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1. INTRODUCTION

A nonlinear system is said to be OFEP (output
feedback exponentially passive) if there exists an
output feedback such that the resulting closed-
loop system is exponentially passive (Fradkov and
Hill, 1998). The sufficient conditions for a non-
linear system to be OFEP have been provided
(Fradkov and Hill, 1998) such as (1) the system
has a relative degree of one, (2) the system be
globally exponential minimum-phase and (3) the
nonlinearities of the system satisfy the Lipschitz
condition. It has been shown that, under these
conditions, one can easily stabilize uncertain non-
linear systems with a simple high-gain output
feedback based adaptive controller (Allgower et
al., 1997; Fradkov, 1996; Fradkov et al., 1999).
These adaptive control methods utilize only the
output signal without an observer to design the
output feedback controller, as a result the struc-
ture of the controllers is very simple. Further it
has been shown that the methods have a strong
robustness with respect to bounded disturbances
in spite of its simple structure. Therefore the
control methods based on the OFEP property of

the controlled system are considered one of the
powerful control tools for uncertain nonlinear sys-
tems. Unfortunately however, since most practical
systems do not satisfy the OFEP conditions men-
tioned above, the OFEP conditions have imposed
very severe restrictions to practical application of
OFEP based adaptive output feedback controls.

In order to improve the applicability of the above-
mentioned OFEP based adaptive control to prac-
tical systems, some alleviation methods to OFEP
conditions have been proposed (Fradkov, 1996;
Fradkov et al., 1999; Michino et al., 2003; Mizu-
moto et al., 2003). The introduction of a parallel
feedforward compensator (PFC) in parallel with
the controlled non-OFEP system is a simple and
innovative method to alleviate the restrictions im-
posed by the relative degree and/or the minimum-
phase property (Fradkov, 1996; Fradkov et al.,
1999). However since the controller is designed
for a system augmented with a PFC, which is
rendered OFEP by adding the PFC, the bias error
from the PFC output may remain in the actual
output even though one could attain a control ob-
jective for the augmented OFEP system with the



PFC (Kaufman et al., 1998; Iwai and Mizumoto,
1994). A robust design for a non-OFEP system, in
which there exist uncertain nonlinearities that do
not satisfy the Lipschitz condition and that can
not be represented by parametric form, has also
been presented in Michino et al. (2003). However,
this method is suitable for systems having a rela-
tive degree one. Recently, the method proposed in
Michino et al. (2003) was extended to systems of
triangular form with higher order relative degrees
by utilizing the backstepping strategy (Mizumoto
et al., 2003). Unlike the previous works (Polycar-
pou and Ioannou, 1996; Yao and Tomizuka, 1997;
Jiang and Praly, 1998; Arslan and Basar, 1999;
Lin and Qian, 2002) on robust adaptive control of
such an uncertain triangular system, the method
proposed in Mizumoto et al. (2003) can design
an adaptive controller without the use of state
variables and/or a state observer by introducing
a virtual filter for the control input since the
actual control input is designed through a back-
stepping strategy applied to the virtual filter. The
introduction of a virtual input filter was initiated
by Marino and Tomei (1993). One can solve a
problem on the relative degree by using a virtual
input filter. In method by Mizumoto et al. (2003),
the virtual input filter method has been applied
in order to overcome the restriction of the rela-
tive degree in the OFEP conditions. However, the
structure of the controller might become complex
for a system with a higher order relative degree be-
cause the number of steps in the recursive design
of the controller through backstepping depends on
the order of the relative degree of the controlled
system.

In this paper, we will propose a novel one step
backstepping design method for an adaptive con-
troller based on high-gain output feedback for un-
certain nonlinear systems. We introduce a virtual
input filter augmented by a PFC to design an
adaptive controller through a backstepping strat-
egy of only one step even if the controlled system
has a higher order relative degree. In the proposed
method, a virtual filter is first introduced in order
to solve a problem imposed by relative degree and
in order to make the virtual OFEP system as well
as previous methods by Marino and Tomei (1993)
and Mizumoto et al. (2003). Further, a PFC will
be added in parallel with the virtual filter in
order to create an augmented virtual filter with a
relative degree of one. This augmentation allows
us to design an adaptive controller through a
backstepping of only one step even when the con-
trolled system has a higher order relative degree.
Unlike the conventional method with a PFC only
(Fradkov, 1996; Fradkov et al., 1999; Kaufman et
al., 1998; Iwai and Mizumoto, 1994), when the
PFC is put in parallel with the virtual filter, the
bias effect from the PFC output does not directly

appear in the output of the controlled system.
Therefore, we can show that the tracking error of
the control system with proposed robust adaptive
controller converges to any given bound. Further
unlike the general method using a backstepping
strategy, we can obtain a very simple adaptive
controller through backstepping of only one step
even when the controlled system has a higher
order and a higher order of relative degree.

2. PROBLEM STATEMENT
We consider the following nth order uncertain
time varying nonlinear system with a relative
degree of γ.

ẋi = fi(x, t) + gi(t)xi+1 (1 ≤ i ≤ γ − 1)

ẋr = fr(x, t) + gr(t)u(t) + b(t)T η

η̇ = fη(x, t) + q(y, η)
y = x1

(1)

where x=[x1, · · · , xn]T∈ Rn, η =[xγ+1, · · · , xn]T

∈ Rn−γ are the state variables, u, y ∈ R are
the control input and output, respectively. gi(t)
and b(t) are unknown time-varying functions,
fi(x, t), fη(x, t) and q(y, η) are uncertain non-
linear functions. Here we impose the following
assumptions to the system (1).
Assumption 1. The uncertain nonlinear functions
fi(x, t) and the vector function fη(x, t) can be
evaluated for all x ∈ Rn and t ∈ R+ by

|fi(x, t)| ≤ d1i|ψi(y)|+ d0i (1 ≤ i ≤ γ)
‖fη(x, t)‖ ≤ d1η|ψη(y)|+ d0η

(2)

with unknown positive constants d1i, d1η, d0i, d0η

and known smooth functions ψi(y) and ψη(y) that
have the following properties for any variables y1

and y2:|ψi(y1 + y2)| ≤ |ψ1i(y1, y2)||y1|+ |ψ2i(y2)|
|ψη(y1 + y2)| ≤ |ψ1η(y1, y2)||y1|+ |ψ2η(y2)| (3)

with known smooth functions ψ1i and ψ1η and
with functions ψ2i and ψ2η which are bounded for
all bounded y2.
Assumption 2. Unknown functions gi(t) (1 ≤ i ≤
r) are smooth and bounded with bounded deriva-
tive for any t ≥ 0 and there exists an unknown
positive constant gm such that

g1,r(t) :=
r∏

i=1

gi(t) ≥ gm > 0. (4)

Assumption 3. Unknown vector function b(t) is
bounded for all t > 0.

Assumption 4. The uncertain nonlinear function
q(y, η) is globally Lipschitz with respect to (y, η),
i.e., there exists a positive constant L1 such that

‖q(y1, η1)−q(y2, η2)‖ ≤ L1(|y1−y2|+‖η1−η2‖).
(5)

for any variables y1, y2 and η1, η2.

Assumption 5. Nominal part of the system (1) is
exponentially minimum-phase. That is, the zero
dynamics of the nominal system:

η̇(t) = q(0, η) (6)



is exponentially stable.

Under these assumptions the control objective is
to achieve the goal

lim
t→∞

|y(t)− y∗(t)| ≤ δ (7)
for a given positive constant δ and a smooth
reference signal y∗(t) such as |y∗(t)| ≤ σ0 and
|ẏ∗(t)| ≤ σ1 with positive constants σ0 and σ1.

3. CONTROLLER DESIGN

3.1 Virtual System
For the controlled system (1) we introduce the
following (γ−1)th order stable virtual input filter:

u̇f = Auf
uf + buf

u

uf1 = cT
uf

uf
(8)

where uf = [uf1 , · · · , ufγ−1 ]
T and

Auf
=

[
0 Iγ−2,γ−2

−β1 · · · − βγ−1

]
, buf

=
[
0
bu

]
, cuf

=
[
1
0

]

The virtual system, which is obtained by consid-
ering uf1 given from a virtual input filter as the
control input, can be expressed by the following
form with an appropriate variable transformation
using the filtered signal ufi given in (8).

ẏ = a(y, ξ, t) + g′1,r(t)uf1 + f1(y, ξ, η, t)

ξ̇ = Auf
ξ + aξ(t)y + Bξ(t)η + F (y, ξ, η, t)

η̇ = q(y, η) + fη(y, ξ,η, t)
(9)

where ξ = [ξ2, · · · , ξk, · · · , ξγ ]T ,

ξk = buḡk,rxk − ufk−1 −
k−1∑

d=1

χk,dxk−d (10)

with g0(t) := 1, ḡm(t) := 1
gm(t) and

gm,n(t) :=
n∏

i=m

gi(t), ḡm,n(t) :=
1

gm,n(t)
,

χr,1 = buḡr−1(βr−1ḡr + ˙̄gr)

χr,k = ḡr−k(−
k−1∑

d=1

βr+d−kχr+d−k+1,d

− χ̇r,k−1 + buβr−kḡr−k+1,r), (2 ≤ k ≤ r − 1)

χr,r = −
r−1∑

d=1

βdχd+1,d − χ̇r,r−1

χk,1 = ḡk−1(χk+1,1 + bu ˙̄gk,r), (2 ≤ k ≤ r − 1)
χk,d+1 = ḡk−d−1(χk+1,d+1−χ̇k,d), (2 ≤ d ≤ k−1)

Further, a,aξ, Bξ and F in (9) are given by the
following form:

a(y, ξ, t) = (ξ2 + χ2,1y)g′1,r, g′1,r = g1,r/bu

aξ(t) =




χ2,2

...
χr,r


 , Bξ =

[
0

buḡrb
T

]

F (y, ξ, η, t) = [fξ2 , · · · , fξk
, · · · , fξγ ]T

fξk
= buḡk,rfk −

k−1∑

d=1

χk,dfk−d

For the obtained virtual system, it is easy to con-
firm from assumption 2 that a(y, ξ, t) is Lipschitz
with respect to (y, ξ) so that there exists a positive
constant L2 such that

|a(y1, ξ1)−a(y2, ξ2)|≤L2(|y1−y2|+||ξ1−ξ2||). (11)

The uncertain vector function F (y, ξ, η, t) can be
evaluated from assumption 1 by

||F (y, ξ,η, t)|| ≤ p1|φ(y)|+ p0 (12)

with unknown positive constants p0, p1 and a
known function φ(y), which has the following
property for any variables y1 and y2:

|φ(y1 + y2)| ≤ |φ1(y1, y2)||y1|+ |φ2(y2)| (13)

with a known smooth function φ1(y1, y2) and a
function φ2(y2) that is bounded for all bounded
y2. Furthermore, since Auf

is a stable matrix,
there exists a positive symmetric matrix Pξ for
any positive matrix Qξ such as

PξAuf
+ AT

uf
Pξ = −Qξ. (14)

Moreover, since the system (1) is exponentially
minimum-phase from assumption 5, there exist
a positive definite function W (η) and positive
constants κ1 to κ4 from the converse theorem of
Lyapunov(Khalil, 1996) such that

∂W (η)
∂η

q(0,η)≤−κ1‖η(t)‖2,
∥∥∥∥

∂W (η)
∂η

∥∥∥∥≤κ2‖η(t)‖
κ4‖η(t)‖2 ≤ ‖W (η)‖ ≤ κ3‖η(t)‖2 (15)

The obtained virtual system (9) with the input
uf1 has a relative degree of one and the zero
dynamics of the nominal part of (9), which is
obtained by neglecting f1, F and fn as external
disturbances, is exponentially stable because Auf

is a stable matrix and the zero dynamics of (1)
given in (6) is exponentially stable. Thus the
nominal part of the virtual system (9) has the
OFEP properties so that we can attain the control
objective (7) by applying the robust adaptive
control method provided in Michino et al. (2003)
to the virtual system (9) with the control input
uf1 . However, unfortunately since the input uf1 is
not the actual control input, one can not directly
design uf1 using the controller design method
given in Michino et al. (2003). The method given
in Mizumoto et al. (2003) gives us a solution for
designing an actual control input by adopting the
Backstepping strategy to the virtual input filter.
However, this method might require a complex
controller structure for a nonlinear system with a
higher order relative degree.

Here we propose a novel one-step backstepping de-
sign scheme utilizing a PFC so that one can design
an adaptive controller through a backstepping of
only one step for uncertain nonlinear systems even
when the nonlinear systems have higher order
relative degrees.



3.2 Augmented Virtual System
Consider a stable PFC with relative degree of 1
and minimum phase:

ẏf = −af1yf + aT
f2

ηf + bau

η̇f = Afηf + bfyf

(16)

where yf ∈ R is the PFC output and ηf ∈ Rnf−1

is the state variables of PFC. af is any positive
constant and Af is a stable matrix.

Suppose that the PFC (16) is designed such
that the augmented virtual filter, which is cos-
tituted by the virtual filter and the PFC, has
a relative degree of one and is minimum-phase.
The augmented virtual filter can be expressed as
follows(Isidori, 1995):

u̇af
= aa1uaf + aT

a2ηa + bau

η̇a = Aaηa +
[
0
1

]
uaf

(17)

where uaf
= uf1+yf , ba = cT

f bf and Aa is the sys-
tem matrix corresponding to the zero dynamics of
the augmented virtual filter. Since the augmented
virtual filter is minimum-phase, Aa is a stable
matrix.

The virtual system (9) with the augmented virtual
filter output uaf

as the control input can be
represented by

ẏ = a(y, ξ, t) + g′1,r(t)(uaf
− yf ) + f1(y, ξ,η, t)

ξ̇ = Auf
ξ + aξ(t)y + Bξ(t)η + F (y, ξ, η, t) (18)

η̇ = q(y, η) + fη(y, ξ,η, t)

3.3 Adaptive Controller Design
Consider the tracking error ν(t) = y(t) − y∗(t),
the resulting error system is given from (18) by

ν̇ =a(ν+y∗, ξ)+g′1,r(uaf
−yf )+f1(ν+y∗, ξ,η)−ẏ∗

ξ̇ = Auf
ξ + aξy + Bξη + F (ν + y∗, ξ, η) (19)

η̇ = q(ν + y∗, η) + fη(ν + y∗, ξ, η)

Pre-step: For the error system (19), We first de-
sign a virtual control input α1 for the augmented
virtual filtered signal uaf

in the error system as
follows by using a robust adaptive high gain feed-
back control:

α1(t) = −k(t)ν(t) + Ψ0(t) (20)
k(t) = kI(t) + kP (t) + kR(t) (21)

k̇I(t) = γID(ν)ν(t)2, kI(0) ≥ 0 (22)

kP (t) = γP [φ1(ν, y∗)4 + ψ1η(ν, y∗)4]ν(t)2 (23)

kR(t) = γRψ1(y)2 (24)

Ψ̇0(t) = D(yf )[−af1Ψ0 + bau] (25)

where γI , γP , γR are arbitrary positive constants
and D(x) is defined such as

D(x) =

{
0, for x ∈ Ωx0

1, for x ∈ Ωx1

Ωx0 = {x ∈ R | |x| ≤ δx}, Ωx1 = {x ∈ R | |x| > δx}
for any given positive constants δx.

Now consider the following positive definite func-
tion for ν ∈ Ων1

V0 =
1
2
ν2+µ0ξ

T Pξξ+µ1W (η)+
g′m
2γI

[kI−k∗]2 (26)

where µ0 and µ1 are any positive constants, k∗

is an ideal feedback gain to be determined later
and g′m = gm/bu. The time derivative of V0 can
be evaluated by

V̇0≤− (g′mk∗ − v0)ν2 − (µ0λmin[Qξ]− v1)‖ξ‖2
− (µ1κ1 − v2)‖η‖2 + g′1,rνω1

− g′1,r(yf −Ψ0)ν + R0 (27)

where ω1 = uaf
−α1 and v0 to v2 and R0 are given

as follows:

v0 =L2 +
(µ1κ2L1)2

4ρ1
+ ρ2 +

(L2 + 2µ0aξM‖Pξ‖)2
4ρ3

v1 = ρ3 + ρ4 + ρ6 +
(µ0BξM‖Pξ‖)2

ρ8

v2 = ρ1 + ρ5 + ρ7 + ρ8

R0 =
d2
11

4γRg′m
+

1
4γP g′m

[
(µ0p1‖Pξ‖)2

ρ2
4

+
(µ1κ2d1η)2

16ρ2
5

]

+
(σ0L2 + d01 + σ1)2

4ρ2

+
[µ0‖Pξ‖(2σ0‖aξ‖+ p1φ2M + p0)]2

ρ6

+
[µ1κ1(σ0L1 + d1ηψ2ηM + d0η)]2

4ρ7

with any positive constants ρ1 to ρ8 and posi-
tive constants aξM , BξM which satsfy ‖aξ(t)‖ ≤
aξM , ‖Bξ(t)‖ ≤ BξM from assumption 2. φ2M ,
ψ2ηM are positive constants such that |φ2(y∗)| ≤
φ2M , |ψ2η(y∗)| ≤ ψ2ηM . Since y∗ is bounded, such
a constant exists from Assumption 1 that φ2i(y2)
is bounded for all bounded y2.

Step 1: Consider the error system, ω1-system,
between uaf

and α1. ω1-system is given from (17)
by

ω̇1 = aa1uaf
+ aT

a2ηa + bau− α̇1 (28)
The time derivative of α1 is given by

α̇1=
∂α1

∂y
[a(y, ξ)+g1,ruf1 +f1(y, ξ, η, t)]+

∂α1

∂y∗
ẏ∗

+
∂α1

∂kI
γIν

2+
∂α1

∂Ψ0
D(yf )[−afΨ0 + bau] (29)

Taking this into consideration, the actual control
input is designed as follows:

u=





− 1
ba

[c1ω1 + ε0(u2
af

+ ‖ηa‖2)ω1 + ε1Ψ1ω1]

if yf ∈ Ωyf0

− ω1

bayf
[c1ω1+ε0(u2

af
+‖ηa‖2)ω1+ε1Ψ1ω1]

− 1
ba

[γfyf +ε2‖ηf‖2yf ]− ε3
bayf

Ψ2
0

if yf ∈ Ωyf1

(30)



where ε0 to ε3 and c1 are any positive constants,
γf is a positive constant such that

γf ≥ ‖af2‖2
4ε2δ2

f

, c1 >
a2

f1

2ε3
(31)

and Ψ1 is given by

Ψ1 =(l1+u2
f1

+ψ2
1)

(
∂α1

∂y

)2

+
(

∂α1

∂y∗

)2

+
(

∂α1

∂kI

)2

ν4

(32)
with any positive constant l1.

3.4 Boundedness and Convergence Analysis
Theorem 1. Under assumptions 1 to 5 on the
control system (1), all the signals in the resulting
closed-loop system with the controller (30) are
bounded. Further, the tracking error ν converges
to any given bound

lim
t→∞

|ν| ≤ δ (33)

Proof : Consider the following positive and con-
tinuous function V :

V =





1
2
δ2
ν + Va, ν ∈ Ων0

1
2
ν2 + Va, ν ∈ Ων1

(34)

where

Va=





1
2
δ2
yf

+δ2
Vv

+
g′m
2γI

∆k2
I , yf ∈Ωyf0 , (ξ, η, ω1)∈Ωv0

1
2
δ2
yf

+Vv+
g′m
2γI

∆k2
I , yf ∈Ωyf0 , (ξ, η, ω1)∈Ωv1

1
2
y2

f +δ2
Vv

+
g′m
2γI

∆k2
I , yf ∈Ωyf1 , (ξ, η, ω1)∈Ωv0

1
2
y2

f +Vv+
g′m
2γI

∆k2
I , yf ∈Ωyf1 , (ξ, η, ω1)∈Ωv1

Vv = µ0ξ
T Pξξ + µ1W (η) +

1
2
ω2

1 , ∆kI = kI − k∗

and Ωv0 and Ωv1 are defined by

Ωv0 ={ξ ∈ Rr−1, η ∈ Rn−r, ω1 ∈ R | Vv ≤ δ2
Vv
}

Ωv1 ={ξ ∈ Rr−1, η ∈ Rn−r, ω1 ∈ R | Vv > δ2
Vv
}

with a positive constant δVv which is determined
such as δ2

Vv
≥ R̄/ᾱv. Where ᾱv is defined by

ᾱv=min
[
λmin[Qξ]−v′1/µ0

λmax[Pξ]
,
κ1−v2/µ1

κ3
, 2c̄1

]

for positive constants µ0, µ1 and ρ̄1 that satisfy

µ0λmin[Qξ]− v′1 > 0, µ1κ1 − v2 > 0,

c̄1 = c1 − ρ̄1 −
a2

f1

2ε3
> 0, v′1 = v1 +

L2
2

ε1l1

and R̄ is given by

R̄ = R0 +
1

4ε0
(|aa1|2 + ‖aa2‖2) +

‖af2‖2
4ε2

+
1

4ε1
(
4(L2σ0)2

l1
+

4d2
01

l1
+ g2

M + d2
11 + σ2

1 + γ2
I )

+
[µ0‖Pξ‖σ3]2

ρ6
+

[µ1κ1σ4]2

4ρ7
+

(L2δν)2

ε1l1

where

σ3 = ‖aξ‖(σ0 + δν) + p1(φ1Mδν + φ2M ) + p0

σ4 = L1(σ0 + δν) + d1η(ψ1ηMδν + φ2ηM ) + d0η

φ1M , ψ1ηM are positive constants that satisfy
|φ1(y)| ≤ φ1M , |ψ1η(y)| ≤ ψ1ηM for y such that
|y| ≤ δν + σ0 and gM is a positive constant which
satisfies g′1,r(t) ≤ gM for all t.

Further, in the function V , we consider an ideal
feedback gain k∗ which satisfies the following
inequality:

−(g′mk∗ − v′0)δ
2
v + R2 ≤ −γν < 0 (35)

for

v′0 =v0 +
g2

M

4ρ̄1
+ ρ̄2 +

g2
M

4af1

+
g2

M

4ε3
+

L2
2

ε1l1

R2 =R̄ +
2δ2

Vv
g2

M

4ρ̄2

where γν , ρ̄2 are any positive constants.

From (34), the time derivative of V for ν ∈ Ων0 is
given by

V̇ = 0 (36)
for yf ∈ Ωyf0 and (ξ, η, ω1) ∈ Ωv0 , and for
yf ∈ Ωyf0 and (ξ, η, ω1) ∈ Ωv1 , it can be evaluated
by

V̇ = V̇v ≤ −ᾱvVv + R̄ ≤ 0, (37)
since Vv > δ2

Vv
for (ξ,η, ω1) ∈ Ωv1 . Furthermore,

for yf ∈ Ωyf1 and (ξ, η, ω1) ∈ Ωv0 , V̇ for ν ∈ Ων0

is evaluated by

V̇ ≤ −γfy2
f +

‖af2‖2
4ε2

≤ 0 (38)

from (31), and for yf ∈ Ωyf1 and (ξ, η, ω1) ∈ Ωv1 ,
it follows that

V̇ ≤ −ᾱvVv − γfy2
f + R̄ ≤ 0. (39)

As for the time derivative of V for ν ∈ Ων1 , V̇ is
evaluated by

V̇ ≤ −(g′mk∗ − v′0)ν
2 − γfy2

f + R2 ≤ −γν (40)

for yf ∈ Ωyf1 and (ξ, η, ω1) ∈ Ωv0 . For yf ∈ Ωyf1

and (ξ, η, ω1) ∈ Ωv1 , we have

V̇ ≤−(g′mk∗−v′0)ν
2−ᾱvVv−γfy2

f +R̄≤−γν (41)

from (35). We can see from (38) to (41) that the
PFC output yf is bounded. Furthermore it follows
form (16) that the PFC states ηf are bounded. As
a consequence, since the signal yf −Ψ0 is given by

d

dt
(yf −Ψ0) = −af (yf −Ψ0) + aT

f2
ηf (42)

for yf ∈ Ωyf1 , yf−Ψ0 is also bounded. Thus there
exists a positive constant Ψ0M such that

|yf −Ψ0| ≤ Ψ0M (43)

for the both regions Ωyf0 and Ωyf1 . Here we
consider the ideal feedback gain k∗ again such that
the following inequality is satisfied.

−(g′mk∗ − v′0)δ
2
v + max(R2, R3) ≤ −γν < 0 (44)



where

R3 =
σ2

5

4ρ2
+

d11

4g′mγR

σ5 =L2σ0 + d01 + σ1 +
L2δVv√

µ0λmin[Pξ]

+
√

2gMδVv + gMΨ0M

This k∗ must satisfy (35). For such a k∗, the time
derivative of V for yf ∈ Ωyf0 and (ξ, η, ω1) ∈ Ωv0

can be evaluated by

V̇ ≤ −(g′mk∗ − v′0)ν
2 + R3 ≤ −γν (45)

and for yf ∈ Ωyf0 and (ξ,η, ω1) ∈ Ωv1 , we have

V̇ ≤ −(g′mk∗−v′0)ν
2−ᾱvVv+R̄+R3 ≤ −γν (46)

from δ2
Vv
≥ R̄/ᾱv and (44).

Consequently we have

V̇ ≤ 0, for ν ∈ Ων0

V̇ ≤ −γν < 0, for ν ∈ Ων1

(47)

Finally the time derivative of V can be evaluated
as V̇ ≤ 0 for all t ≥ 0, so we can conclude that all
the signals in the control system are bounded.

Next, we analyze the convergence of the tracking
error ν. Suppose that there exists a time t0 such
that ν2 > δ2

ν for all t ≥ t0. This implies that
V > 1

2δ2
ν , ∀t ≥ t0. Further, in this case it follows

from (47) that

V (t)=V (t0)+
∫ t

t0

V̇ (τ)dτ≤V (t0)−γν(t−t0) (48)

Since the right-hand side of (48) will eventually
become negative as t → ∞, the inequality con-
tradicts the fact that V > 1

2δ2
ν , ∀t ≥ t0. This

means that the interval (t0, t1) in which ν ∈ Ων1 is
finite. Let (t2, t3) be a finite interval during which
ν2 ≤ δv, i.e. ν ∈ Ων0 and (t3, t4) be a finite interval
during which ν2 > δv, i.e. ν ∈ Ων1 . Since V̇ ≤ 0
for ν ∈ Ων0 and V̇ ≤ −γν < 0 for ν ∈ Ων1 , it
follows that V (t3) ≤ V (t2) for the interval (t2, t3)
and that V (t4) < V (t3) for the interval (t3, t4).

Thus the function V decreases a finite amount
every time ν leaves Ων0 and re-enters in Ων0 and
V does not increase during that ν ∈ Ων0 . Finally
we can conclude that there exists a finite time T
such that V converges to a constant for all t ≥ T
, i.e. ν ∈ Ων0 for all t ≥ T . Thus we obtain that

lim
t→∞

|ν| ≤ δν (49)

and we can attain the control objective (7) by
setting the positive constant δν as δν = δ. ¥

4. CONCLUSIONS
In this paper, we proposed a novel one-step back-
stepping design scheme for a robust adaptive
tracking control of uncertain nonlinear systems.
The proposed method can be applied to the un-
certain nonlinear systems with any order of rela-
tive degree and has a relatively simple controller
structure.
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