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Abstract: In this paper we consider switched systems composed of LTI non Hurwitz
dynamics and we deal with the problem of computing an appropriate switching law
such that the controlled system is globally asymptotically stable. We first present
a method to design a feedback control law that minimizes a linear quadratic
performance index when an infinite number of switches is allowed and at least
one dynamics is Hurwitz. Then, we show that this approach can be applied to
stabilize switched systems whose modes are all unstable, by simply applying the
proposed procedure to a “dummy” system, augmented with a stable dynamics.
If the system with unstable modes is globally exponentially stabilizable, then our
method is guaranteed to provide the feedback control law that minimizes the
chosen quadratic performance index, and that guarantees the closed loop system
to be globally asymptotically stable. Copyright c©2005 IFAC
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1. INTRODUCTION

In this paper we show how it is possible to de-
sign stabilizing laws for switched systems {Ai}i∈S ,
whose evolution is given by

ẋ(t) = Ai(t)x(t), i(t) ∈ S = {1, . . . , s}, (1)

where, ∀ i ∈ S dynamics Ai are non Hurwitz, by
extending an optimal control technique we have
developed for stable switched systems.

1.1 Motivation

In a series of papers (Giua et al., 2001; Bemporad
et al., 2002) we have considered the problem of
designing optimal feedback laws for systems of the
type {Ai}i∈S with a positive definite quadratic
cost. The technique we use requires that the num-
ber of allowed switches N is finite; thus the optimal
control problem is solvable (with a finite cost) if
and only if at least one of the system dynamics Ai
is Hurwitz. The approach requires the computation
of a set of tables, one for each switch. Whenever k
switches are still allowed and the current dynamics
is i(t) = i, we use table Ci

k to determine if a switch
should occur. Each table is partitioned in (up to)
s regions Rj ’s: as soon as the state reaches a point
in the region Rj for a certain j ∈ S \ {i} we will
switch to mode j; on the contrary, no switch will
occur while the system’s state belongs to Ri.

The first result we present in this paper consists in
allowing the number of switches to go to infinity.
We show that in this case if the optimal control is
solvable with a finite cost then ∀ i ∈ S the tables
converge to a single table C∞. The optimal control
problem with N = ∞ can be solved by using only
the table C∞.
Secondly, we observe that in the table C∞ it
may happen that the region Rj associated to
a given dynamics j never appears. In this case,
the optimal evolution for the system {Ai}i∈S and
for the system {Ai}i∈S\{j} are identical. This in
particular, may allow us to compute an optimal
control law for an unstable system introducing
a dummy stable dynamics Ā, provided that the
corresponding regions do not appear in C∞.
Finally, we use this approach exploiting an intu-
itive relation between stability and optimal control.
In (Giua et al., 2001) we have proved that under
very loose conditions if a switched system can be
optimally controlled with a finite cost, then the
closed loop system is asymptotically stable. We also
prove that if the switched system is exponentially
stabilizable, then our approach can always find an
optimal control law with a finite cost that makes
the closed loop system asymptotically stable.
We are aware of the small gap in our result: a
switched system may be asymptotically (but not
exponentially) stabilizable but if no finite-cost op-



timal control law exists, we cannot compute a sta-
bilizing law. Furthermore, our approach requires
a discretization of the state space, and for large
dimensional systems this may be computation-
ally burdensome. Nevertheless, the approach we
present is extremely general, and we believe that
the results we have obtained are significant. In fact,
although there is a rich literature on stability anal-
ysis of hybrid systems, there are very few results
on the design of stabilizing laws and they usually
apply to restricted classes of systems or give only
sufficient conditions.

1.2 Relevant literature

Many papers on the stability analysis of switched
systems are based on the use of multiple Lyapunov
functions (MLF’s) (Branicky, 1998; Liberzon and
Morse, 1999; Ye et al., 1998; Michel and Hu, 1999)
but in all these cases the proposed approaches
only give sufficient conditions for the asymptotic
stabilizability. Necessary and sufficient conditions
are given in (Feron, 1996; Wicks et al., 1998) in the
case of two switched systems when the performance
index under consideration is the quadratic stability
of the switched systems. Iterative algorithms for
constructing such common Lyapunov function can
be found in (Liberzon and Tempo, 2003).
Antsaklis et al. in (Hu et al., 1999; Xu and Antsak-
lis, 1999) using a geometric approach, were able
to obtain necessary and sufficient conditions for
asymptotic stabilizability of switched systems with
an arbitrarily large number of second-order LTI
unstable systems. When the switched system is
asymptotically stabilizable, they also provide an
approach to compute a stabilizing law.
The problem of stabilizing a switched system of
the form (1) with unstable dynamics Ai’s was
translated into the problem of solving a set of
quadratic inequalities. This is appealing, but it
turns to be a non convex problem (thus it only
provides sufficient conditions) when the number
of subsystems is greater than 2. Moreover many
proposed solutions lean on LMI or BMI methods,
which become computationally hard as the number
of modes grows (DeCarlo et al., 2000; Pettersson,
1999).
Recently, Ishii et al. in (2003) approached the prob-
lem of solving the quadratic inequalities by an iter-
ative algorithm (whose convergence is guaranteed
with a given probability), that exploits a gradient
descent method on energy and multi modal Lya-
punov functions.

2. PROBLEM FORMULATION

We briefly recall some basic definitions (Khalil,
2002). Consider the nonautonomous system

ẋ(t) = f(t, x) (2)

where f : [0,∞)×D → Rn is piecewise continuous
in t and locally Lipschitz in x on [0,∞) ×D, and
D ⊂ Rn is a domain that contains the origin x = 0.

Definition 1. The origin is an equilibrium point for
(2) if f(t, 0) = 0, ∀t ≥ 0. ¥

Definition 2. The equilibrium point x = 0 of (2) is
— stable if, ∀ ε > 0, there exists δ = δ(ε, t0) > 0
such that ||x(t0)|| < δ ⇒ ||x(t)|| < ε, ∀t ≥ t0 ≥ 0;
— unstable if it is not stable;

— asymptotically stable (AS) if it is stable and
there is a positive constant δ = δ(t0) such that
x(t) → 0 as t →∞, ∀ ||x(t0)|| < δ;
— exponentially stable (ES) if there exist posi-
tive constants δ, K, and λ such that ||x(t)|| ≤
K||x(t0)|| e−λ(t−t0), ∀ ||x(t0)|| < δ.
If asymptotic (or exponential) stability holds for
any initial state, the equilibrium point is said
globally asymptotically (or exp.) stable. ¥

Note that exponential stability implies asymptotic
stability, which in turn implies stability.
In this paper we consider the following class of
nonautonomous (hybrid) systems, commonly de-
noted as switched systems,

ẋ(t) = f(x, t) , Ai(t)x(t), i ∈ S (3)

where x(t) ∈ Rn, i(t) ∈ S is the current mode and
represents a control variable, and S , {1, · · · , s}
is a finite set of integers, each one associated with
a matrix Ai ∈ Rn×n. We assume a continuous
evolution of the state, i.e., when a switch occurs
at time τ , x(τ−) = x(τ+).

Definition 3. The switched system {Ai}i∈S is said
globally stabilizable if there exists a switching con-
trol law i(t) such that the controlled system is glob-
ally stable. Analogous definitions hold for global
asymptotic (or exponential) stabilizability. ¥

Note that if at least one dynamics Ai is Hurwitz,
then the system {Ai}i∈S is obviously globally ex-
ponentially stabilizable.
The main goal of this paper is that of computing an
appropriate switching law i(t), when it does exist,
such that the controlled system {Ai}i∈S is globally
asymptotically stable. In particular, we provide a
procedure that guarantees to determine a globally
asymptotically stable switching law whenever the
system is globally exponentially stabilizable.

3. THE OPTIMAL CONTROL PROBLEM
WITH A FINITE NUMBER OF SWITCHES

The proposed stabilizing procedure is based on
the solution of an optimal control problem of the
following form:

V ∗
N (x0, i0) , min

I,T
F (I, T ) ,

∫ ∞

0

x′(t)Qi(t)x(t)dt

s.t. ẋ(t) = Ai(t)x(t), x(0) = x0, i(0) = i0
i(t) = ik for τk ≤ t < τk+1, k = 0, . . . , N
τ0 = 0, τN+1 = +∞
ik ∈ S, k = 1, . . . , N
x(τ+

k ) = x(τ−k ), k = 1, . . . , N
(4)

where N , denoting the maximum number of al-
lowed switches, is finite and fixed a priori.
Let us observe that in the general optimiza-
tion problem (4) although the number of allowed
switches is N , it may possible to consider also solu-
tions where only m < N switches effectively occur:
this can be done choosing im = im+1 = · · · = iN .
The initial state x0 and location i0 are given.
The control variables are T , {τ1, . . . , τN} and
I , {i1, . . . , iN}, where T is the set of switching
times and I is the sequence of indices associated
with discrete locations.



In order to make the problem solvable with finite
cost V ∗

N , we assume the following:

Assumption 1. There exists at least one index i ∈
S such that Ai is strictly Hurwitz.

In (Bemporad et al., 2002) we showed that the
optimal control law for the optimization problem
(4) takes the form of a state-feedback, i.e., it is only
necessary to look at the current system state x in
order to determine if a switch from linear dynamics
Aik−1 to Aik

, should occur.
More precisely, for a given mode i ∈ S when
k switches are still available, it is possible to
construct a table Ci

k that partitions the state space
Rn into s regions Rj ’s, j = 1, · · · , s = |S|.
Whenever iN−k = i we use table Ci

k to determine if
a switch should occur: as soon as the state reaches
a point in the region Rj for a certain j ∈ S \ {i}
we will switch to mode iN−k+1 = j; no switch will
occur if the system’s state belongs to Ri.
To prove this result, in (Bemporad et al., 2002)
we showed constructively how the tables Ci

k can be
computed off-line using a dynamic programming
argument. We first shown how the tables Ci

1 (i ∈ S)
for the last switch can be determined. Then, we
shown by induction how the tables Ci

k can be
computed once the tables Ci

k−1 are known.
Note that regions Rj ’s are homogeneous regions,
namely if x ∈ Rj then λx ∈ Rj for all λ ∈ R.
This implies that they can be computed by simply
looking at the unitary semisphere.
To avoid repeating results already reported in
previous papers we do not describe here how tables
can be computed: the complete derivation can
be found in (Giua et al., 2001; Bemporad et al.,
2002). We only remind here that the computational
cost of the proposed approach is of the order
O(rn−1Ns2) where n is the dimension of the state
space and r is the number of samples in each
direction of the unitary semisphere. Therefore, the
complexity is a quadratic function of the number
of possible dynamics.
Let us finally observe that the idea of computing
a control law based on the off-line computation
of state space partitions has also been used by
other authors. In particular, in the continuous
time framework, Shaikh and Caines (Shaikh and
Caines, 2003) considered a finite horizon optimal
control problem for switched systems. They exploit
the maximum principle integrated with dynamic
programming arguments to construct an appropri-
ate state space partition called optimality zones.

4. THE OPTIMAL CONTROL PROBLEM
WITH AN INFINITE NUMBER OF SWITCHES

In this section we discuss how, under appropriate
assumptions, the above procedure can be extended
to the case of N = ∞. In particular, we consider
an optimal control problem of the form (4) where
(i) for at least one i ∈ S, Ai is stable;
(ii) for all i ∈ S, Qi > 0.
Let us preliminary state a monotonicity result.

Property 1. Let N, N ′ ∈ N. If N < N ′ and the
switched system evolves along an optimal trajec-
tory, then for any continuous initial state x0, and
for all i, j ∈ S, +∞ > V ∗

N (x0, i) ≥ V ∗
N ′(x0, j).

Proof: We first observe that by assumption (i)
V ∗

N (x0, i) is finite for any N ≥ 1. In fact, regardless
of the value of the initial dynamics i, we can always
switch to the stable dynamics whose cost to infinity
is finite. Now, we prove the second inequality by
contradiction. Assume that ∃ j ∈ S such that
V ∗

N ′(x0, j) > V ∗
N (x0, i). Then the same evolution

that generates V ∗
N (x0, i) is also admissible for (4)

when a larger value N ′ of switches is allowed. This
leads to a contradiction. ¤

Proposition 1. For any continuous initial state x0,
and ∀ ε′ > 0, ∃ N̄ = N̄(x0) such that for all
N > N̄ , V ∗

N (x0, i)− V ∗
N̄

(x0, j) < ε′, ∀i, j ∈ S.
Proof: By definition V ∗

N (x0, i) ≥ 0 for all i ∈ S,
hence V ∗

N is a lower bounded non-increasing (by
Property 1) sequence. By the Axiom of Complete-
ness it converges in R, hence it is a Cauchy se-
quence. ¤

Proposition 2. For any continuous initial state x0,
x0 6= 0, and ∀ ε > 0, ∃ N̄ such that for all N > N̄ ,

V ∗
N (x0, i)− V ∗

N̄
(x0, j)

V ∗
N (x0, i)

< ε, ∀i, j ∈ S.

Proof: We first observe that by assumption (ii)
V ∗

N (x0, i) is lower bounded by a strictly positive
number. Moreover, the optimal costs are quadratic
functions of x0, i.e., if x0 = λy0, then V ∗

N (λy0, i) =
λ2V ∗

N (y0, i) . Finally, by Proposition 1 ∀ y0 and
∀ ε′ > 0, ∃ N̄(y0) such that ∀ N > N̄(y0),
V ∗

N (y0, i)− V ∗
N̄

(y0, j) < ε′. Hence if we define

N̄ = max
y0 : ||y0||=1

N̄(y0) ⇒

V ∗
N (x0, i)− V ∗

N̄
(x0, j)

V ∗
N (x0, i)

=
λ2[V ∗

N (y0, i)− V ∗
N̄

(y0, j)]
λ2V ∗

N (y0, i)

≤ ε′

min
y0 :||y0||=1

V ∗
N (y0, i)

= ε.

¤
According to the above result, one may use a given
fixed relative tolerance ε to approximate two cost
values, i.e.,
V ∗

N (x, i)− V ∗
N ′ (x, j)

V ∗
N (x, i)

< ε =⇒ V ∗
N (x, i) ∼= V ∗

N ′ (x, j).

We can now prove the main result of this section.

Theorem 1. Given a fixed relative tolerance ε, if N̄
is chosen as in Proposition 2 then for all N > N̄ +1
it holds that Ci

N = Ci
N̄+1

.
Proof: By definition (see (Bemporad et al., 2002))

V ∗
N (x0, i) = min

j∈S
min
%≥0

{
x′0Q̄i(%)x0 + V ∗

N−1(x(%), j)
}

where x(%) = eAi%x0 and Q̄i(%) =
∫ %

0

eA′itQie
Aitdt.

Now, being by assumption N − 1 > N̄ , by virtue
of Proposition 2 we may approximate

V ∗
N−1(x(%), j) ∼= V ∗̄

N (x(%), j) ⇒
V ∗

N (x0, i) ∼= min
j∈S

min
%≥0

{
x′0Q̄i(%)x0 + V ∗̄

N (x(%), j)
}

= V ∗̄
N+1(x0, i).



Therefore, the optimal arguments (%∗, j∗) used to
compute Ci

N and Ci
N̄+1

are the same. ¤

The above result allows one to compute with a
finite procedure the optimal tables for a switching
law when N goes to infinity. In such a case, in fact,
it holds that ∀i ∈ S, Ci

∞ = limN→∞ Ci
N = Ci

N̄+1
.

Theorem 2. Given a fixed relative tolerance ε, if N̄
is chosen as in Proposition 2 then for all i, j ∈ S it
holds that Ci

N̄+1
= Cj

N̄+1
.

Proof: It trivially follows from the fact that, by
Proposition 2, V ∗̄

N+1
(x0, i) = V ∗̄

N+1
(x0, j) for all

i, j ∈ S, and from the uniqueness of the optimal
tables as discussed in Section 3. ¤
This result also allows one to conclude that for all
i ∈ S C∞ = limN→∞ Ci

N , i.e., all tables converge to
the same one.
To construct the table C∞ the value of N̄ is needed.
We do not provide so far any analytical way to
compute N̄ : our approach consists in constructing
tables until a convergence criterion is met.
Table C∞ can be used to compute the optimal
feedback control law that solves an optimal control
problem of the form (4) with N = ∞. More
precisely, when an infinite number of switches is
available, we only need to keep track of the table
C∞. We associate a different color to each region
Ri ∈ C∞. If the current continuous state is x
and the current mode is Ai, on the basis of the
knowledge of the color of C∞ in x, we decide if it is
better to still evolve with the current dynamics i or
switch to a different dynamics, that is univocally
determined by the color of the table in x.

Remark 1. Note that the table C∞ is Zeno-free,
i.e., it guarantees that no Zeno instability may
occur when it is used to compute the optimal
feedback control law. This property is guaranteed
by the procedure used for their construction. ¥

5. STABILIZABILITY OF UNSTABLE
SWITCHED SYSTEMS

In this section we deal with the problem of sta-
bilizing a switched system {Ai}i∈S whose linear
dynamics Ai are not stable. In particular, we show
that a solution to this problem — when it does
exist — can be obtained by solving an optimal
control problem of the form (4) with N = ∞.
More precisely, we show how this problem can be
solved by applying the switching table procedure to
a “dummy” problem that satifies the assumption
that at least one dynamics Ai is asymptotically
stable. When the original switched system is sta-
bilizable, we select among all stabilizing laws a
switching law that minimizes a given quadratic
performance index.
We first present the following preliminary result.
Proposition 3. Let us consider an optimal control
problem (OP) of the form (4) with N = ∞, and
whose possible modes are Ai, i ∈ S, and the
corresponding weighting matrices are Qi, i ∈ S.
If the table C∞ only contain colors associated to
a subset of indices S ′ ⊂ S, then ∀i0 ∈ S and
∀x0 ∈ Rn, the optimal control law that results by
solving (OP) is also optimal for the optimal control
problem (OP’) of the same form (4) with N = ∞,

and whose possible modes are Ai, i ∈ S ′ and the
corresponding weighting matrices are Qi, i ∈ S ′.
Proof: The validity of the statement follows from
the definition of the table C∞ and the possibility of
using it to derive an optimal feedback control law
for (OP). Thus, if a color corresponding to a certain
mode Aj does not appear in C∞, this means that
it is never convenient to switch to mode Aj , or to
evolve with Aj if it is the initial mode, regardless
of the current continuous state. ¤
The above result enables us to use the switching
table procedure to compute a stabilizing switching
law, if it does exist, for switched systems whose
dynamics are unstable. In particular, the proposed
approach is based on the construction of an aug-
mented optimal control problem, defined as follows.

Definition 4. Let us consider an optimal control
problem of the form (4) with N = ∞. Assume that
all possible modes Ai, i ∈ S, are not stable and
the corresponding weighting matrices Qi, i ∈ S,
are strictly positive definite.
Let Ā ∈ Rn×n be any matrix that is strictly
Hurwitz and Q̄ ∈ Rn×n be any strictly positive
definite matrix. Let As+1 = Ā and Qs+1 = q · Q̄
where q ∈ R+.
We define augmented optimal control problem an
optimal control problem of the form (4) with N =
∞, and whose possible modes are Ai, i ∈ S̄, with
S̄ = S ∪ {s + 1}, and the corresponding weighting
matrices are Qi, i ∈ S̄. ¥

Proposition 4. Let us consider an optimal control
problem (OP) of the form (4) with N = ∞. As-
sume that all possible modes Ai, i ∈ S, are not sta-
ble and the corresponding weighting matrices Qi,
i ∈ S, are strictly positive definite. Let V ∗

∞(x0, i0)
be the optimal value of the cost of (OP) when the
initial state is (x0, i0).
Let us consider an augmented optimal control
problem (OP) with As+1 = Ā and Qs+1 = q · Q̄
where q ∈ R+. Let V

∗
∞(x0, i0, q) be the optimal

value of the cost of (OP) when the initial state is
(x0, i0).
The optimal cost V

∗
∞(x0, i0, q) is a strictly increas-

ing function of q for all values of q such that the
stable dynamics As+1 appears in the optimal evo-
lution of the augmented optimal control problem.
Proof: We prove this by contradiction. Let us
consider two different augmented optimal control
problems (OP’) and (OP”) that differ for their
value of q. In particular, let q′ and q′′ be the
values of the coefficient q associated to (OP’) and
(OP” ) respectively, and let q′ > q′′. Assume that
V
∗
∞(x0, i0, q

′) = V
∗
∞(x0, i0, q

′′). If we consider the
evolution that is optimal for (OP’) and evaluate
the cost using the the weights of (OP”), we find
out that the resulting value of the cost is less
than V

∗
∞(x0, i0, q

′′), that leads to a contradiction
because by definition V

∗
∞(x0, i0, q

′′) is the optimal
value of the cost when q = q′′. ¤
Now, we prove the main result of this paper that
enables us to conclude that, if a switched system
{Ai}i∈S with unstable dynamics is stabilizable, if
we associate an optimal control problem to the
switched system, and then we define an augmented



optimal control problem, a stabilizing switching
law can always be computed using the switching
table procedure. The main feature of the com-
puted switching law is that it minimizes the chosen
quadratic performance index.

Theorem 3. Given a switched system {Ai}i∈S , let
us consider an optimal control problem of the form
(4) with N = ∞ and weighting matrices Qi > 0,
i ∈ S. Then, let us define an augmented optimal
control problem with Hurwitz dynamics As+1 = Ā
and corresponding weighting matrix Qs+1 = q̄ · Q̄,
where Q̄ > 0 and q̄ ∈ R+. Let S̄ = S ∪ {s + 1}.
(i) The switched system {Ai}i∈S is globally ex-
ponentially stabilizable =⇒ ∃ q̄ ∈ R+ such that
the table C∞, computed by solving the augmented
optimal control problem, does not contain the color
associated to Ā.
(ii) The switched system {Ai}i∈S is asymptotically
stabilizable ⇐= ∃ q̄ ∈ R+ such that the table C∞,
computed by solving the augmented optimal con-
trol problem, does not contain the color associated
to Ā.
Proof: We denote V ∗

∞(x0, i0) the optimal cost
of the optimal control problem for the system
{Ai}i∈S when the initial state is (x0, i0), and
V
∗
∞(x0, i0, q) the corresponding optimal cost of the

optimal control problem for the system {Ai}i∈S̄ .
The cost V

∗
∞(x0, i0, q) is obviously finite for all

finite values of q because of the assumption
that Ā is stable. Moreover, it is upper lim-
ited by the value of V ∗

∞(x0, i0), i.e., ∀q ∈ R+,
V
∗
∞(x0, i0, q) ≤ V ∗

∞(x0, i0). Finally, V
∗
∞(x0, i0, q)

is a quadratic function of x0, i.e., if x0 = λy0 then
V
∗
∞(λy0, i0, q) = λ2V

∗
∞(y0, i0, q).

(i) Assume that the switched system {Ai}∈S , is
globally exponentially stabilizable.
This implies that V ∗

∞(x0, i0) < +∞, for all x0 ∈
Rn and for all i0 ∈ S. In fact, any control law
that is exponentially stable implies that along any
trajectory it holds∫ ∞

0

x′(t)Qi(t)x(t)dt =
∫ ∞

0

y′(t)Qi(t)y(t) ||x(t)||2dt

≤ K

∫ ∞

0

||x(t)||2dt ≤ Kc2||x0||2
∫ ∞

0

e−2λtdt < +∞,

where we have written x(t) = y(t) ||x(t)|| with
||y(t)|| = 1, K = max

i∈S,||y||=1
y′Qiy, c, λ ∈ R+.

By Proposition 4 we know that V
∗
∞(x0, i0, q) is an

increasing function of q for all values of q such that
As+1 appears in the optimal evolution. Therefore,
we may conclude that if {Ai}i∈S is globally expo-
nentially stabilizable then ∃ q′(x0, i0) ∈ R+ such
that V

∗
∞(x0, i0, q

′(x0, i0)) = V ∗
∞(x0, i0). Moreover,

if the equality holds for a certain value of q =
q′(x0, i0), then it also holds for all q > q′(x0, i0).
In fact, the above equality implies that the opti-
mal control law of the augmented optimal control
problem requires no evolution with the stable mode
As+1. If this is the case when its weighting matrix
is Qs+1 = q′ · Q̄, all the more reason this is the
case when its weighting matrix is Qs+1 = q · Q̄
with q > q′(x0, i0).
Now, the result holds if we let
q̄ = max

i0∈S, x0∈Rn
q′(x0, i0) = max

i0∈S, ||y0||=1

q′(y0, i0),

where the second equality follows from the fact
that V

∗
∞(x0, i0, q) is a quadratic function of x0.

If we define the augmented optimal control prob-
lem with Qs+1 = q̄ · Q̄, then for all values
of x0 ∈ Rn and all i0 ∈ S, it holds that
V
∗
∞(x0, i0, q̄) = V ∗

∞(x0, i0), i.e., the controlled
system never switches to dynamics As+1, neither
evolves with As+1 if it is the initial mode. This
obviously implies that the table C∞, computed
applying the switching table procedure to the aug-
mented optimal control problem with Qs+1 = q̄ ·Q̄,
does not contain the color associated to the stable
mode As+1 = Ā.
(ii) Assume that ∃ q̄ such that the switching table
C∞, computed applying the switching table pro-
cedure to the augmented optimal control problem
with Qs+1 = q̄ · Q̄, does not contain the color
associated to the stable mode As+1 = Ā.
By Proposition 3 this implies that the control law
that results using table C∞ is also optimal for the
optimal control problem with unstable modes Ai’s
and weighting matrices Qi’s, with i ∈ S. Therefore,
being V

∗
∞(x0, i0, q̄) < +∞, and V ∗

∞(x0, i0) =
V
∗
∞(x0, i0, q̄) for all x0 ∈ Rn and all i0 ∈ S, it

follows that V ∗
∞(x0, i0) < +∞.

It is not difficult to show, with the same argument
we used in (Giua et al., 2001), that the finite
value of the optimal cost for all initial states
and dynamics implies that the switched system
{Ai}i∈S is globally asymptotically stabilizable. ¤
The above theorem provides a systematic way to
deal with the problem of determining an asymp-
totic stabilizing switching law for a switched sys-
tem {Ai}i∈S with linear unstable modes, that can
be summarized in the following steps.
— We associate to the switched system that we
want to stabilize an optimal control problem of the
form (4) with N = ∞.
— We define an augmented optimal control prob-
lem with a Hurwitz matrix As+1 = Ā and weight-
ing matrix Qs+1 = q · Q̄, where Q̄ is any definite
positive matrix and q is a very large positive real
number.
— We construct the switching table C∞ solving the
augmented optimal control problem.
— If this table does not contain the color associ-
ated to the stable mode As+1, by Theorem 3, item
(ii), we may conclude that the switched system
{Ai}i∈S is globally asymptotically stabilizable. In
such a case, we compute the stabilizing feedback
control law that minimizes the chosen quadratic
performance index using table C∞.
Note, finally, that the procedure may also find
control laws that locally stabilize a system, as
shown in Example 2 in the next session.
We do not provide an a priori rule to establish if
the switched system is stabilizable and in such a
case, an analytical way to compute an appropriate
value of q. Nevertheless in all numerical examples
taken from the literature, we found out that if the
system is stabilizable if was sufficient to use a large
value of q (1010÷1020) to compute stabilizing laws.

6. A NUMERICAL EXAMPLE

As an example of the described approach we
choose a variant of a very well-known switched
system (Branicky, 1998) {Ai}i∈S , with s = 3 and
A1 = [1−10; 100 1], A2 = [39.97−77.5; 32.5 37.97],
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Fig. 1. The optimal trajectory of the switched sys-
tem {Ai}i∈{1,2,3} of the Example in Section 6.

A3 = [−37.97 − 77.50; 32.50 39.97]. Note that
dynamics A2 and A3 are obtained from dynamics
A1 by an axis rotation of 120 and 240 degrees
respectively. All dynamics Ai’s are unstable.
To determine a stabilizing switching law we first
associate to the switched system {Ai}i∈S an opti-
mal control problem of the form (4) with N = ∞.
In particular, we take Qi = I2, i = 1, 2, 3, where I2
denotes the second order identity matrix.
We define an augmented optimal control problem
with the stable dynamics A4 = −A1 and weighting
matrix Q4 = q̄ · Q̄, where q̄ = 105 and Q̄ = I2.
We construct the table C∞. More precisely, we
apply the procedure to construct the tables Ci

N
for finite values of N and we find out that, for a
sufficiently large value of N , namely N = 15, the
tables converge to the same one. The table C∞ is
reported in Figure 1.
We can immediately observe that the color asso-
ciated to the stable dynamics A4 never appears.
This means that, regardless of the initial state,
the optimal trajectory of the augmented optimal
control problem is obtained by infinitely switching
among unstable dynamics Ai, i = 1, 2, 3.
This allows one to conclude that the switched
system {Ai}i∈{1,2,3} is globally asymptotically sta-
bilizable. Moreover, the table C∞ can be used to
compute the stabilizing feedback control law that
minimizes the chosen quadratic performance index.
An example of an optimal trajectory is reported
in Figure 1 when the initial state is x0 =
[−1 1]T /

√
2, i0 = 1. The optimal switching

times T ∗, the optimal switching sequence I∗ and
the optimal cost V ∗

∞(x0, i0) are: T ∗ = 10−2 ·
{0.48, 3.84, 3.78, 3.42, 3.72, 3.48, 3.18, . . .}, I∗ = {1,
3, 2, 1, 3, 2, 1, . . .}, and V ∗

∞(x0, i0) = 0.0208. Note
that the system, because of the homogeneous re-
gions, presents a periodic behaviour.

7. CONCLUSIONS

Based on our previous results on the optimal con-
trol of switched systems with a finite number of ad-
missible switches and at least one Hurwitz dynam-
ics, we first showed that a feedback control law that
minimizes a given quadratic cost can also be com-
puted when the number of allowed switches goes to
infinity. Then, we showed that this approach can
also be efficiently applied when all LTI dynamics
are not stable, by simply solving an appropriate
optimal control law, called the augmented optimal
control problem that contains a Hurwitz dynamics.

In particular, we showed that if the switched sys-
tem with unstable modes is globally exponentially
stabilizable, then an optimal feedback control law
can be computed, that guarantees the closed-loop
system to be globally asymptotically stable.
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