational functions could be useful alter-
natives (Varga and Looye, 1999). The conversion
to Horner form can be easily extended to mul-

tivariate Laurent polynomials as well as can be
generalized to multivariate polynomial matrices.

Example 2.1.

g(δ) = δ31 + δ2δ
2
1 − 4δ21 − 4δ1δ2 + 3δ1 + 3δ2

The realization of this element without any pre-
processing would lead to an LFT-realization of
order 12. Employing the conversion to Horner
form allows to express g(δ) as

g(δ) = 3δ2 + (3− 4δ2 + (−4 + δ2 + δ1)δ1)δ1

which leads to an LFT-realization of order 6. For
this polynomial both orderings of variables lead
to the same orders of the LFT-realizations.

2.2.2. Partial Fraction Decomposition. This con-
version allows to represent a rational function in
an additively decomposed partial fraction form
where the individual terms have usually much
simpler forms. The basic decomposition consists
of factoring the denominator polynomial with re-
spect to one selected variable. An iterative real-
ization procedure can be easily devised by per-
forming the basic decomposition with respect to
a selected order of variables. In each step, the
basic decomposition is performed on all the terms
computed at a previous step. For a multivariate
rational function with k variables an exhaustive
search for the least order of corresponding LFT-
realizations involves k! conversions. The main dif-
ficulty of employing this conversion is the need
to compute symbolically the roots of multivariate
polynomials.

Example 2.2.

g(δ) =
2δ21 − 7δ1 − 3δ2 + δ2δ

2
1 + δ22δ1 − δ22 + 3

δ31 + δ2δ21 − 4δ21 − 4δ1δ2 + 3δ1 + 3δ2

The partial fraction decomposition leading to the
least order is given by

g(δ) =
1

δ1 − 1
+

δ2
δ1 − 3

+
1

δ1 + δ2
(6)

This decomposition results for both orderings of
variables to LFT-realizations of order 4 instead of
the expected order of 24.

2.2.3. Continued-Fraction Form. The conver-
sion to continued-fraction form is useful for an
efficient numerical evaluation of rational expres-
sions and can also be applied as symbolic pre-
processing for rational expressions. This conver-
sion is usually performed for a selected variable
and the resulting coefficients depend generally of
the rest of variables. Although nested representa-
tions involving the representation of coefficients in
continuous-fraction form are in principle possible
to be computed, this computation is however not
straightforward and can be frequently replaced by



conversions to Horner form. The main advantage
of this conversion is that it can be performed for
arbitrary rational functions. In particular, for any
rational function with only one parameter, this
conversion allows to obtain the least order LFT-
realization.

Example 2.3. The continued-fraction form of

g(δ) =
8δ21 − 8δ1 + 2δ3 + 2δ1δ2 − δ2 + 2

4δ21 − 4δ1 + δ3 + 1

with respect to δ1 is given by

g(δ) = 2 +
δ2

2

(
δ1 −

1

2
+

δ3

4
(
δ1 −

1
2

)
)

and allows to obtain an LFT-representation of
least order 4 instead of expected order 11. Note
that the conversion to partial fraction form has
no effect for this example on the order of the
realization.

2.3 Matrix Conversions

2.3.1. Morton’s Method. Any rational matrix
G(δ) ∈ R(δ)p×m can be expressed as an affine
combination

G(δ) = G0 +
n∑

i=1

ci(δ)Gi (7)

where Gi, i = 0, 1, . . . , n are constant matrices
and ci(δ) are multivariate rational functions. Let
Gi = LiRi be full rank factorizations of Gi,
where Li ∈ R

p×ri and Ri ∈ R
ri×m. The method

proposed in (Morton, 1985) constructs LFT-
realizations of each term Li(ci(δ)Iri

)Ri which
serve to immediately obtain an LFT-realization
of the whole rational matrix G(δ). The main
advantage of this method in obtaining low order
LFT-realizations is that it exploits the fact that
frequently the constant matrices Gi have non-full
ranks and this leads to an overall lower order
realization of the rational matrix.

2.3.2. Enhanced Tree Decomposition. An effi-
cient technique applicable to multivariate poly-
nomial matrices is the tree-decomposition (TD)
based approach proposed in (Cockburn and Mor-
ton, 1997). This method exploits the structure of
a polynomial matrix to break it down into sums
and products of ”simple” terms and factors for
which low order LFT-realizations can be easily
constructed.

The TD approach can be employed to construct
LFT-realizations of general rational matrices rep-
resented in polynomial fractional forms. It is
well-known that any rational matrix G(δ) ∈

R(δ)m×n can be expressed as a right or left
factorization G(δ) = N(δ)D−1(δ) or G(δ) =

D̃−1(δ)Ñ(δ), respectively, where N(δ), D(δ),

Ñ(δ), D̃(δ) are polynomial matrices. Then, from
the LFT-realizations of compound polynomial
matrices [NT (δ) DT (δ) ]T or [ Ñ(δ) D̃(δ) ] we can
easily determine the LFT-realization of G(δ) by
direct formulas (Hecker and Varga, 2004).

The enhanced tree decomposition (ETD) method
is an extension of the TD method to the more
general case of multivariate Laurent polyno-
mial matrices G(δ, δ−1) ∈ R[δ, δ−1]. The en-
hanced method formally substitutes each recipro-
cal variable δ−1

i in the Laurent polynomial matrix

G(δ, δ−1) by a new variable, say δ̃i, and applies
the standard TD method to the resulting polyno-
mial matrix G(δ, δ̃). Furthermore, Morton’s tech-
nique is integral part of the ETD and is applied
in all cases where affine combinations of the form
(7) arise as intermediate results during the de-
composition. Besides the resulting lower orders
of LFT-realizations, the integration of Morton’s
approach leads usually to significant time savings.
For example, in the case of the RCAM example
presented in section 4, a reduction of about 20%
of the LFT realization time has been achieved.

Example 2.4. Consider the multivariate Laurent
polynomial matrix

G(δ, δ−1) =




1

δ1
+ δ1δ2

1

δ1
1

δ1
+
δ2
δ23

1

δ1




By applying the ETD method, we obtain the
following decomposition

G(δ, δ−1) = T1(δ
−1
1 ) + T2(δ1, δ

−1
3 )T3(δ2)

where

T1(δ
−1
1 ) =

1

δ1

[
1 1
1 1

]
=

[
1
1

]
1

δ1

[
1 1

]

T2(δ1, δ
−1
3 ) = δ1

[
1 0
0 0

]
+

1

δ23

[
0 0
1 0

]

=

[
1
0

]
δ1
[
1 0

]
+

[
0
1

]
1

δ23

[
1 0

]

T3(δ2) = δ2

[
1 0
0 0

]
+

[
0 0
0 1

]
=

[
1
0

]
δ2
[
1 0

]
+

[
0 0
0 1

]

This decomposition leads immediately to an LFT-
realization of order 5. Note that performing the
standard TD on G(δ, δ̃) without employing Mor-
ton’s method would lead to an order 6, while
a direct LFT-realization of the original matrix
would lead to order 9.

2.4 Variable Splitting Factorization

For multivariate Laurent polynomials, a variable

splitting (VS) technique can be employed to ex-
press such a polynomial in factored form, where



the factors contain disjoint subsets of δ and δ
−1,

respectively. It is easy to show that any Laurent
polynomial g(δ, δ−1) can be expressed as a prod-
uct

g(δ, δ−1) = v(δs1
, δ−1

s2
)Tu(δs3

, δ−1
s4

)

where v(δs1
, δ−1

s2
) and u(δs3

, δ−1
s4

) are vectors de-
pending on the sets of parameters δs1

, δs2
and

δs3
, δs4

, respectively, with δ = δs1
∪ δs3

= δs2
∪

δs4
, δs1

∩ δs3
= δs2

∩ δs4
= ∅. Typically, one

chooses one of the factors, say v(δs1
, δ−1

s2
), to have

only entries expressed by multivariate Laurent
monomials. This factorization can be easily ex-
tended to row/colums vectors, in which case one
of the factors becomes a matrix.

The VS factorization allows to transform the ini-
tial realization problem into two realization prob-
lems but each with fewer variables. The effec-
tiveness of this technique in conjunction with the
ETD is shown in section 4.

Example 2.5. Consider

g(δ, δ−1) =
δ1
δ2
δ3 +

δ1
δ2
δ4 +

δ2
δ1
δ3

By choosing δs1
= δs2

= {δ1, δ2} and δs3
= δs4

=
{δ3, δ4}, we obtain the VS factorization as

g(δ, δ−1) =

[
δ1
δ2

δ2
δ1

] [
δ3 + δ4
δ3

]

which yields an order 6 LFT-representation (in-
stead the expected order 9) when employed in
conjunction with the ETD technique.

Example 2.6. The VS approach can easily be ex-
tended to vectors. Consider the multivariate vec-
tor

g(δ, δ−1) =

[
δ1
δ2
δ3 +

δ1
δ2
δ4 +

δ2
δ1
δ3

δ1
δ2
δ24 +

δ2
δ1
δ4

]

The corresponding vector based VS factorization
for δs1

= δs2
= {δ1, δ2}, δs3

= δs4
= {δ3, δ4} is

g(δ, δ−1) =

[
δ1
δ2

δ2
δ1

] [
δ3 + δ4 δ24
δ3 δ4

]

This yields an order 7 LFT-representation when
employed in conjunction with the ETD. ETD
applied directly to g(δ, δ−1) leads to order 8.

3. SOFTWARE TOOLS

The symbolic preprocessing techniques described
in section 2 have been implemented in Version 2 of
the LFR-Toolbox (Hecker et al., 2004). The main
function to compute LFT-realizations from sym-
bolic multivariate rational matrices is sym2lfr,
which provides several options to perform sym-
bolic preprocessing, as for example, choosing

among methods, performing or not an exhaus-
tive search for least order realization (the so
called ”try-hard” option), etc. Some conversions
are automatically performed within sym2lfr, as
for example, the calculation of a polynomially
factorized representation for a general rational
matrix. The output of the function is an LFT-
representation obtained via an object oriented
LFT-generation, that can be further processed
(normalization, numerical order reduction) with
other functions of the LFR-Toolbox. Most of the
underlying algorithms for symbolic preprocess-
ing are implemented in MAPLE, thus ensuring a
highly efficient symbolic manipulation. These al-
gorithms are executed via the Extended Symbolic
Toolbox of MATLAB, providing an user friendly
interface to the MAPLE symbolic kernel.

4. APPLICATION EXAMPLES

Example 4.1. The capability of the combined VS
and ETD approach can be best illustrated by
applying this technique to the most complicated
single element a29(δ, δ

−1) of the state matrix
A(δ, δ−1) of the extended parametric Research
Civil Aircraft Model (RCAM) (Varga et al., 1998),
one of the most complicated parametric models
existing in the literature.. The uncertain param-
eter vector is δ = (m,V, xcg, zcg), where m is the
aircraft mass, V is the air-speed, and xcg, zcg are
the x-axis and z-axis components of the center of
gravity position, respectively. The VS factoriza-
tion of a29(δ, δ

−1) = v(δs1
, δ−1

s2
)Tu(δs3

, δ−1
s4

) with
δs1

= δs2
= {m,V } and δs3

= δs4
= {xcg, zcg}

yields

v(δs1
, δ−1

s2
) =




V
m
m
V 3

1
V


 , u(δs3

, δ−1
s4

) =



u1

u2

u3




with

u1 = −46.849 + 100.133xcg − 14.2516zcg

−0.2556x2
cg − 0.0710x2

cgzcg

+1.1243xcgzcg

u2 = 0.0022− 0.0103xcg − 0.0073zcg

+0.0017x2
cg − 0.0011x2

cgzcg

+0.0063xcgzcg

u3 = −0.0828 + 0.3060xcg + 1.5189zcg

−0.0106x2
cg + 0.0183x2

cgzcg

−0.2422xcgzcg

The application of the ETD yields LFT-represen-
tations of order 6 for v(δs1

, δ−1
s2

) and order 5 for

u(δs3
, δ−1

s4
) and finally an LFT-representation of

order 11 is obtained for a29(δ, δ
−1). Remarkably,

the resulting order 11 obtained exclusively by
symbolic preprocessing is smaller than ”least”
orders about 15 achieved by combining various
symbolic and numerical order reduction tools in
(Varga and Looye, 1999), starting from initial
realization of orders as large as 193.



Example 4.2. The parametric state space matri-
ces A(δ, δ−1), B(δ, δ−1), C(δ, δ−1), D(δ, δ−1) of
the RCAM have only elements as Laurent polyno-
mials in the indeterminates. We computed several
LFT-representations of the system matrix

S(δ, δ−1) =

[
A(δ, δ−1) B(δ, δ−1)

C(δ, δ−1) D(δ, δ−1)

]

and the results are presented in Table 1, where
for each specific symbolic preprocessing we give
in the successive columns the resulting orders
without and with additional numerical n-D order
reduction (D’Andrea and Khatri, 1997).

Table 1. Orders of LFT-realizations for
the extended RCAM example.

Symbolic Order Order

Preprocessing (numerically reduced)

None 400 262

Single Element 307 158

TD 156 97

ETD 131 86

VS+ETD 71 65

Without any symbolic preprocessing an order of
262 can be achieved by using numerical order
reduction. Using various symbolic techniques on
single matrix elements followed by application
of numerical n-D order reduction, an LFT rep-
resentation of order 158 has been computed in
(Varga and Looye, 1999). The TD algorithm for
a polynomially factorized representation as pro-
posed in (Cockburn and Morton, 1997) yields
an LFT-model of order 156, which can be nu-
merically reduced to order 97. The ETD yields
an LFT-representation of order 131, which can
be exactly reduced to order 86. By employing
the combined VS and ETD approach in conjunc-
tion with the ”try-hard” option, we obtained an
LFT-representation of S(δ, δ−1) with order 71
and we were able to exactly reduce this LFT-
representation to order 65, which is very close
to the theoretical least order bound of 56. In
this specific case, the VS factorization has been
applied to the columns of S(δ, δ−1) using the
variable splitting δs1

= δs2
= {m,V } and δs3

=
δs4

= {xcg, zcg}. For each VS factorized column,
the ETD has been employed.

5. CONCLUDING REMARKS

We presented several symbolic manipulation tech-
niques which are potentially useful in obtaining
low order LFT-representations of parametric ma-
trices. Both ad-hoc as well as systematic meth-
ods have been discussed, and their capabilities
have been illustrated via simple examples. All pre-
sented methods have been implemented via user-
friendly interfaces in the newly developed Version
2 of the LFR-toolbox.

Low orders of the LFT-representations can also be
achieved by employing numerical order reduction
in a postprocessing phase. However, in contrast
to the numerically sensitive order reduction tech-
niques based on tolerance dependent rank deci-
sions, symbolic preprocessing can be applied with-
out any loss of accuracy (floating-point numbers
are represented exactly in rational form). There-
fore, symbolic preprocessing and numerical post-
processing can be seen as complementary tools
which can be efficiently used to obtain low or-
der LFT-realizations. The strength of this com-
bination approach in obtaining low order LFT-
realizations has been illustrated by applying these
techniques to a challenging aircraft uncertainty
modelling problem.
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