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Abstract: Notions of passivity for a class of switched control systems (SCS) are
developed first in this article. We then study the following problems: 1) When is an
SCS passive? 2) Does passivity imply Lyapunov stability as in the classical passive
systems? 3) How to use passivity as a tool to design controllers to stabilize an SCS?
For Problem 1), we derive sufficient conditions for passivity. For problem 2), we
show that passivity does imply Lyapunov stability when v = 0, and the stability
result obtained from positive semidefinite storage functions is new in switching
systems. For the last problem, we first show that by designing the control law
properly other than u = 0, stronger stability results can be obtained for a passive
SCS. Then, based on this, we solve the stabilization problem of an SCS by making
it passive first and then designing the control law for the passified SCS. Examples

and simulations are given to support our results. Copyright @ 2005 IFAC

Keywords: Passivity, switched control system, Lyapunov stability

1. INTRODUCTION

Passivity (Willems, 1972; Sepulchre et al., 1997),
besides its physical and intuitive appeal, is a
powerful tool for stabilization. The relation be-
tween passivity and stability is well established for
non-switched systems. Chapter 2 of (Sepulchre et
al., 1997) provides a good overview. More recently,
passivity is used as a tool for nonlinear feedback
design (Kokotovic and Sussman, 1989; Byrnes et
al., 1991; Lin, 1996).

For switched control systems, at present, there
are very few results available that deal with the
subject in hybrid systems (Haddad et al., 2001),
(Pogromsky et al., 1998), and (Zefran et al., 2001).
Up to now, there remains lack of a systematic
study on the following problems:
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(1) How to define passivity suitably for an SCS
and when is an SCS passive?

(2) Does passivity imply Lyapunov stability as
in the classical passive systems?

(3) How to use passivity as a tool to design
controllers to stabilize an SCS?

In this paper, we will present a systematic study of
the above problems for a class of switched control
systems. The rest of paper is arranged as follows:
in Section 2, we introduce the model of SCSs. In
Section 3, we give notions of passivity for an SCS
in the beginning, which are natural extension of
notions for classical systems. We then derive some
sufficient conditions to check the passivity of an
SCS. In Section 4, it is first shown that under
some conditions, passivity does imply Lyapunov
stability, which extends the results from classical
systems to switched control systems. In Section
5, we first show that by taking advantage of



controller design, stronger stability results can be
obtained for passive systems, then we show how
to use passivity as a tool to stabilize an SCS. In
Section 6, some examples and simulation results
are given, and finally certain concluding remarks
are made in the last section.

2. SWITCHED CONTROL SYSTEMS

We consider a class of switched control systems
(SCS) with M subsystems described as

T = fo(t)(‘r) + ga(t)(x)u r€eR"
Y= h’o’(t) (l‘) u,y € R™ (1)

where z,u, and y are the system state, input,
and output respectively. f;(z), g;(x) and h;(z),i €
S ={1,2,---,M} are functions from R™ to R",
from R"™ to R™ and R"™ to R™ with f;(0) = 0
and h;(0) = 0. Finally o(t) : [0,00) — S is a spe-
cific switching rule, which is a piecewise constant
function of time and/or state. The corresponding
system for o(t) =i € S is called the i—th sub-
system. In such a case, we also say that the :—th
subsystem is “active”.
Assumptions
A1l- For all i, f;(x) and g;(x) is locally Lipschitz
continuous in = and wu(t) is a measurable func-
tion of t.

A2— The state does not jump at the switching
instants.

When each subsystem is linear, we obtain a
switched linear control system(SLCS)

reR"”
u,y € R™  (2)

T = Aa(t).’L' + Bg(t)’u,
y=Co)x

3. PASSIVITY OF SCSS

In this section, we will first introduce two passivity
concepts for SCSs which are natural extensions
of notions for classical systems. We then derive
sufficient conditions to check the passivity of an
SCS.

3.1 Notions of passivity for SCSs

We assume that for every u € U, where U is the
set of admissible inputs and for any z° € R" the
output y(4(t, 2%, u)) satisfies f:ﬂl |luTy||dt < oo for
all t > 0. Let X be a connected subset of R™ with
0e X.

Definition 1. (Passivity) For system (1) with a
specific switching rule o(¢), it is said to be pas-
sive in (0,00) x R™ if there exists a nonnegative

function S(o(t),z) with S(o(t),0) = 0 for any
t, such that for all w € U, 2° € X and for all
t1 <ty € (0, OO)

2}

S(o(t2), x(t2)) = S(o(t1), (t1)) < /uTydt (3)

t1

where z(t) = ¢(t,2%u) € R"™ for all ¢ is the
solution and S(o(t), z) is called storage function.

Definition 2. (Strong Passivity) For system (1), it
is said to be strongly passive in (0,00) x R™ if it
is passive in (0,00) x R™ for arbitrary switching
rule o(t).

3.2 Conditions for passivity

We now give sufficient conditions for an SCS to
be passive.

Theorem 1. For an SCS (1) which satisfies As-
sumptions A1-A2, if all the subsystems are pas-
sive in (0,00) x R™ and have a common storage

function defined in X, then it is strongly passive
in (0,00) x R™.

By using the above theorem and the result in (Hill
and Moylan, 1976), we can derive the following
result.

Corollary 3. For an SCS given by (1) satisfying
Assumptions A1-A2, if there exists a positive
semidefinite function S(x) defined on R™ such
that for alli =1,2,---, M

Ly S(x) <0
Ly, S(x) = i (z) (4)

Then the SCS is strongly and globally passive with
a storage function S(x).

This corollary gives a way to construct the com-
mon storage function. It requires to solve a group
of partial equations and inequalities, which is gen-
erally very difficult. However, for SLCSs, the con-
struction a common storage function is reduced to
find a matrix solution of matrix inequalities and
equalities.

Corollary 4. For an SLCS given by (2) satisfying
Assumptions A1-A2, if there exists a positive
definite matrix P such that

PA;+ATP <0
Bf'pP=C;i=1,2,--- M (5)

Then the SLCS is strongly passive with a storage
function S(z) = 2T Pu.



Remark 1. The passivity of feedback interconnec-
tion of two passive SCSs can be shown using the
techniques in (Sepulchre et al., 1997). We do not
present the results here because it is obvious.

4. THE RELATION BETWEEN PASSIVITY
AND LYAPUNOV STABILITY

For classical systems, the relation between pas-
sivity and Lyapunov stability is well established,
see (Sepulchre et al., 1997; Byrnes et al., 1991).
However, for an SCS and the passivity definition
we have, we do not known whether similar relation
can be proved. We show an passive SCS’s with
a positive definite storage function is Lyapunov
stable when the input is u = 0 in Subsection 4.1.
Then, in Subsection 4.2, a passive SCS with pos-
itive semidefinite storage functions is also proved
to be Lyapunov stable under some conditions
when the input is « = 0. The following definitions
are needed.

0 is said

Definition 5. S(o(t),x) with S(o(t),0) =
> 0 for any

to be positive definite if S(o(t),x)
t >0 and any = # 0.

Definition 6. S(o(t),x) with S(o(t),0) = 0 is said
to be radially unbounded if the boundness of
S(o(t),x) implies the boundness of x.

Definition 7. S(o(t),x) with S(o(t),0) = 0 is said
to be positive semidefinite if S(o(t),z) > 0 for any
t > 0 and any x # 0.

4.1 A Passive SCS With Positive Definite Storage
Function

For a passive SCS with positive definite storage
function, we state the following result.

Theorem 2. For an SCS given by (1), assume that
its storage function S(o(t),x) is positive definite
and with respect to x, then the solution z = 0
of the SCS is Lyapunov stable when v = 0. If
in addition S(o(t), ) is also radially unbounded,
then it is globally stable when v = 0.

Proof: From the definition of passivity, it is easy to
see that along the system trajectory z(t), we have
S(o(t),z(t)) is decreasing when u = 0. With this
in hand, the Lyapunov stability can be proved by
using the techniques in (Sepulchre et al., 1997).
When u = 0, it follows from the passivity that
along each the system trajectory x(t), S(o(t), z(t))
is bounded. Since S(o(t),z(t)) is radially un-
bounded, the solution z(t) is bounded. This
proves the global stability of the solution z = 0
when u = 0. §

The following is an immediate consequence of the
above theorem.

Corollary 8. For an SLCS given by (2) satisfying
assumptions A1-A2, if it is passive with a storage
function S(z) = 2T Pz, where P is a positive
definite matrix, then, the solution z = 0 of the
SLCS is globally stable.

4.2 A Passive SCS With Positive Semidefinite
Storage Function

In this subsection, we will establish the rela-
tion between passivity of an SCS with a positive
semidefinite storage function and Lyapunov sta-
bility. The motivation for this is that passivity of a
classical system with positive semidefinite storage
function is proved to imply Lyapunov stability
under certain conditions. We want to see whether
this is still true for switching systems.

To carry out our study, the notion of condi-
tional stability is needed, which can be found in
(Sepulchre et al., 1997). Also, we need the follow-
ing definition.

Definition 9. (Zero-state detectability and ob-
servability). Consider an SCS given by (1) with
u = 0, that is & = f,;)(2), ¥y = how(x), let
Z C R™ be the largest positively invariant set
contained in ﬂf‘il{x € Ry = h;(x) = 0}. We
say that the SCS is zero-state detectable (ZSD)
if z = 0 is asymptotically stable conditionally to
Z. If Z={0}, we say that the system is zero-state
observable (ZSO).

Because an SCS given by (1) is only defined on
[0,00), to prove our result we need to define the
following system starting at ¢ = 0 with initial
condition xg evolving backward in time.

&= for)(®) + go)(x)u z e R"
Y= how)(x) u,y € R™, t <0 (6)

where the switching rule o(t) for ¢ < 0 is defined
the same way as o(t) for t > 0. For example, if o(t)
only depends on ¢, then we define o(t) = o(—t)
for all t < 0. If o(t) = o(x(t)) for t > 0, then we
define o(t) = o(x(—t1)) if z(t) = x(—t1), where
t,t1 <O.

By using the techniques in the proof of Theorem
2.24 in (Sepulchre et al., 1997), we can prove the
following theorem.

Theorem §. Consider an SCS given by (1) satisfy-
ing A1-A2 with v = 0 and let S(o(¢),z) be a pos-
itive semidefinite and continuous with respect to
x with S(o(t),0) = 0. Assume that along any tra-
jectory z(t) we have S(o(t),z) is decreasing. Let



Z be the largest positively invariant set contained
in {z|S(c(t),z) = 0}. If x = 0 is asymptotically
stable conditionally to Z, then the solution x = 0
of the SCS with u = 0 is stable.

Remark 2. The above result is inspired by Theo-
rem 2.24 in (Sepulchre et al., 1997). We extended
the result from classical nonlinear systems to a
class of SCSs under weaker conditions. In Theo-
rem 2.24 of (Sepulchre et al., 1997), the function
S(x) is required to be C', S(z) < 0. In our
theorem, S(o(t),z) is only required to be con-
tinuous with respect to x, and decreasing along
all trajectories. Due to these weaker requirements,
our result in the above can be used to analyze the
stability of a class of passive SCSs with positive
semidefinite storage functions.

By applying Theorem 3, the following result is
obtained.

Theorem 4. Consider an SCS given by (1) satis-
fying A1-A2. Assume that it is passive and the
storage function S(o(t),x) is continuous with re-
spect to x and only positive semidefinite. If the
SCS is ZSD and {z|S(o(t),z) = 0} ¢ NM, {z €
R™|y = h;(x) = 0}, then the solution z = 0 of the
SCS with u = 0 is stable.

Proof: Since the SCS is passive, then S(o(t), z(t))
is decreasing along all trajectories when u = 0. Let
Z be the largest positively invariant set contained
in {x|S(o(t),z) = 0}. Because the SCS is ZSD
and {z|S(o(t),2) = 0} € N {z € Ry =
hi(z) = 0}, then the solution x = 0 of the SCS
with u = 0 is asymptotically stable conditionally
to Z. Now, because all the conditions in Theorem
3 are satisfied, it follows from Theorem 3 that this
theorem is true. §

Remark 3. The above stability result is new in
switching systems. Although Theorem 2.6 in
(Leonessa et al., 2000) could be applied to analyze
the stability of switched systems, it requires a
semipositive definite Lyapunov S(o(t),z) — oo
as ||z]] — oco. We do not need this requirement.

5. PASSIVITY BASED STABILIZATION
CONTROLLER DESIGN

In this section, we will show that stronger stabi-
lization results can be achieved by taking advan-
tage of passivity based controller design.

For an SCS with a positive definite storage func-
tion, we have the following result.

Theorem 5. For a passive SCS given by (1) satis-
fying A1-A2; assume that it is ZSD and its storage

function S(o(t),x) = S(z) is positive definite
and continuous with S(0) = 0. Let ¢(y) be a
continuous vector function such that ¢(0) = 0 and
yTé(y) > 0 for each nonzero y. If the control law
is chosen as

u=—(y) (7)

Then the solution x = 0 of the closed loop
SCS is asymptotically stable. If, in addition, S(x)
is also radially unbounded, then it is globally
asymptotically stable.

Proof: To prove the solution z = 0 of the closed
loop SCS is asymptotically stable, we need to
show it is both stable and attractive. The stability
has been proved already in last section, what we
need to do is to prove the solution x = 0 is
attractive.

Because the solution x = 0 is stable, for a small
€p > 0, there exists a positive constant g > 0
such that all solutions z(t, zy) are bounded for z
satisfying ||zo|| < do.

For ||zo|| < do, let x(t,zo) be the corresponding
solution. If we let sjm: denote its w-limit set.
Now, we prove that sy, for z(¢, xg) with ||| <
dp is nonempty, compact and invariant. If ||zo| <
o, then x(t,zg) is bounded. It follows that sj;m:
is nonempty and bounded. From the definition of
Stimit, We can easily show that it is also closed,
which together with its boundness proves that
it is compact. Under the assumptions A1-A2, we
can conclude that there exists a unique solution
for each initial condition and the solution has
the continuity property with respect to initial
conditions. Let  be a point in Symq and (¢, )
the corresponding solution. By definition, there
exists an increasing unbounded sequence {t,}3°
such that lim,— ooz (tn, o) = Z. By the continuity
property, we get limy,—oox(t, (ty, o)) = (L, T)
for all t. By the uniqueness of the solution, we get
Z(t,z) = z(t,Z). Again by the uniqueness of the
solution, we have z(t,z(t,, o)) = x(t + tn, o)
for all ¢. This implies z(t,Z) belongs to Syimit,
which implies Z(t,Z) belongs to sjim: for all t.
This proves that sy is invariant.

Because for any solution x(t,z¢) with ||zg]] <
do, S(z(t)) is decreasing and nonnegative, we
have limi—oS(z(t)) = a(xg) > 0 with a(zg) a
constant.

For any Z € Spmit, we have already proved
Z(t,T) € Siimit- Therefore, S(Z(t,z)) = a(xg) for
all t. Using this and passivity, we get

0= S(@(t,7)) — S(z) < — / y7(5)6(y(s))ds < 0(8)
0

Since Z(t, Z) is continuous, y(t) is piecewise con-
tinuous. It follows from (8) that y(¢t) = 0 for all



t > 0. This together with ZSD condition proves
that lim;_oZ(t,Z) = 0 and therefore a(zg) = 0.
This implies that lim;—,.0S(z(t)) = a(xg) = 0,
and thus lim;_..2z(t) = 0.

By far, we have proved lim;_.ox(t,z9) = 0 for
any ||zo|| < do, that is, we have proved the solution
x = 0 is attractive. Therefore the solution is
asymptotically stable.

Because S(z) is radially unbounded, the bound-
ness of S(z(t)) implies the boundness of all so-
lutions x(t). This proves the solution z = 0 is
globally asymptotically stable. q

Remark 4. Compared with the stability results
obtained last section, here an asymptotic stability
result is derived. This shows that, for passive
systems, we can benefit from the controller design.

The condition S(o(t),z) = S(z) is somewhat
restrictive. Although asymptotic stability is not
proved for general passive systems, we still have
the following result.

Theorem 6. For a passive SCS given by (1) satis-
fying A1-A2, its storage function S(o(t),z) with
S(o(t),z) = 0 is positive definite and continuous
with respect to x. Let ¢(y) be a continuous vector
function such that ¢(0) = 0 and yT¢(y) > 0 for
each nonzero y. If the control law is chosen as
u = —¢(y), then the solution x = 0 of the closed
loop SCS is stable, and we have lim;—,.y(t) = 0,
that is, output regulation is achieved.

Proof: The proof of the stability is already given
in Theorem 5. Noticing that along the trajectory
x(t) with initial state z(0), according to passivity,
we know that S(t) = S(o(t),z(t)) is decreasing
and bounded and

<0 9)
Thus, we have
0< / 4T ()6 (y(s))ds < oo (10)

0

Note that y(t) is piecewise continuous and y7 ¢(y) >
0, it follows from (10) that lim;— ..y (t) = 0. The
theorem is proved. q

(From Theorem 5, we get immediately the follow-
ing result.

Corollary 10. For an SLCS given by (2) satisfying
assumptions Al-A2, assume that it is ZSD. If

it is passive with a storage function S(z) =
2T Pz, where P is a positive definite matrix, and
the control law is chosen as u = —ky, then,
the solution £ = 0 of the SLCS is globally
asymptotically stable.

Theorem 7. Consider an SCS given by (1) sat-
isfying A1-A2. Assume that it is passive with a
storage function S(o(t),z) = S(x) which is con-
tinuous and only positive semidefinite. Let ¢(y) be
any continuous function such that ¢(0) = 0 and
yTé(y) > 0 for each y # 0. If the SCS is ZSD and
{z|S(x) = 0} ¢ NM,{z € R"hi(z) = 0}, then
the solution z = 0 of the SCS with v = —¢(y) is
asymptotically stable.

6. EXAMPLES AND SIMULATIONS

In this section, the effects of passivity based
controllers are validated through simulations.
Example 1: Let’s consider an SCS given below.

= fa'(t) ((E) + Jo(t)U

Y= 11)

(
where o(t) = 1 t € [2kT,(2k + 1)T); o(t) =
2t e [(2k+1)T,(2k +2)T) and K = 0,1,2, ...
and T = 0.01.

() o (1)
= (") = (1) a2

If we use the following control law
u=—z% — ¢(y), when o(t) =1
u=—2x1 — ¢(y), when o(t) =2 (13)

where ¢(y) = 2y.
Example 2: Let’s consider the following SCS.

= fcr(t) ((L‘) + Jo(t)U

where o(t) is defined in the same way as in
Example 1. , and

= (") = (%)
R = (T e = () 09

If we use the following control law

u= _;2(-31/-)1’ when o(t) =1
1
u= _oy) _m when o(t) =2  (16)

2 2’
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Fig. 1. Simulation results of Example 1
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Fig. 2. Simulation results of Example 2

where ¢(y) =y + 3.

The simulation results for Example 1 are pre-
sented in Figure 1. While those for Example 2
are given in Figure 2. In each figure, we see that
the states of the SCS’s tend to zero asymptotically
and the storage functions also converge to zero as
expected.

7. CONCLUSION

In this article passivity and passivity based con-
troller design was systematically studied for a
class of switched control systems. First, necessary
conditions and sufficient conditions for an SCS to
be passive were established. Second, how to make
an SCS passive through choosing the switching
rule and/or state feedback was studied, and we
gave passification design for general SCSs and
some special classes of SCSs. We found that the
design would be much easier by allowing the stor-
age function to be positive semidefinite. Third,
we proved the relationship between passivity and
stability exists in classical systems can be ex-
tended to SCSs. As in classical passive systems,
under certain conditions, stability and global sta-
bility can be achieved even without control for
a passive SCS. The stability result obtained for
positive semidefinite storage functions is new in
switching systems. Fourth, we obtained deeper
stability results by designing the control law for
passive systems. For SCSs whose subsystems ad-
mits common storage functions, asymptotic sta-
bility was achieved; while for general SCSs which
may have time-varying storage functions, though
asymptotic stability was not proved by the au-

thors, output regulation was still obtained, which
is often enough in applications. The theoretical
results were validated using examples and simula-
tion results.

Since SCSs are only a special class of hybrid
systems, how to extend the results reported here
to other classes of hybrid systems remains to be
investigated.
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