

BACKWARDS NEURAL NETWORK OPTIMISATION

Kenneth Gock and Jayantha Katupitiya

School of Mechanical and Manufacturing Engineering
University of New South Wales

Sydney, Australia
J.Katupitiya@unsw.edu.au

Abstract: The problem of predicting multivariable process inputs for a given set of
process outputs is solved by training a combination of partitioned feedforward
backpropagation neural networks. Training of a single multi-layer network produces
large unacceptable errors in the predictions due to the absence of monotonic process
output functions. However, by configuring a system with parallel partitioned networks
linked with a single output network, significant improvement in accuracy of the
prediction model was achieved. Percentage errors in the prediction were found to be
reduced from a maximum of 73% using a single network system to 38% using parallel
networks linked with a single output network, for the worst affected process variable.
The improvement in accuracy is largely dependent on the method of partitioning, the
training algorithm and filtering of the training data. Copyright © 2005 IFAC

Keywords: partitioned networks, multi-valued functions, neural network inversion

1. INTRODUCTION

In a production process it is often required to predict
process inputs given a specific set of process outputs.
Using neural networks (Hagan et al., 1996) a process
can be modelled to facilitate such predictions.
Through the cause and effect phenomenon a forwards
network can be modelled fairly accurately. In this
paper, the terms forwards network is used to describe
a network that has the process inputs - the so-called
factory settings as network inputs and the process
outputs – the so-called product parameters as the
network outputs. A backwards network has the
process outputs as the network inputs and the process
inputs as the network outputs. Due to the inputs and
outputs having non-invertible dependencies (Viharos
and Monostori, 1999), the backwards network has
unacceptably large output errors. The current
procedure to solve this problem is as follows. First
train a forwards network. Then apply an arbitrary
process input vector and obtain the process output
vector using the network. By comparing this output
with the desired output, an error vector representing

1 Partially supported by Memcor Australia Pty. Ltd

the process outputs can be obtained. These errors are
then back propagated to the input later. The resulting
error at the input layer is then use to correct the
originally used arbitrary process input vector. This
procedure is repeated until convergence is reached.
((Hoskins et al., 1992), (Linden and Kindermann,
1989) & (Davis et al., September 1995)). In the
majority of applications it is the prediction of process
inputs which is of interest to the user. The alternative
of a trained backwards network to the inversion of a
forwards network is discussed in this paper. The
innovations in the optimisation of the backwards
network to provide reliable and accurate results will
be detailed. Note that the large number of process
inputs (22) and outputs (8) pose a significant
challenge to solving the problem.

2. SETTING UP OF THE NETWORK

Prior to optimising the backwards network,
preliminary trials were conducted to determine the
number of neurons, number of layers and the type of
transfer functions to be used. Networks were setup
with 'tansig' transfer functions for hidden layer(s) and
'purelin' for the output layer. The effects of multi-
layer networks of 2, 3 and 4 layers were investigated.

To optimise the number of neurons in each hidden
layer, a programme was written to progressively
increase or decrease the number of neurons in each of
the hidden layers using the mean square error as the
measure of accuracy. Other researchers used a similar
method of increasing the number of neurons in each
layer to reduce the error (Rangwala and Dornfield,
(1989). Networks were optimised based on a process
which had 22 process inputs and 8 process outputs.
For clarity only the process output which had the
most variation amongst the training data compared to
the target data is shown in Fig.1.

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161
Data Record Number

D
at

a
V

al
ue

target 2 layers 3 layers 4 layers

Fig.1. Effect of number of layers on accuracy.

Fit of the graph show that a 3 layer network fits the
best to the target data. It was concluded that a neural
network consisting of 2 hidden and 1 output layers (3
layers), was found to provide the best model for this
nonlinear process. The majority of errors were lower
than for either the 2 or 4 layer systems. The same
result was found to be true also by Cybenko
(Cybenko, 1987) who concluded that a 3-layer
network was the most flexible in modelling any
arbitrary process.

3. TRAINING OF THE BACKWARDS
NETWORK

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Process Input Number

%
 E

rr
or

Fig.2. Output errors from a single network.

For this training, data from the same process used to
investigate the number of layers for the forward
network, was used to train the backwards network.
As before there were 22 process inputs and 8 process
outputs. A backwards network was trained using 3
layers, two 'tansig' transfer functions in the hidden
layers and a 'purelin' transfer function in the output
layer. With such a large number of process inputs,

unacceptable errors resulted in predictions using a
single backwards network. The errors resulted in
predicting the 22 process inputs given the 8 process
outputs, are shown in Fig.3. The prediction process
used 8 process outputs which were not included in the
training data. The percentage error was determined
by comparing the output of the model with the actual
process inputs.
As seen in Fig.2 the errors were quite large. The
number of epochs used in training was 600. This was
set based on the change in mean square error of the
process input values (network outputs). The change
in value reduced logarithmically with the greatest
change from 1 to 200 epochs, after which the
improvements were minimal. Research by Rangwala
and Dornfield also showed similar results (Rangwala
and Dornfield (1989)).

4. ERROR INVESTIGATION

To investigate the cause of the inaccuracies, a known
arithmetic function was modelled using neural
networks. For a given f(x) value, the model was to
predict x. The function f(x) used is shown in Fig.3.
Depending on the shape of the function being trained,
there may not be a unique process input value for
each process output value entered into the backwards
network. For instance in Fig.3, for a target value of
1.0, two possible process input values of 120 and 182
are possible. For the backwards network to produce a
unique output, there must be more constraints in the
form of network inputs.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

-2
00

-1
80

-1
60

-1
40

-1
20

-1
00 -8

0

-6
0

-4
0

-2
0 0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

x

y

Fig.3. Multi-valued network output

For the process data there is a fixed number of inputs
and outputs to the process. Hence it was not possible
to produce more constraining conditions for the
backwards network. The alternative was to reduce
the number of network outputs (process inputs) which
are outputted by the backwards network. This can be
achieved by partitioning the process outputs into
smaller sets and training them to certain process
inputs. This study claims the partitioning of the
networks as its innovation.

5. BACKWARDS NETWORK PARTITIONING

To improve accuracy of the backwards network,
partitioning of the training data to train smaller
networks (by reducing the number of outputs per
partitioned network) should avoid the issue of non-
unique sets of process input values outputted by the
overall backwards network. The question of how to
partition will be first looked into before addressing
the effects on accuracy of partitioning. There are a
few areas which must be determined to partition a
process; (i) number of partitions, (ii) network
configuration and, (iii) partitioning criteria.

Table 1. Correlation Based Partitioning

Number
of

Partitions

Correlation
Partitioning

Mean
Square
Error

Max
Error
(%)

1 nil 238 48

2 1: <0.7;
2: ≥0.7

174 32

3 1: <0.7;
2: ≥0.7 & <0.98
3: ≥0.98

144 36

4 1: <0.6
2: ≥0.6 & <0.8
3: ≥0.8 & <0.99
4: ≥0.99

159 42

5 1: <0.4
2: ≥0.4 & <0.5
3: ≥0.5 & <0.6
4: ≥0.6 & <0.7
5: ≥0.7

171 57

To determine the optimum number of partitions, the
level of correlation between process inputs will be
used as the criteria to determine the split in the
networks. The partitioned networks will use an output
network to link the outputs of each partitioned
network. Having an output network will account for
interrelationships between the partitioned network
outputs. Depending on the number of partitions, the
process inputs will be split according to specific
ranges of correlation.

Network optimisation runs were conducted for single
networks through to 5 partition splits. Table 1 shows
the correlation ranges that were used to partition the
process inputs for training of the backwards networks.

The networks were trained on one set of data then
verification runs were conducted on a second set of
data not used in the training process. By comparing
the process inputs outputted by the model to the
actual values in the verification data the error of the
model was measured. As can be seen in Fig.4, even
though the mean square error of the 3, 4 and 5-
partition networks were lower than the 2-partition

network, it was the 2-partition network which gave
the smallest percentage peak error amongst the
predicted process inputs. As it is desired to reduce
the error as much as possible for the prediction of all
the process inputs, the 2-partition system will be used
in discussions in the remainder of this paper.

The partitioning in two different configurations
(Fig.5) will be investigated in this section.

Configuration 1 (partitioned network) is to have
independent backwards networks which may or may
not output the same process inputs. Outputs of these
independent networks are then linked by a final
network which outputs all the process

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Process Input

%
 E

rr
or

Single 2 partition

3 partition 4 partition

5 partition

Fig.4. The effect of number of partitions on accuracy

inputs. Hashem (Hashem, 1997) conducted tests
which proves that parallel networks joined together
by a linear output network does indeed improve
network accuracy. However, in his studies the
parallel networks all had the same inputs and outputs
but simply had different initial training values for
weights and biases. The output network was used to
provide a weighted average of the different parallel
networks. In contrast to Hashem's work, the
partitioned networks considered here do not have the
same inputs and outputs and the output network is not
to average the different results of the parallel
networks but to provide nonlinear interrelationships
between the different network outputs. Each of the
parallel networks generate a unique set of outputs.

Configuration 2 (multiple network) is to produce a
model which consists of independent backwards
networks each outputting a specific set of process
inputs.

The prediction error for the two configurations are
shown in Fig.6. It can be seen that configuration 2
had a greater error in predicting the process inputs.
This is because with the separate networks there is no
output network which provides the interrelationship
between different process inputs. Also each separate
network outputs different process inputs to avoid
duplication and ultimately conflicting values of the
same output.

Multiple Network Configuration

N
et

w
or

k
In

pu
ts

(P
ro

ce
ss

 O
ut

pu
ts

)

Output Network

Partitioned Network Configuration

N
et

w
or

k
O

ut
pu

ts
(P

ro
ce

ss
 In

pu
ts

)

Partitioned Networks

N
et

w
or

k
O

ut
pu

ts
(P

ro
ce

ss
 In

pu
ts

)

N
et

w
or

k
In

pu
ts

(P
ro

ce
ss

 O
ut

pu
ts

)

Fig.5. Partitioning configurations

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Process Inputs

%
 E

rr
or

Partitioned Network Configuration

Multiple Network Configuration

Fig.6. The effect of network configurations on

accuracy

The last step is to investigate various methods of
partitioning a backwards network. Below are some
partitioning methods used to group the process inputs:

Correlation: The process inputs were partitioned into
2 groups with correlation <0.7 and correlation �0.7.
By grouping according to correlation the relationship
between inputs would not be lost and this would also
eliminate interference from unrelated process inputs.

Multi-valued Behaviour: Each process input was
varied from minimum to maximum with the other
process inputs being kept constant at the average
values. A neural network trained in the forwards
direction was used to generate process outputs for the
different data sets. Inputs which generated a curve
having 2 or more possible process input values for a
given process output were grouped together. The
process output with the worst error was chosen as the
y-axis to plot against process inputs on the x-axis.
Fig.7 shows an output number plotted against a

varying process input on the x-axis. This behaviour
was observed for 12 out of 22 process inputs.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

18 19 21 22 24 25 26 28 29 30
Process Input

P
ro

ce
ss

 O
ut

pu
t

Fig.7. Multi-valued process inputs

Network per Process Input: All process outputs
trained to single input - one backwards network per
process input trained to all process outputs (8 off) to
provide as many constraints as possible to define each
process input. This method is based on the
assumption of method 2 above, of a process output
being multi-valued and there could be multiple
process inputs with similar behaviour for a given
process output. By having more process output
conditions specified there is a higher possibility of
having a unique set of process inputs for a given set
of process outputs.

Maximum Magnitude: Similar to Multi-valued
Behaviour, but inputs generating similar magnitudes
of output error were grouped together. This was to
determine if the inaccurate process inputs were
affecting the more accurate ones.

Input Magnitude: Networks split according to the
magnitudes of inputs from min to max values. Group
1 for magnitudes 0 to 100, Group 2 for 100+. To
investigate possible inaccuracies introduced in the
normalising process. Accuracy of smaller magnitude
inputs may be less since normalisation is done across
the minimum and maximum range of all inputs for
the network.

Input Range: As networks are trained on normalised
values between -1 and 1, inputs with similar input
ranges were grouped together to provide constraints
on non-singular outputs across the whole range of
inputs. Input groupings were for input ranges <30
and �30.

All trials were conducted on the same training data
set. To verify the accuracy of the networks, data not
used in training were applied to the networks. Fig.8
shows the results of the different partitioning
methods. Included for comparison are the errors of a
single backwards network (no partitioning). The
most significant reduction in prediction errors of the
backwards network were seen when the process
inputs were partitioned according to correlation. All
other techniques listed above failed to provide any

significant improvement to the accuracy of the
predicted results. This is interesting as Hashem's
(Hashem, 1997) studies specifically mention that high
correlation between network outputs is a good
warning to collinearity of outputs which lead to
inversion round-off errors and sensitivity to small
variations in data.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Process Inputs

%
 E

rr
or

single network correlation
mult-value behaviour all outputs to 1 input
max magnitude input magnitude
input range

Fig.8. Accuracies of partitioning methods

6. DATA FILTERING & MANIPULATION

To further improve the performance of the backwards
network, different methods of filtering or
manipulating the data were trialled. In the methods
where magnitudes of the training data were grouped
together according to similar ranges or were re-scaled
to have similar ranges, the approach was to minimise
the possibility of round-off errors during the data
normalising stage before training. During
normalising all the values in the input and output
matrices are normalised between -1 and 1 based on
the minimum and maximum values of each of the
matrices. By keeping magnitudes similar then the
level of inaccuracies generated from the smaller
values will be reduced. Below are some of the
methods tried:

Method 1: The process inputs and outputs were
grouped according to their magnitude. The inputs and
outputs were partitioned into 2 groups such that
values with higher magnitude values were in one
group and the lower magnitude ones in the other. To
account for the different combinations of high and
low magnitude inputs and outputs, 4 networks were
produced which were then linked together by a single
output network. Network arrangement was similar to
Configuration 1 of Fig.5 except there were 4
partitioned networks instead of 2.

Method 2: The process inputs were grouped with
correlation <0.7 and with correlation �0.7 with
training data scaled to largest I/O range and offset to
give same minimum and maximum value for all
inputs and outputs. Outputs from the trained
networks were then re-scaled to represent actual
values.

Method 3: The process inputs were grouped with
correlation <0.7 and �0.7. Training records with
outlying results were deleted based on process
experience of the operator.

Method 4: The process inputs were grouped with
correlation <0.7 and �0.7. Process variables which
had errors greater than 25% when compared to the
target were omitted in the next network training. That
is, process input columns 6, 16, 17, 18 & 22 of Fig.9
not included in training of networks.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Process Inputs

%
 E

rr
or

method 1 method 2

method 3 method 4

Fig.9. Data filtering/manipulation on accuracy

7. TRAINING ALGORITHMS ON ACCURACY

On establishing the network configuration to provide
the most accurate model, the last step will be to
determine the training algorithm to improve the
model accuracy. Three algorithms will be look at; (i)
Gradient decent algorithm with momentum
(traingdm), (ii) One step secant algorithm (trainoss)
and, (iii) BFGS quasi-Newton back propagation
algorithm (trainbfg). The same training data set,
consisting of only 153 records, was used to train three
backwards networks, one network for each of the
training algorithms. All results of the prior section
used the gradient descent algorithm with momentum
due to it's speed of execution. The time for training
using the 'trainoss' algorithm was generally 50% more
than for 'traingdm'. However, 'trainbfg' algorithm
over 3000% longer to complete due to the extra
storage and computations performed per epoch. As
shown in Fig.10, the error in the resulting networks
for each of the training algorithms shows significant
improvement in 'trainbfg' over the 'traingdm'
algorithm when network verification was conducted
using the training data. However, as shown in Fig.11,
when data not used in training was applied to the
networks 'traingdm' returned the more accurate results
due to convergence to the global minimum
(Rangwala and Dornfield (1989)). This can be
attributed to the 'trainoss' and 'trainbfg' algorithms
being over-trained to the training data. Over-training
of networks were found by Hoo et al (Hoo et al.,
2002) to provide a model with the inability to
generalise when presented with a data set different to
the one used in training. Hence any variation to the
training data would return large errors. Based on the

fact that the networks are used to predict process
inputs not conducted experimentally (untrained data),
the 'traingdm' algorithm is the best choice providing
significantly improved network accuracy over
'trainoss' and 'trainbfg'. It has the additional
advantage of requiring less computations and memory
during training than the other two algorithms.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Process Inputs

%
 E

rr
or

traingdm trainoss trainbfg

Fig.10. Accuracy using training data

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Process Input

%
 E

rr
or

traingdm trainoss trainbfg

Fig.11. Accuracy using non-training data

8. CONCLUSIONS

The study indicated that a number of steps are
necessary to improve the accuracy of a neural
network that represents a complex process which is
intended to predict the process inputs for a desired set
of process outputs. The multi-values nature of the
functions relating the process inputs to outputs cause
considerable difficulties in the prediction process. As
a first step towards improvement, the outliers of the
training data must be identified and eliminated.
Secondly, it was found that it is best to use 'tansig'
transfer functions for hidden layers and 'purelin' for
the output layers. Next, the rate of reduction of mean
square error can be used to determine the most
suitable number of neurons for a hidden layer. The
gradient descent algorithm with momentum is
computationally very efficient and does not lead to
overtraining. The networks trained using this method
showed robustness. Using two split networks based
on network input correlation gives best results. A
third network is necessary to link the two split
networks to model the interrelationships between

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Process Inputs

%
 E

rr
or

single network corr0.7 outliers deleted

Fig.12. Comparison of partitioned and single network

accuracies

networks. The comparisons shown in Fig.12 prove
the validity of the above factors.

9. REFERENCES

Cybenko G. (1987). Approximation by superpositions
of a sigmoidal function. Mathematics Of Control
Signal Systems 2, 303-314.

Davis D., Z. Chen, J. Hwang, L. Tsang and E. Njoku
(September 1995). Solving inverse problems by
bayesian iterative inversion of a forward model
with applications to parameter mapping using
smmr remote sensing data. IEEE Transactions on
Geoscience and Remote Sensing 33, No.5, 1182-
1193.

Hagan, M., H. Demuth and M. Beale (1996). Neural
Network Design. PWS Publishing Company,
Boston.

Hashem S. (1997). Optimal linear combinations of
neural networks. Neural Networks 10, No.4, 599-
614.

Hoo K., E. Sinzinger, M. Piovoso (2002).
Improvements in the predictive capability of
neural networks. Journal of Process Contro 12,
193-202.

Hoskins D., J. Hwang and J. Vagners (1992). Iterative
inversion of neural networks and its application
to adaptive control. IEEE Transactions on Neural
Networks 3, 292-301.

Linden A. and J. Kindermann (1989). Inversion of
multilayer nets. In: Proc. Int. Joint Conf. Neural
Networks 2, 425-430.

Rangwala S. and D. Dornfield (1989). Learning and
optimization of machining operations using
computing abilities of neural networks. IEEE
Transactions on Systems, Man and Cybernetics
19, No.2, 299-314.

Viharos Z. and L. Monostori (1999). Automatic
input-output configuration and generation of
ANN-based process models and their application
in machining. Lecture Notes of Artificial
Intelligence – Multiple Approaches to Intelligent
Systems, Cairo, Egypt. Springer Computer
Science Book, Springer-Verlag Heidelberg. 659-
668.

