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Abstract: The problem of predicting multivariable process inputs for a given set of 
process outputs is solved by training a combination of partitioned feedforward 
backpropagation neural networks. Training of a single multi-layer network produces 
large unacceptable errors in the predictions due to the absence of monotonic process 
output functions. However, by configuring a system with parallel partitioned networks 
linked with a single output network, significant improvement in accuracy of the 
prediction model was achieved. Percentage errors in the prediction were found to be 
reduced from a maximum of 73% using a single network system to 38% using parallel 
networks linked with a single output network, for the worst affected process variable. 
The improvement in accuracy is largely dependent on the method of partitioning, the 
training algorithm and filtering of the training data.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
In a production process it is often required to predict 
process inputs given a specific set of process outputs. 
Using neural networks (Hagan et al., 1996) a process 
can be modelled to facilitate such predictions.  
Through the cause and effect phenomenon a forwards 
network can be modelled fairly accurately. In this 
paper, the terms forwards network is used to describe 
a network that has the process inputs - the so-called 
factory settings as network inputs and the process 
outputs – the so-called product parameters as the 
network outputs.  A backwards network has the 
process outputs as the network inputs and the process 
inputs as the network outputs. Due to the inputs and 
outputs having non-invertible dependencies (Viharos 
and Monostori, 1999), the backwards network has 
unacceptably large output errors. The current 
procedure to solve this problem is as follows.  First 
train a forwards network. Then apply an arbitrary 
process input vector and obtain the process output 
vector using the network. By comparing this output 
with the desired output, an error vector representing  
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the process outputs can be obtained.  These errors are 
then back propagated to the input later. The resulting 
error at the input layer is then use to correct the 
originally used arbitrary process input vector.  This 
procedure is repeated until convergence is reached. 
((Hoskins et al., 1992), (Linden and Kindermann, 
1989) & (Davis et al., September 1995)). In the 
majority of applications it is the prediction of process 
inputs which is of interest to the user. The alternative 
of a trained backwards network to the inversion of a 
forwards network is discussed in this paper.  The 
innovations in the optimisation of the backwards 
network to provide reliable and accurate results will 
be detailed. Note that the large number of process 
inputs (22) and outputs (8) pose a significant 
challenge to solving the problem. 
 
 

2. SETTING UP OF THE NETWORK 
 
Prior to optimising the backwards network, 
preliminary trials were conducted to determine the 
number of neurons, number of layers and the type of 
transfer functions to be used. Networks were setup 
with 'tansig' transfer functions for hidden layer(s) and 
'purelin' for the output layer.  The effects of multi-
layer networks of 2, 3 and 4 layers were investigated. 



To optimise the number of neurons in each hidden 
layer, a programme was written to progressively 
increase or decrease the number of neurons in each of 
the hidden layers using the mean square error as the 
measure of accuracy. Other researchers used a similar 
method of increasing the number of neurons in each 
layer to reduce the error (Rangwala and Dornfield, 
(1989).  Networks were optimised based on a process 
which had 22 process inputs and 8 process outputs.  
For clarity only the process output which had the 
most variation amongst the training data compared to 
the target data is shown in Fig.1. 
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Fig.1. Effect of number of layers on accuracy. 
 
Fit of the graph show that a 3 layer network fits the 
best to the target data. It was concluded that a neural 
network consisting of 2 hidden and 1 output layers (3 
layers), was found to provide the best model for this 
nonlinear process.  The majority of errors were lower 
than for either the 2 or 4 layer systems.  The same 
result was found to be true also by Cybenko  
(Cybenko, 1987) who concluded that a 3-layer 
network was the most flexible in modelling any 
arbitrary process. 
 
 

3. TRAINING OF THE BACKWARDS 
NETWORK 
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Fig.2. Output errors from a single network. 

For this training, data from the same process used to 
investigate the number of layers for the forward 
network, was used to train the backwards network.  
As before there were 22 process inputs and 8 process 
outputs.  A backwards network was trained using 3 
layers, two 'tansig' transfer functions in the hidden 
layers and a 'purelin' transfer function in the output 
layer.  With such a large number of process inputs, 

unacceptable errors resulted in predictions using a 
single backwards network.  The errors resulted in 
predicting the 22 process inputs given the 8 process 
outputs, are shown in Fig.3.  The prediction process 
used 8 process outputs which were not included in the 
training data.  The percentage error was determined 
by comparing the output of the model with the actual 
process inputs. 
As seen in Fig.2 the errors were quite large.  The 
number of epochs used in training was 600.  This was 
set based on the change in mean square error of the 
process input values (network outputs).  The change 
in value reduced logarithmically with the greatest 
change from 1 to 200 epochs, after which the 
improvements were minimal.  Research by Rangwala 
and Dornfield also showed similar results (Rangwala 
and Dornfield (1989)). 
 
 

4. ERROR INVESTIGATION 
 
To investigate the cause of the inaccuracies, a known 
arithmetic function was modelled using neural 
networks.  For a given f(x) value, the model was to 
predict x.  The function f(x) used is shown in Fig.3. 
Depending on the shape of the function being trained, 
there may not be a unique process input value for 
each process output value entered into the backwards 
network.  For instance in Fig.3, for a target value of 
1.0, two possible process input values of 120 and 182 
are possible.  For the backwards network to produce a 
unique output, there must be more constraints in the 
form of network inputs. 
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Fig.3. Multi-valued network output 

For the process data there is a fixed number of inputs 
and outputs to the process.  Hence it was not possible 
to produce more constraining conditions for the 
backwards network.  The alternative was to reduce 
the number of network outputs (process inputs) which 
are outputted by the backwards network.  This can be 
achieved by partitioning the process outputs into 
smaller sets and training them to certain process 
inputs.  This study claims the partitioning of the 
networks as its innovation. 
 
 



5. BACKWARDS NETWORK PARTITIONING 
 
To improve accuracy of the backwards network, 
partitioning of the training data to train smaller 
networks (by reducing the number of outputs per 
partitioned network) should avoid the issue of non-
unique sets of process input values outputted by the 
overall backwards network. The question of how to 
partition will be first looked into before addressing 
the effects on accuracy of partitioning.  There are a 
few areas which must be determined to partition a 
process; (i) number of partitions, (ii) network 
configuration and, (iii) partitioning criteria. 
 

Table 1. Correlation Based Partitioning 
 

Number 
of 

Partitions 

Correlation 
Partitioning 

Mean 
Square 
Error 

Max 
Error 
(%) 

1 nil 238 48 

2 1: <0.7; 
2: ≥0.7 

174 32 

3 1: <0.7;   
2: ≥0.7 & <0.98 
3: ≥0.98 

144 36 

4 1:  <0.6 
2: ≥0.6  & <0.8 
3: ≥0.8  & <0.99 
4: ≥0.99 

159 42 

5 1:  <0.4 
2: ≥0.4  & <0.5 
3: ≥0.5  & <0.6 
4: ≥0.6  & <0.7 
5: ≥0.7 

171 57 

 
To determine the optimum number of partitions, the 
level of correlation between process inputs will be 
used as the criteria to determine the split in the 
networks. The partitioned networks will use an output 
network to link the outputs of each partitioned 
network.  Having an output network will account for 
interrelationships between the partitioned network 
outputs.  Depending on the number of partitions, the 
process inputs will be split according to specific 
ranges of correlation. 
 
 
Network optimisation runs were conducted for single 
networks through to 5 partition splits.  Table 1 shows 
the correlation ranges that were used to partition the 
process inputs for training of the backwards networks. 
 
The networks were trained on one set of data then 
verification runs were conducted on a second set of 
data not used in the training process. By comparing 
the process inputs outputted by the model to the 
actual values in the verification data the error of the 
model was measured.  As can be seen in Fig.4, even 
though the mean square error of the 3, 4 and 5- 
partition networks were lower than the 2-partition 

network, it was the 2-partition network which gave 
the smallest percentage peak error amongst the 
predicted process inputs.  As it is desired to reduce 
the error as much as possible for the prediction of all 
the process inputs, the 2-partition system will be used 
in discussions in the remainder of this paper. 
 
The partitioning in two different configurations 
(Fig.5) will be investigated in this section. 
 
Configuration 1 (partitioned network) is to have 
independent backwards networks which may or may 
not output the same process inputs.  Outputs of these 
independent networks are then linked by a final 
network which outputs all the process 
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Fig.4. The effect of number of partitions on accuracy 

 
inputs. Hashem (Hashem, 1997) conducted tests 
which proves that parallel networks joined together 
by a linear output network does indeed improve 
network accuracy.  However, in his studies the 
parallel networks all had the same inputs and outputs 
but simply had different initial training values for 
weights and biases.  The output network was used to 
provide a weighted average of the different parallel 
networks.  In contrast to Hashem's work, the 
partitioned networks considered here do not have the 
same inputs and outputs and the output network is not 
to average the different results of the parallel 
networks but to provide nonlinear interrelationships 
between the different network outputs.  Each of the 
parallel networks generate a unique set of outputs. 
 
Configuration 2 (multiple network) is to produce a 
model which consists of independent backwards 
networks each outputting a specific set of process 
inputs. 
 
The prediction error for the two configurations are 
shown in Fig.6.  It can be seen that configuration 2 
had a greater error in predicting the process inputs.  
This is because with the separate networks there is no 
output network which provides the interrelationship 
between different process inputs.  Also each separate 
network outputs different process inputs to avoid 
duplication and ultimately conflicting values of the 
same output. 
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Fig.5. Partitioning configurations 
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Fig.6. The effect of network configurations on 

accuracy 

The last step is to investigate various methods of 
partitioning a backwards network.  Below are some 
partitioning methods used to group the process inputs: 
 
Correlation: The process inputs were partitioned into 
2 groups with correlation <0.7 and correlation �0.7.  
By grouping according to correlation the relationship 
between inputs would not be lost and this would also 
eliminate interference from unrelated process inputs. 
 
Multi-valued Behaviour: Each process input was 
varied from minimum to maximum with the other 
process inputs being kept constant at the average 
values.  A neural network trained in the forwards 
direction was used to generate process outputs for the 
different data sets.  Inputs which generated a curve 
having 2 or more possible process input values for a 
given process output were grouped together.  The 
process output with the worst error was chosen as the 
y-axis to plot against process inputs on the x-axis.  
Fig.7 shows an output number plotted against a 

varying process input on the x-axis.   This behaviour 
was observed for 12 out of 22 process inputs. 
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Fig.7. Multi-valued process inputs 

 
Network per Process Input: All process outputs 
trained to single input - one backwards network per 
process input trained to all process outputs (8 off) to 
provide as many constraints as possible to define each 
process input.  This method is based on the 
assumption of method 2 above, of a process output 
being multi-valued and there could be multiple 
process inputs with similar behaviour for a given 
process output.  By having more process output 
conditions specified there is a higher possibility of 
having a unique set of process inputs for a given set 
of process outputs. 
 
Maximum Magnitude: Similar to Multi-valued 
Behaviour, but inputs generating similar magnitudes 
of output error were grouped together.  This was to 
determine if the inaccurate process inputs were 
affecting the more accurate ones. 
 
Input Magnitude: Networks split according to the 
magnitudes of inputs from min to max values.  Group 
1 for magnitudes 0 to 100, Group 2 for 100+.  To 
investigate possible inaccuracies introduced in the 
normalising process.  Accuracy of smaller magnitude 
inputs may be less since normalisation is done across 
the minimum and maximum range of all inputs for 
the network. 
 
Input Range: As networks are trained on normalised 
values between -1 and 1, inputs with similar input 
ranges were grouped together to provide constraints 
on non-singular outputs across the whole range of 
inputs.  Input groupings were for input ranges <30 
and �30. 
 
All trials were conducted on the same training data 
set.  To verify the accuracy of the networks, data not 
used in training were applied to the networks. Fig.8 
shows the results of the different partitioning 
methods. Included for comparison are the errors of a 
single backwards network (no partitioning).  The 
most significant reduction in prediction errors of the 
backwards network were seen when the process 
inputs were partitioned according to correlation.  All 
other techniques listed above failed to provide any 



significant improvement to the accuracy of the 
predicted results. This is interesting as Hashem's 
(Hashem, 1997) studies specifically mention that high 
correlation between network outputs is a good 
warning to collinearity of outputs which lead to 
inversion round-off errors and sensitivity to small 
variations in data. 
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Fig.8. Accuracies of partitioning methods 

 

 

6. DATA FILTERING & MANIPULATION 
 
To further improve the performance of the backwards 
network, different methods of filtering or 
manipulating the data were trialled.  In the methods 
where magnitudes of the training data were grouped 
together according to similar ranges or were re-scaled 
to have similar ranges, the approach was to minimise 
the possibility of round-off errors during the data 
normalising stage before training.  During 
normalising all the values in the input and output 
matrices are normalised between -1 and 1 based on 
the minimum and maximum values of each of the 
matrices.  By keeping magnitudes similar then the 
level of inaccuracies generated from the smaller 
values will be reduced.  Below are some of the 
methods tried: 
 
 
Method 1: The process inputs and outputs were 
grouped according to their magnitude. The inputs and 
outputs were partitioned into 2 groups such that 
values with higher magnitude values were in one 
group and the lower magnitude ones in the other.  To 
account for the different combinations of high and 
low magnitude inputs and outputs, 4 networks were 
produced which were then linked together by a single 
output network.  Network arrangement was similar to 
Configuration 1 of Fig.5 except there were 4 
partitioned networks instead of 2. 
 
Method 2: The process inputs were grouped with 
correlation <0.7 and with correlation �0.7 with 
training data scaled to largest I/O range and offset to 
give same minimum and maximum value for all 
inputs and outputs.  Outputs from the trained 
networks were then re-scaled to represent actual 
values. 

 
Method 3: The process inputs were grouped with 
correlation <0.7 and �0.7.  Training records with 
outlying results were deleted based on process 
experience of the operator. 
 
Method 4: The process inputs were grouped with 
correlation <0.7 and �0.7.  Process variables which 
had  errors greater than 25% when compared to the 
target were omitted in the next network training. That 
is, process input columns 6, 16, 17, 18 & 22 of Fig.9 
not included in training of networks. 
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Fig.9. Data filtering/manipulation on accuracy 

 
 
7. TRAINING ALGORITHMS ON ACCURACY 

 
On establishing the network configuration to provide 
the most accurate model, the last step will be to 
determine the training algorithm to improve the 
model accuracy.  Three algorithms will be look at; (i) 
Gradient decent algorithm with momentum 
(traingdm), (ii) One step secant algorithm (trainoss) 
and, (iii) BFGS quasi-Newton back propagation 
algorithm (trainbfg). The same training data set, 
consisting of only 153 records, was used to train three 
backwards networks, one network for each of the 
training algorithms.  All results of the prior section 
used the gradient descent algorithm with momentum 
due to it's speed of execution. The time for training 
using the 'trainoss' algorithm was generally 50% more 
than for 'traingdm'.  However, 'trainbfg' algorithm 
over 3000% longer to complete due to the extra 
storage and computations performed per epoch.  As 
shown in Fig.10, the error in the resulting networks 
for each of the training algorithms shows significant 
improvement in 'trainbfg' over the 'traingdm' 
algorithm when network verification was conducted 
using the training data.  However, as shown in Fig.11, 
when data not used in training was applied to the 
networks 'traingdm' returned the more accurate results 
due to convergence to the global minimum 
(Rangwala and Dornfield (1989)).  This can be 
attributed to the 'trainoss' and 'trainbfg' algorithms 
being over-trained to the training data.  Over-training 
of networks were found by Hoo et al (Hoo et al., 
2002) to provide a model with the inability to 
generalise when presented with a data set different to 
the one used in training.  Hence any variation to the 
training data would return large errors.  Based on the 



fact that the networks are used to predict process 
inputs not conducted experimentally (untrained data), 
the 'traingdm' algorithm is the best choice providing 
significantly improved network accuracy over 
'trainoss' and  'trainbfg'.  It has the additional 
advantage of requiring less computations and memory 
during training than the other two algorithms. 
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Fig.10. Accuracy using training data 
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Fig.11. Accuracy using non-training data 

 

 
8. CONCLUSIONS 

 
The study indicated that a number of steps are 
necessary to improve the accuracy of a neural 
network that represents a complex process which is 
intended to predict the process inputs for a desired set 
of process outputs. The multi-values nature of the 
functions relating the process inputs to outputs cause 
considerable difficulties in the prediction process.  As 
a first step towards improvement, the outliers of the 
training data must be identified and eliminated. 
Secondly, it was found that it is best to use 'tansig' 
transfer functions for hidden layers and 'purelin' for 
the output layers. Next, the rate of reduction of mean 
square error can be used to determine the most 
suitable number of neurons for a hidden layer. The 
gradient descent algorithm with momentum is 
computationally very efficient and does not lead to 
overtraining.  The networks trained using this method 
showed robustness. Using two split networks based 
on network input correlation gives best results. A 
third network is necessary to link the two split 
networks to model the interrelationships between 
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Fig.12. Comparison of partitioned and single network 

accuracies  

 
networks. The comparisons shown in Fig.12 prove 
the validity of the above factors. 
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