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Abstract: Although rational orthogonal bases can be used to model any L3[0, co[
system, they fail to capture the aperiodic multi-mode behaviour of fractional
systems in a limited number of terms. The classical definition of orthogonal
Laguerre, Kautz, and GOB functions has been extended for the use of fractional
derivatives. An appropriate diagram is thus proposed for simulation. Copyright
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1. INTRODUCTION AND MATHEMATICAL
BACKGROUND

1.1 Context and motivation

Recently, we proposed an interpolation of La-
guerre functions to fractional differentiation or-
ders which keeps them convergent when differen-
tiation orders are non-integer (Aoun et al., 2003b).
We then generalised the use of fractional orthogo-
nal bases to any number of poles: real or pair com-
plex conjugate. This interpolates the well-known
definition of the generalised orthogonal basis to
fractional derivatives called FraGOB (Malti et
al., 2004).

A major difficulty with fractional models, and
therefore fractional bases, is their time-domain
simulation. Often, the analytical solution of a
model’s output is not simple to compute. During
the last 20 years numerical algorithms have been
developed using either continuous or discrete-time
rational models approximating fractional systems:
(Oustaloup, 1995; Chen et al., 2003; Aoun et
al., 2003a). Here, after a reminder of the orthogo-

nalization procedure, we propose a new simulation
diagram for evaluating the output of fractional
bases.

1.2 Representation of fractional systems

Fractional mathematical models are based on frac-
tional differential equations:

y (1) + 0Dy () + - 4 b, Doy (1) =
aoDu (t) + a1 D u () + - - + am, D ™2 u (1)
(1)
where differentiation orders (1, ..., Bmg, o,
.., uy, are allowed to be non-integer positive
numbers. The concept of differentiation to an
arbitrary order (non-integer),

Afd\”

was defined in the 19*" century by Riemann and
Liouville. They extend differentiation by using not
only integer but also non-integer (real or complex)
orders. The v fractional order derivative of x(t)
is defined as being an integer derivative of order



m = |v]+1 (|.] stands for the floor operator) of
a non-integer integral of order 1 — (m —+) (Samko
et al., 1993):
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(2)

where ¢ > 0, v > 0.

A more concise algebraic tool can be used to
represent such fractional systems: the Laplace
transform. The Laplace transform of a 7 order
derivative (7 € Ry) of a signal x(t) relaxed at
t = 0 (i.e. all derivatives of z(t) equal 0 when
t < 0) is given by (Oldham and Spanier, 1974):

L{D%x(t)} =s"X (s)

This property permits the fractional differential
equation (1), provided all signals u(t) and y(t) are
relaxed at t = 0, in a transfer function form:

ma
> s
F(s) = —=2

==
1+ Z bjSBj
j=1
where (a;,b;) € C2, (a;,8;) € R%, Vi =
0,1,...,ma,Vj=1,2,....,mp.

(3)

Definition 1. A transfer function F'(s) is commen-
surate of order v iff it can be written as F(s) =
S(s7), where S = L is a rational function with 7'
and R, two coprime polynomials.

All differentiation orders are multiples of the com-
mensurate order, and lead to a rational transfer
function. Here, the commensurate order is left free
to vary in R . Taking as an example F'(s) defined
in (3), assuming that F(s) is commensurate of
order 7y, and using F(s) = S(s”), one can write:

ma am
S ams
_ T(S _ m=0
S(S) - R(S - mpg B (4)
14+ > bps
m=1

All powers of s in (4) are integers. A sufficient
condition for F(s) to be commensurate is that
all differentiation (or integration) orders belong
to the set of rational numbers Q. It covers a wide
range of fractional systems.

1.3 Stability condition

Matignon (1998, theorem 2.21 p.150) has estab-
lished the stability condition of any commensu-
rate explicit fractional model. However, here is a
revisited version of his theorem :

Theorem 2. A commensurate (of order ) transfer
function F(s) = S(s7) = L2 i BIBO stable iff

R(s7)
0<y<2 (5)
and for every s € C such that R(s) =0
jarg ()] > 75 (6)
U

1.4 Fractional transfer functions belonging to Ho(CT)

Contrary to rational systems, the stability condi-
tion does not guarantee that a fractional trans-
fer function belongs to H>(CT). The Hy norm
of fractional systems was extensively studied in
(Malti et al., 2003), where it was proven that a
fractional transfer function as defined in (3) be-
longs to Ho(CT) iff stability conditions (5) and (6)
are satisfied and the difference between numerator
and denominator degrees satisfy:

1

: 7)
Condition (7) will be necessary when choosing
fractional generating functions for the orthogonal
bases to be synthesised.

ﬂmB - OémA >

1.5 Scalar product, orthogonality and rational
orthogonal functions

The classical Laguerre, Kautz, and GOB functions
form a complete orthonormal basis in La[0, 0],
according to the usual definition of the scalar
product (Szego, 1975):

ww¢am=/uwwww=%m (8)

whose reciprocal in the frequency domain is ob-
tained by Plancherel’s theorem:

o0

/ L, (jw) Ly, (jw)dw = 6pm
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Any function f(t) € L2[0, o[, thus satisfying:

(@), £ )7 =|flly < oo (10)

can be written as a linear combination of these

1
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(Ln (8), Lim (3))

functions: -
F(s) =Y anLn(s) (11)
n=0

F(s) is the Laplace transform of f(t). Usually,
(11) is truncated to a given order N which is
justified by the fact that Fourier coefficients are
convergent as n tends to infinity. F'(s) is hence
approximated by the finite sum:

F(s) ~ Fn(s) =Y 0nLn (s) (12)
n=0



2. CONSTRUCTION OF ORTHONORMAL
BASES

2.1 Gram-Schmidt principle

Given an arbitrary set of functions {F,,}_,,
where F,,, € H*(C") V¥m, orthonormal functions
{Gm}M_| are obtained, according to the Gram-
Schmidt orthogonalisation principle, as a linear
combination of generating functions F,,, m =
1..M:

G=AxF (13)
where A is a real-value MxM matrix,
G =[Gi(s) Ga(s) -~ Gar1(s) Gar(s)]"
and
T

F = [Fl (8) F2 (8) FM_1 (8) FM (8)]
Since {G,,}M_, is the set of orthonormal func-
tions

<G, GT> —1 (14)

I denotes an M by M identity matrix. Thus, using
(13):

<G, GT> —A <FFT> AT =1  (15)
Then, it is easy to check that
ATA = <F,FT>71

From this quadratic form, A, a lower triangular
matrix, is computed using the Cholesky decom-
position.

A = Cholesky <<F FT>_1> (16)

Using (13), functions of the orthonormal set are
given by:

—1
G = Cholesky <<F FT> ) xF  (17)

The remaining difficulty is to compute the ma-
F,FT
transfer functions which are known to be multi-
value complex functions as soon as non-integer
differentiation is involved. Hence, a plane cut is
necessary in the complex s-plane. A procedure
for computing the scalar product of any fractional

explicit transfer function is described in (Aoun et
al., 2004; Malti et al., 2004).

trix of scalar products > for fractional

2.2 Fractional Generating functions

The construction of the orthogonal basis starts by
choosing a set of generating functions which must
not be colinear in the sense of the definition (9) of
the scalar product. Each generating function can
introduce either a real mode or a complex one. If
a generating function introduces a complex mode,

then the next generating function must introduce
its conjugate so that the impulse response remains
a real signal. Once these functions chosen, (17) is
applied so that the orthogonal G,, functions are
obtained.

2.2.1. Fractional Laguerre-like generating func-
tions If a real mode is to be included in the
first FraGOB, a generating function is chosen as:

1
Fry(s) = )™ (18)
where )
and
Amo €RY, 7 €]0,2] (20)

All other generating functions to be included with
real value modes are chosen as:

Fr(s) = Fin—1(s) (21)

(7 + Am)
where
Am €RYL, VmeN, ~ €]0,2[ (22)

Conditions announced in (20 and 22) stem from
stability theorem 2 and the fact that impulse
responses of (18 and 21) are real-value signals.

mzm()v

Condition (19) stems from the fact that each gen-
erating function must belong to H*(CT). Hence,
applying (7) for the generating function (18)

shows that:
1
VMo > 5 (23)

Keeping in mind that mg is integer yields (19).

It is interesting to note that, in the special case
where all the \,, modes are chosen to be alike,
the multiplicity of the A, mode is incremented
in (21) for every new function, in which case the
set of fractional Laguerre generating functions is
obtained as illustrated in (Aoun et al., 2003b).

2.2.2. Fractional Kautz-like generating functions
Suppose that (n + 1) Ay, ey Amo+n modes have
been included in Fy,,, Frng+1; -, Frng+n and now
we wish to include a complex mode Amgyn+1-
Then, a conjugate mode must follow (A, 4nt2 =
Amo+n+1) to obtain a real impulse response. Also,
both basis functions Fi,+n+1 and Fp, 1nt+2 are
replaced by two new basis functions F},, ., ., and
F} 1,1 which have real impulse responses and

m
which are a linear combination of —X— and
(s7+Xr)

ﬁ,whereT:quLnJrl.

The linear combination we are suggesting can be
expressed as:
1

=g | ma e

F,f' 06 c'l
(57 +A)"



where ¢, ¢1,¢), ¢} € C.

As Gram-Schmidt orthogonalisation procedure
follows, the only constraint while choosing co, ¢1, ¢
and ¢ is that both functions F, and F have real-
value impulse responses which gives the following
conditions:

co=7c¢r and = c;

Four more degrees of freedom are left while choos-
ing the real and imaginary parts of cg, c1, ¢} and
cy. Therefore, as a result any of the following
transfer functions can be chosen as generating
functions of the basis:

(Bs™ + )

Fl(s) = " _F._ 25
A W w s W w e
/ o !
Fl'(s) = Bsw) g, (26)
ST+ (A 4 A) 87+ A,
where
s
larg(A\e)l > v+, 7 €]0,2], (27)

2

and (B, p) # d(B',p'),Vd € C and (8, 11,3, 1) €
R*. Parameters (3, u,3',1’) can be chosen ar-

bitrarily with the following constraint (8, u) #
d(f',1),vd € Cie. F/(s) and F/(s) must not be
co-linear according to definition (9) of the scalar
product. One should, however, keep in mind that
an infinite pair of functions can span a plane.
Hence, two different choices of (8, u, 3, 1) may
lead to different pairs of orthogonal functions
F!(s) and F/(s).

When r = 1, the two first functions are :

/ _ (657 + ,LL) "o
Fils) = (527 + (M1 + A1) + /\1>\_1) @)

" 7 (6/57 + ,U/) "
Bs) = (SQV + (M + M) s + )\1)\_1> #9)

where mg is such that F{ and FY belong to
H?(C™T) and my is given by (19).

In the special case where all complex conjugate

modes (A, ) are chosen to be alike, the set of
fractional Kautz-like bases is synthesised.

Remark Completeness of the FraGOB is yet
to be proven. However, the completeness of the
fractional Laguerre basis is proved in (Malti et
al., 2004). Consequently, when conditions (22) are
satisfied and all the poles are chosen to be alike:

)\mo = )‘mo+1 = )\m0+2 =...= A, (30)

and mg = L%J + 1, the fractional Laguerre basis

is dense in H*(CT). Therefore, it can be used to
model any finite energy fractional system.

3. NUMERICAL SIMULATION OF
FRACTIONAL GENERALISED
ORTHONORMAL BASES

Since the filters of the fractional bases are irra-
tional transfer functions, some simulation meth-
ods are now introduced for this class of transfer
function.

3.1 Simulation of irrational transfer functions

Simulation of fractional systems is complicated
due to their long memory behavior as shown
by Oustaloup (1995). Many methods have been
developed (Lin, 2001; Aoun et al., 2003a; Chen
et al., 2003). They are mainly based on the ap-
proximation of a fractional model by either a ra-
tional discrete-time or a rational continuous-time
model. Here, we mention some methods based on
discrete-time models. The reader can find how-
ever a more detailed presentation in (Aoun et
al., 2003a).

In these methods, the fractional differentiator s”
is substituted by its discrete-time equivalent.

sT — ) (z_l) (31)
As a result, a discrete-time transfer function is
obtained:
Y(s)  bo+b1s7 +bas® + ...+ by, s"B7
U(s) ap+ais? +as? + ...+ a,,s"47’
(32)

Y ()
=T (33)
bt b () et b (6 ()
Tagtar) (27 4 an, (W (27
(34)

P (zil), the discrete mapping of the Laplace op-
erator s, can be computed using various approx-
imation methods. The most common are Euler’s,
Tustin’s, Simpson’s, or Al-Alaoui’s (Al-Alaoui,
1994; Vinagre et al., 2000; Oustaloup, 1995).
These analogue-to-digital open-loop design meth-
ods lead to irrational z-transforms which are then
approximated either by a truncated Taylor series
expansion or a continuous fraction expansion. The
obtained digital model can then be simulated us-
ing a classical implementation structure: direct,
parallel, cascade, lattice, ...

Euler:




Tustin:

o= () (55)
- (%)7 (1—2v2"'+29%(y - 1)z72 +...)
(36)

Simpson:

Ly (B[]
w(z )_(ﬂ) ( 1+4z71 4272 )
= <Tis>7 (1—dyz"'+29(4y+3)27% +..)
(37)

Al-Alaousi:

_ 8 \7[1—-z271 !
v (a7 = (W) <ﬁ>
S 1+ =
8 \” 8y _, —24y+3292 ,
_ _ 1— 21 el
<7Ts> ( 7 vt 20T

3.2 Simulation Diagram of FraGOB

Let F' be a dynamic system approximated using
a FraGOB :

> G (5) (38)

The time response of F' can be evaluated by simu-
lating directly the G,, filters. The main drawback
of this method is that each G,, is simulated sepa-
rately. Given the complexity of the G, expression,
specially when m increases, simulation is slow and
hard to achieve.

To avoid such problems, since G, orthonormal
filters are linear combinations of F;, generating
functions, and since each generating function F,,
is a product of F,,_1 by a fractional mode, one
can use simulation diagram (1). The coefficients
d;,; are elements of the matrix which stems from
the Cholesky decomposition (16).

4. EXAMPLE

Let v+ = 0.8 be the fractional order and all
eigenvalues of the basis (2, 2¢*7%, 1 and 0.5).

Since v = 0.8, the index of the first generating
basis is mo = | 5z55) + 1 = 1. Then, by applying
(18), F; is given by :

1
The second and the third functions include two
complexe conjugate modes. Then, F3 and Fj are

Fl(S) =

obtained with (28) and (29). In this example, we
fixed arbitrarily 8 = ¢’ =0and 8/ = p =1 so
that the two functions are not co-linear.

Fi(s)
B(s) = S om0 44
O.8F
Fy(s) = 5 1(s)

s16 10.5508 +4

The forth and the fifth generating functions intro-
duce respectively the two reals modes 1 and 0.5.
Fy and Fj5 are then given by (21).

Fs(s)
s0-8 41

SO'8F4(S)

Fi(s) = Z T4
4(s) 08 1 0.5

and F5(s) =

The scalar product matrix <F,FT> is computed
using the algorithm developed in (Aoun et al.,
2004; Malti et al., 2004):

341.53 19.58 43.57 12.40 5.20
19.58 6.32 2.11 2.78 2.12

(F,FT) = | 4358 2.11 12.27 3.28 0.16 | 107°.
12.40 2.78 3.28 2.19 0.78
520 212 0.16 0.78 1.01

(39)

The matrix A is then obtained according to (16):

1.71 0 0 0 0
0.79 —-1387 0 0 0
-1.61 091 1223 O 0
—1.16 21.10 13.94 —50.29 0
—0.03 —23.14 1.96 5.06 60.65

A —

(40)

The vectors of the orthonormal basis are com-
puted by applying formula (17).

1.71
Gl(S) = 780'8 )
Gols) = 0.79s'¢ 4+ 1.595%% — 10.69
22 = (s08 +2) (s1:6 + 0.5508 + 4)
Ga(s) = —1.61s16+9.01s°% — 5.54
38) = (9% + 2) (516 + 0.5505 + 4)
—1.165>* +10.455"¢ — 22.235°8 4+ 16.45
Ga(s) =

(595 + 1) (50 + 2) (510 + 0.5505 + 4)

Gs(s) =
—0.0353%2 +1.855%* — 15.37s16 4 29.245°8 — 11.63
(598 4 0.5)(50-8 4- 1) (898 4+ 2) (s1:6 + 0.559-8 4 4)

The diagram of figure (1) is used to simulate the
step response of the five orthonogonal functions
between 0 and T’y = 30s with the sampling period
T, = 0.1s. The Laplace variable is substituted
with Euler’s approximation (35). As the input
signal is null for negative time, the series in
(35) is truncated to the number of input samples
Lr — 300. The step responses of the orthogonal

Ts
functions are plotted on figure 2.
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Fig. 1. Simulation diagram of FraGOB
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Fig. 2. Step responses of G1, G2, G3, G4 and G5
5. CONCLUSION

A new simulation diagram of fractional systems
approximated on continuous-time FraGOB (Frac-
tional Generalised Orthogonal basis) is presented.
Numerical simulation of the elementary transfer
functions of the diagram uses classical approxi-
mations such as Euler, Tustin, Simpson, and Al-
Alaoui.
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