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Abstract: The problem of robust stabilization of discrete-time uncertain networked
control systems (NCSs) in the presence of packet losses and transmission delays
is studied. We model such systems as discrete-time nonlinear systems with
delayed input. Sufficient conditions on the stabilization of the NCSs are presented.
Stabilizing state feedback controllers can be constructed by using the feasible
solution of some linear matrix inequalities (LMIs). One advantage of our method
is that the maximum bound on the nonlinearity can be computed by solving a
constrained convex optimization problem, another advantage is that the upper
bound on the delayed input can be obtained by solving a quasi-convex optimization
problem.Copyright c©2005 IFAC
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1. INTRODUCTION

Networked control systems (NCSs) is a spe-
cial class of hybrid systems wherein the con-
trol loops are closed through communication net-
works. NCSs have received increasing attention
in recent years because of the popularization and
advantages of using network cables in control sys-
tems, see, e.g., Ray and Galevi (1988). Industrial
applications include automobiles, robotic systems,
jacking systems for trains, etc. Because of the
distributed structure and the limited bandwidth,
the problems of delays and data packet dropout
in an NCS are unavoidable and thus the insertion
of communication network in the feedback con-
trol loop complicates the application of standard
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results in analysis and design of an NCS (see, e.g.,
Branicky et al., (2000), Lian et al., (2001) and the
references therein).

One issue in NCSs is the unreliable transmission
paths because of limited bandwidth and large
amount of nodes competing for one network chan-
nel, which may result in data packet dropout. The
augmented state space method (see, e.g., Zhang,
Branicky and Phillips, 2001) is an important
method to deal with the problem of data packet
dropout. The performance of real-time NCSs with
data dropouts is considered by Ling and Lemmon
(2002). Azimi-Sadjadi (2003) uses an uncertainty
threshold principle to show that under certain
conditions there is a rate dropped packets for
which an undisturbed NCS is mean square stable.
A packet dropping network is modelled as an
erasure channel in Hadjicostis and Touri (2002).
However, the research mentioned above is con-
cerned primarily with analysis issue rather than
control design.



Time delays typically have negative effects on the
systems’ stability and performance even if there
is no network inserted. So far, various methodolo-
gies have been developed to deal with the prob-
lem of network delays. Ray and Galevi (1988)
have proposed an augmented state vector method
to control a linear system over a periodic delay
network. Chan and Özgüner (1995) have devel-
oped Queueing mechanisms to utilize some de-
terministic or probabilistic information of NCSs
for the control. Nillson (1998) deals with random
delays via an optimal stochastic control method-
ology. With the effects of data packet dropout
and transmission delays, Yu et al., (2003) model
the continuous-time NCSs as continuous-time lin-
ear systems with time-varying input delays and
present sufficient conditions on the existence of a
stabilizing observer-based dynamic controller.

In distributed NCSs, due to the wide location
of sensors whose information length may surpass
that of the network packet, multiple-packet trans-
mission is necessary. Zhang, Branicky and Phillips
(2001) modelled an NCS in multiple-packet trans-
mission as an asynchronous dynamical system.
Their result did not consider the effects of de-
lays and hence their result could only be applied
to small scaled NCSs with faster transmission.
Lian, Moyne and Tilbury (2001) discussed the
modelling and analysis of multi-input and multi-
output NCSs with multiple delays. However, they
have not consider control design.

Recently, a new approach to dealing with sta-
bility and stabilization for linear continuous-time
and discrete-time systems under non-linear per-
turbations has been obtained in terms of linear
matrix inequality (LMI) (Siljak and Stipanovic,
2000, Stipanovic and Siljak, 2001), which provides
a possibility to reduce the conservativeness in the
computations of maximal bounds on non-linear
terms. However, when this method is applied to
the discrete-time systems, it can only be used
for single-input delays and there is structured
restrictions on the positive definite matrix. Zuo et
al., (2004) has presented a less conservative result
with above drawbacks removed and has extended
the result to discrete-time systems with constant
delays. However, their approach does not work in
the case with time-varying input delays.

In this paper, robust stabilization problem is in-
vestigated for a class of NCSs with plant uncer-
tainties under the effects of delays and data packet
dropout. For simplicity, it is assumed that network
communication only occurs between the sensor
and the controller through a communication chan-
nel with finite bandwidth.

The paper is organized as follows. Section 2 ana-
lyzes the effects of delays and data packet dropout
on NCSs and models such NCSs as discrete-time
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Fig. 1. An NCS controlled via state feedback

non-linear systems with input delays. Section 3
studies the robust stabilization of such NCSs.
Section 4 extends the results to NCSs in multiple-
packet transmission using modified techniques.
Section 5 concludes this paper.

Notation: In this paper, Rn is the set of all n-
tuples of real numbers. AT denotes the transpose
of a matrix A. A > 0 (A < 0) means that
A is positive definite (negative definite). Z+ de-
notes the set of non-negative integers, i.e. Z+ =
{0, 1, 2, · · ·}.

2. PROBLEM STATEMENT

The state-space model of an NCS shown in Fig. 1
consists of an uncertain discrete-time plant and a
discrete-time controller

x(k + 1) = Ax(k) +Bu(k) + h(k, x(k))
u(k) = F x̄(k),

(1)

where x(k) ∈ Rn, u(k) ∈ Rm are the plant state
and input, respectively. F is the state feedback
gain matrix to be designed, A, B are known real
constant matrices with appropriate dimensions.
x̄(k) is the output information of the buffer which
will be used to construct the controller. h : Z+×
Rn → Rn is the plant uncertainty. We assume
that h(k, x(k)) is a nonlinear function in x, satis-
fying the quadratic constraint condition

hT (k, x(k))h(k, x(k)) ≤ α2xT (k)HTHx(k), (2)

where α > 0 is the bounding parameter on the
uncertain function h and H is a constant matrix.
Note that constraint (2) is equivalent to

[

x

h

]T [

−α2HTH 0

0 I

] [

x

h

]

≤ 0. (3)

For any given H, define the set

Hα = {h : R
n+1 → R

n|hT (k, x(k))h(k, x(k)) ≤

α2xT (k)HT ×Hx(k) for all (k, x) ∈ Z+ ×R
n}.

(4)

Because of limited bandwidth and large amount
of sensors competing for one communication chan-
nel, data packet dropout is unavoidable. When



data packet dropout occurs, it might be more
advantageous to drop the old packet and transmit
a new one than repeated retransmission attempt.
The length of the buffer at the controller is equal
to one. That is, the controller only uses the new
messages transmitted over the network.

We first consider the effect of packet dropout. If
x̄(k) has not been updated for d(k) times at step
k from the latest updated time, the input of the
controller will be given as x̄(k) = x(k − d(k)).

Two types of delays are considered: processing
delay and communication delay. Usually, the pro-
cessing delays are constant. Denote the combined
sensor/controller processing-communication delay
as ts(k).

Because of network delays, it might happen that
more than one sensor messages arrive at the
controller at the same steps. Then the most recent
message will be used to construct the controller,
the rest will be discarded.

Combining the effects of data packet dropout and
delays, the input of the controller can be given as

x̄(k) = x(k − d(k)− ts(k)).

Define d(k) + ts(k) = τ(k). τ(k) may vary with
time step k and it is assumed that

τ(k) ≤ τ̄ , (5)

where τ̄ is a positive integer.

From the above analysis, the closed-loop system
with the effects of packet loss and delays can be
given by

x(k + 1) = Ax(k) +BFx(k − τ(k))
+h(k, x(k)).

(6)

Remark 1. τ(k) is related to data packet dropout
and delays. When d(k) = 0, it means that τ(k) =
ts(k) and no packet is dropped or rejected in the
transmission. Thus, system (6) can be viewed as
a general form of NCS model, where the effects
of packet loss and delays are simultaneously con-
sidered. Furthermore, system (6) is a discrete-
time system with time-varying input delays, so
the existing rich theory on delay systems can be
applied to studying system (6).

Our major objective is to show how linear con-
stant feedback laws can be formulated to stabi-
lize this type of system and, at the same time,
maximize the non-linearity bound which does not
violate the stability of the NCSs.

3. ROBUST STABILIZATION

In this section, an LMI approach will be developed
to solve the stabilization problem formulated in
the previous section.

From the analysis in Section 2, NCS (1) with the
effects of packet loss and delays is modelled as
time delay system (6) and thus can be written as:

Σc1 : x(k + 1) = Ax(k) +BF

τ̄
∑

i=1

δ(τ(k)− i)x(k − i)

+h(k, x(k)),

where

δ(n) =

{

1 if n = 0,

0 if n 6= 0.

To establish robust stabilization in the Lyapunov
sense, the following Lyapunov function is consid-
ered:

V (k) = xT (k)Px(k) +

τ̄
∑

i=1

k−1
∑

j=k−i

x(j)TQx(j),

then the difference of function V along the trajec-
tory of system (6) is given by

4V (k) = V (k + 1)− V (k)

= x
T
(k)[A

T
PA + τ̄Q− P ]x(k)

+2x
T
(k)A

T
PBF

τ̄
∑

i=1

δ(τ(k)− i)x(k − i)+

τ̄
∑

i=1

τ̄
∑

j=1

δ(τ(k)− i)x(k − i)
T
F
T
B
T
PBFx(k − j)δ(τ(k)− j)

+2h
T
(k, x(k))

τ̄
∑

i=1

PBFx(k − i)δ(τ(k)− i)

+2x
T
(k)A

T
Ph(k, x(k)) + h

T
(k, x(k))Ph(k, x(k))

−

τ̄
∑

i=1

x
T
(k − i)Qx(k − i).

Since
τ̄
∑

i=1

x
T
(k−i)Qx(k−i) ≥

τ̄
∑

i=1

δ(τ(k)−i)δ(τ(k)−i)x
T
(k−i)Qx(k−i),

the following inequality holds,

4V (k) ≤ W (k)TΩW (k),

where

Ω =













Π ATPBF · · · ATPBF ATP

∗ −Λ · · · FTBTPBF FTBTP

∗ ∗
. . .

.

.

.
.
.
.

∗ ∗ · · · −Λ FTBTP
∗ ∗ ∗ ∗ P













,

Π = ATPA+ τ̄Q− P, Λ = Q− FTBTPBF,

W (k) =
[

x(k)T | x(k − 1)T δ(τ(k)− 1)| · · · | x(k − τ̄)T

δ(τ(k)− τ̄) | hT (k)
]T

.

In order to guarantee the stability of NCS (1)
with the effects of packet loss and delays, it is re-
quired that 4V (k) < 0, which can be guaranteed
by



W (k)TΩW (k) < 0. (7)

By the well-known S-procedure (Yakubovich,
1977), inequality (7) with constraint (3) can be
guaranteed by









Π2 A
T
PBF · · · A

T
PBF A

T
P

∗ −Λ · · · F
T
B
T
PBF F

T
B
T
P

∗ ∗

. . .
.
.
.

.

.

.

∗ ∗ · · · −Λ F
T
B
T
P

∗ ∗ ∗ ∗ P − µI









< 0,

µ ≥ 0, P > 0,



















(8)

where Π2 = Π+ µα2HTH.

It should be noted that inequalities (8) represent
non-strict LMI since µ ≥ 0. For minimization
problem, it is well known (Boyd et al., 1994)
that the minimization result under non-strict LMI
constraints is equivalent to that under strict con-
straints. Substitute µ > 0 for µ ≥ 0. Then (8)
is equivalent to the existence of matrices P̄ =:
P/µ > 0, Q̄ =: Q/µ > 0 such that













Π̄ AT P̄BF · · · AT P̄BF AT P̄

∗ −Λ̄ · · · FTBT P̄BF FTBT P̄

∗ ∗
. . .

.

.

.
.
.
.

∗ ∗ · · · −Λ̄ FTBT P̄
∗ ∗ ∗ ∗ P̄ − I













< 0, (9)

where

Π̄ = AT P̄A+ τ̄ Q̄− P̄ + α2HTH, Λ̄ = Q̄− FTBT P̄BF.

Note that (9) can be written as

Φ + ΨTWΨ < 0, (10)

where
Φ = diag(τ̄ Q̄− P̄ , −Q̄, · · · , −Q̄, −2I),

Ψ
T

=











A
T

H
T

0 · · · 0 0

F
T
B
T

0 0 · · · 0 0

F
T
B
T

0 0 · · · 0 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

F
T
B
T

0 0 · · · 0 0
I 0 0 · · · 0 I











,W =











P̄ 0 0 · · · 0 0

0 α
2
I 0 · · · 0 0

0 0 P̄ · · · 0 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.
0 0 0 · · · P̄ 0
0 0 0 · · · 0 I











.

Using Schur complement, (10) is equivalent to

[

Φ ΨT

Ψ −W−1

]

< 0. (11)

Defining γ := 1

α2
, X := P̄−1, Y := Q̄−1, Z :=

FY T , multiplying diag{X,Y, · · · , Y, I, · · · , I} on
both sides of (11), using Schur complements again,
we have that

Ω < 0, (12)

where

Ω =


























−X 0 · · · 0 0 XA
T

XH
T

0 · · · 0 τ̄X

∗ −Y · · · 0 0 Z
T
B
T

0 0 · · · 0 0

∗ ∗

. . .
.
.
.

.

.

.

.

.

.

.

.

.

.

.

. · · ·

.

.

.

.

.

.

∗ ∗ ∗ −Y 0 Z
T
B
T

0 0 · · · 0 0
∗ ∗ ∗ ∗ −2I I 0 0 · · · I 0
∗ ∗ ∗ ∗ ∗ −X 0 0 · · · 0 0
∗ ∗ ∗ ∗ ∗ ∗ −γI 0 · · · 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗

. . .
.
.
.

.

.

.

.

.

.
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −X 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −τ̄Y



























.

To establish robust stabilization in the Lyapunov
sense for NCS (1) under constraint (3), the opti-
mization problem is proposed: for given positive
integer τ̄

minimize γ
subject to X > 0, Y > 0, Z, and (12).

}

(13)

Now, for NCS (1) with finite data packet dropout
and bounded delays, our main results is presented.

Theorem 1. Consider NCS (1) with data packet
dropout and delays. Given a positive integer τ̄ >
0, NCS (1) is robustly stabilizable with maximal
non-linear bound α = 1/

√
γ if the optimization

problem (13) is feasible for data packet dropout
and delays satisfy condition (5). Furthermore, the
state feedback control law is given by

u(k) = ZY −1x̄(k).

Remark 2. Theorem 1 provides a sufficient condi-
tion on delay-dependent stabilization of discrete-
time linear systems with input delays and non-
linear uncertainties. For a given γ, the upper
bound on the size of the delays can be obtained
by solving a quasi-convex optimization problem
using the LMI toolbox.

Remark 3. For system (6) without input delays,
the stabilization problem has been considered
by Stipanovic and Siljak (2001). However their
results can not be applied here. Moreover, the
drawbacks that their results can only be used for
single-input systems and there are some struc-
tural restrictions on the Lyapunov matrix and the
corresponding variable have been removed. Thus,
our result is less conservative and can be applied
widely.

Remark 4. For the case when τ(k) is time-invariant,
the controller design problem of system (6) has
been investigated in Zuo et al. (2004), whose re-
sults can not be applied to the system (6) since
τ(k) here is time-varying.

4. ROBUST STABILIZATION OF NCSS WITH
MULTIPLE-PACKET TRANSMISSION

In distributed NCSs, due to the wide location
of sensors whose information length may surpass
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Fig. 2. An NCS with multiple-packet transmission

that of the network packet, multiple-packet trans-
mission is necessary. In multiple-packet transmis-
sion, plant output or controller output is split
into separate packets. An NCS transmitted in
multiple-packet manner with data packet dropout
and delays can also be modelled as a non-linear
system with multiple-input delays.

Consider the NCS (1) with matrix B being of
full column rank. For simplicity, we assume that
the plant state is split into two parts x(k) =
[

XT

1 (k) XT

2 (k)
]T

with X1(k) and X2(k) be-
ing transmitted over different network channels,
where X1(k) = [x1(k) · · · xr(k)]

T
and X2(k) =

[xr+1(k) · · · xn(k)]
T
, r < n. Fig. 2 illustrates

the case where the plant state is transmitted in
two packets.

The relation between the plant state, x(k), and
the controller input, x̄(k), is studied in the follow-
ing.

Data packet dropout and delays might happen
over each network channel. Then the ith channel
of the controller input is given by X̄i = Xi(k −
τi(k)) (i = 1, · · · , t), where τi(k) ≤ τ̄i reflects the
effects of packet loss and delays. Analogous to the
single-packet transmission case, we obtain that

x̄(k) =

[

X̄1(k)
X̄2(k)

]

=

[

X1(k − τ1(k))
X2(k − τ2(k))

]

=

2
∑

i=1

Cix(k − τi(k)),

where C1 =

[

Ir 0
0 0

]

, C2 =

[

0 0
0 In−r

]

.

When the plant state is transmitted in multiple-
packet manner, the closed-loop system with the
effects of packet loss and delays can be described
as

x(k + 1) = Ax(k) +BF

2
∑

i=1

Cix(k − τi(k))

+h(k, x(k)).

(14)

From the analysis given above, NCS (1) transmit-
ted in two packets with the effects of data packet
dropout and delays can be modelled as multiple-
delay system (14) and thus can be written as:

Σc2 : x((k + 1)) = Ax(k) + BFC1

τ̄1
∑

i=1

δ(τ1(k)− i)x(k − i)

+BFC2

τ̄2
∑

i=1

δ(τ2(k)− i)x(k − i) + h(k, x(k)),

where

δ(n) =

{

1 if n = 0,
0 if n 6= 0.

Define a Lyapunov function V (k) as follows:

V (k) = x
T
(k)Px(k)

+

2
∑

κ=1

τ̄κ
∑

i=1

k−1
∑

j=k−i

x(j)
T
C
T
κ QκCκx(j),

(15)

where P and Qκ are positive definite matrices.

Imitating the process of Section 2, in order to
guarantee the stability of the closed-loop system,
it is required that















Π̄1 A
T
P̄BF · · · A

T
P̄BF A

T
P̄BF

∗ −Λ̄1 · · · F
T
B
T
P̄BF F

T
B
T
P̄BF

∗ ∗

. . .
.
.
.

.

.

.

∗ ∗ ∗ −Λ̄1 F
T
B
T
P̄BF

∗ ∗ ∗ ∗ −Λ̄2
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

· · · A
T
P̄BF A

T
P̄

· · · F
T
B
T
P̄BF F

T
B
T
P̄

· · ·

.

.

.

.

.

.

· · · F
T
B
T
P̄BF F

T
B
T
P̄

· · · F
T
B
T
P̄BF F

T
B
T
P̄

. . .
.
.
.

.

.

.

∗ −Λ̄2 F
T
B
T
P̄

∗ ∗ P̄ − I





















< 0,

(16)

where

Π̄1 := AT P̄A+ τ̄1C
T
1 Q̄C1 + τ̄2C

T
2 Q̄C2 − P̄ + α2HTH,

Λ̄i := Q̄i − FTBT P̄BF (i = 1, 2), P̄ := P/µ,

Q̄i := Qi/µ (i = 1, 2).

Note that (16) can be written as

Φ+ΨT P̄Ψ < 0, (17)

where

Φ = diag(τ̄1C
T
1 Q̄1C1 + τ̄2C

T
2 Q̄2C2 − P̄ + α2HTH,

−Q̄1, · · · ,−Q̄1,−Q̄2, · · · ,−Q̄2,−I),

Ψ = [A BF · · · BF I].

It is assumed that

P̄B = BM, (18)

where M is a matrix with appropriate dimensions.
Because B is of full column rank, it follows from
(18) that M is also of full rank, and thus invert-
ible.

Define L = MF , use Schur complement, it follows
from (18) that (17) is equivalent to

























∆ 0 · · · 0 0 · · · 0
∗ −Q̄1 · · · 0 0 · · · 0

∗ ∗

. . .
.
.
.

.

.

.

.

.

.

.

.

.
∗ ∗ ∗ −Q̄1 0 · · · 0
∗ ∗ ∗ ∗ −Q̄2 · · · 0

∗ ∗ ∗ ∗ ∗

. . .
.
.
.

∗ ∗ ∗ ∗ ∗ ∗ −Q̄2

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

0 A
T
P̄ H

T

0 L
T
B
T

0

.

.

.

.

.

.

.

.

.

0 L
T
B
T

0

0 L
T
B
T

0

.

.

.

.

.

.

.

.

.

0 L
T
B
T

0
−I P̄ 0
∗ −P̄ 0
∗ ∗ −γI

























< 0,

(19)

where ∆ = τ̄1C
T

1 Q̄1C1 + τ̄2C
T

2 Q̄2C2 − P̄ and γ is
defined as before.

For NCS (1) transmitted in multiple-packet man-
ner, we propose the optimization problem: for
given positive integers τ̄i (i=1,2)

minimize γ

subject to P̄ > 0, Q̄ > 0, L, M (18) and (19).

}

(20)

The following theorem establishes a sufficient con-
dition on the robust stabilization of the NCS
(1) with data packet dropout in multiple-packet
transmission.

Theorem 2. Consider NCS (1) transmitted in
multiple-packet manner with data packet dropout
and delays. Given positive integers τ̄i > 0 (i =
1, 2), NCS (1) is robustly stabilizable with maxi-
mal non-linear bound α = 1/

√
γ if the optimiza-

tion problem (20) is feasible. Furthermore, the
state feedback control law is given by

u(k) = M−1Lx̄(k).

5. CONCLUSION

This paper has investigated the robust stabiliza-
tion problem for a class of NCSs with non-linear
uncertainties under the effects of delays and data
packet dropout. Robust stabilization for the NCSs
has been presented. The state feedback controllers
can be constructed in terms of LMIs. The admis-
sible upper bound of data packet dropout and
transmission delays can be obtained via solv-
ing a quasi-convex optimization problem with
the efficient LMI toolbox. For NCSs in multiple-
packet transmission, similar stabilization results
have been established, where single delay has been
extended to multiple delays, and state feedback
problem has been extended to output feedback
problem. The obtained results in this paper can be
applied to NCSs without packet loss to save net-
work bandwidth or to find the maximum allowable
delay between state update. This is of practical
importance in engineering applications.
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