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1. INTRODUCTION

A standard assumption in the classical control
theory is that the data transmission required by
the control or state estimation algorithm can be
performed with infinite precision. However, due
to the growth in communication technology, it is
becoming more common to employ digital limited
capacity communication networks for exchange
of information between system components. The
resources available in such systems for communi-
cation between sensors, controllers and actuators
can be severely limited due to size or cost.

In recent years there has been a significant in-
terest in the problem of control and state es-
timation via a digital communication channel
with bit-rate constraint; e.g., see (Wong and
Brockett, 1997; Brockett and Liberzon, 2000;
Tatikonda, 2000; Nair and Evans, 2002; Nair and
Evans, 2003; Savkin and Petersen, 2003; Jain et

al., 2002; Matveev and Savkin, 2004c; Nair et
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al., 2004; Matveev and Savkin, 2004b; Matveev
and Savkin, 2004a). A stochastic setting for the
problem of stabilization via a perfect noiseless dig-
ital channel was investigated by Nair and Evans
in (Nair and Evans, 2002), where an important
fundamental result on minimum data rates was
obtained. Minimum data rates for stabilization
and state estimation via such channels were also
studied in (Wong and Brockett, 1997; Tatikonda,
2000; Nair and Evans, 2003). The problems of
state estimation and stabilization via noisy digital
channels were studied in (Matveev and Savkin,
2004b; Matveev and Savkin, 2004a), and neces-
sary and sufficient conditions were given in terms
of the classic Shannon’s communication channel
capacity.

In this paper, we study connections between ob-
servability and optimal control via digital chan-
nels and topological entropy of the open-loop
system. The concept of entropy of dynamical
systems originated in the work of Kolmogorov
(Kolmogorov, 1958; Kolmogorov, 1959) and was
inspired by the Shannon’s pioneering paper (Shannon,



1948). Kolmogorov’s work started a whole new
research direction in which entropy appears as a
numerical invariant of a class of deterministic dy-
namical systems. Later, Adler and his co-authors
introduced topological entropy of dynamical sys-
tems (Adler et al., 1965) which is a modification
of Kolmogorov’s metric entropy. The pioneering
paper (Nair et al., 2004) imported the concept of
topological entropy into the theory of networked
control systems. The concept of feedback topolog-
ical entropy was introduced and condition of local
stabilizability of nonlinear systems via a limited
capacity channel was given. In this paper, we ex-
tend the concept of topological entropy to the case
of uncertain dynamical systems with non-compact
state space. Unlike (Nair et al., 2004), we use a less
common “metric”definition of topological entropy,
which is, in our opinion, more suitable to the
theory of networked control systems. The main
results of the paper are necessary and sufficient
conditions of robust observability and solvability
of the optimal control problem that are given in
terms of inequalities between the communication
channel data rate and the topological entropy of
the open-loop system.

Due to page limitation, all the results are given
without proofs. The proofs will be given in the
full version of the paper.

2. OBSERVABILITY VIA COMMUNICATION
CHANNELS

In this section, we consider a nonlinear uncertain
discrete-time dynamical system of the form:

x(t + 1) = F (x(t), ω(t)), x(1) ∈ X1, x(t) ∈ X ,

(1)

where t = 1, 2, 3, . . . , x(t) ∈ Rn is the state,
ω(t) ∈ Ω is the uncertainty input, X ⊂ Rn is a
given set, X1 ⊂ X is a given non-empty compact
set, and Ω ⊂ Rm is a given set. Notice that we do
not assume that the function F (·, ·) is continuous.

In our observability problem, a sensor measures
the state x(t) and is connected to the controller
that is at the remote location. Moreover, the only
way of communicating information from the sen-
sor to that remote location is via a digital commu-
nication channel which carries one discrete-valued
symbol h(jT ) at time jT , selected from a coding
alphabet H of size l. Here T ≥ 1 is a given integer
period, and j = 1, 2, 3, . . . .

This restricted number l of codewords h(jT ) is
determined by the transmission data rate of the
channel. For example, if µ is the number of bits
that our channel can transmit at any time instant,
then l = 2µ is the number of admissible code-
words. We assume that the channel is a perfect
noiseless channel and there is no time delay. Let

Fig. 1. State estimation via digital communication
channel

R ≥ 0 be a given constant. We consider the class
CR of such channels with any period T satisfying
the following transmission data rate constraint:

log2 l

T
≤ R. (2)

The rate R = 0 corresponds to the case when the
channel does not transmit data at all.

We consider the problem of estimation of the
state x(t) via a digital communication channel
with a bit-rate constraint. Our state estimator
consists of two components. The first component
is developed at the measurement location by tak-
ing the measured state x(·) and coding to the
codeword h(jT ). This component will be called
”coder”. Then the codeword h(jT ) is transmitted
via a limited capacity communication channel to
the second component which is called ”decoder”.
The second component developed at the remote
location takes the codeword h(jT ) and produces
the estimated state x̂((j − 1)T + 1), . . . , x̂(jT −
1), x̂(jT ). This situation is illustrated in Figure 1.

The coder and the decoder are of the following
form:

Coder:

h(jT ) = Fj

(

x(·)|jT
1

)

; (3)

Decoder:











x̂((j − 1)T + 1)
...
x̂(jT − 1)
x̂(jT )











= Gj

(

hT , h2T , ..., h(j−1)T , hjT

)

.

(4)

Here j = 1, 2, 3, . . . .

Notation 1. Let x =
[

x1 . . . xn

]

be a vector
from Rn. Then

‖x‖∞ := max
j=1,... ,n

|xj |. (5)

Furthermore, ‖ ·‖ denotes the standard Euclidean
vector norm:

‖x‖ :=

√

√

√

√

n
∑

j=1

x2
j .

Definition 1. The system (1) is said to be observ-
able in the communication channel class CR if for



any ε > 0 there exists a period T ≥ 1 and a coder-
decoder pair (3), (4) with a coding alphabet of size
l satisfying the constraint (2) such that

‖x(t) − x̂(t)‖∞ < ε ∀t = 1, 2, 3, . . . (6)

for any solution of (1).

3. TOPOLOGICAL ENTROPY AND
OBSERVABILITY OF UNCERTAIN SYSTEMS

In this section, we introduce the concept of topo-
logical entropy for the system (1). In general, we
follow the scheme of (Pollicott and Yuri, 1998),
however, unlike (Pollicott and Yuri, 1998) we con-
sider uncertain dynamical systems.

Notation 2. For any k ≥ 1, let Xk := {x(1), . . . , x(k)}
is the set of solutions of (1) with uncertainty
inputs from Ω.

Definition 2. Consider the system (1). For k ≥
1 and ε > 0 we call a finite set Q ⊂ Xk

an (k, ε)−spanning set if for any xa(·) ∈ Xk

there exists an element xb(·) ∈ Q such that
‖xa(t) − xb(t)‖∞ < ε for all t = 1, 2, . . . , k.
Let q(k, ε) denotes the least cardinality of any
(k, ε)−spanning set.

Now we are in a position to give a definition of
topological entropy for the uncertain dynamical
system (1).

Definition 3. The quantity

H(F (·, ·),X1,X ,Ω) := lim
ε→0

lim sup
k→∞

1

k
log2(q(k, ε))

(7)

is called the topological entropy of the uncertain
system (1).

Remark 1. We use “metric” definition of topo-
logical entropy that is different from the more
common “topological” definition (see e.g. p. 20 of
(Pollicott and Yuri, 1998)). In the case of contin-
uous system without uncertainty both these defi-
nitions are equivalent (Pollicott and Yuri, 1998).
Notice that the topological entropy may be equal
to infinity. In the case of a system without uncer-
tainty with continuous F (·, ·) and compact X , the
topological entropy is always finite (Pollicott and
Yuri, 1998).

Now we are in a position to present the main result
of this section.

Theorem 1. Consider the system (1) and let R ≥
0 be a given constant. Then the following two
statements hold.

(1) If R < H(F (·, ·),X1,X ,Ω) then the system
(1) is not observable in the communication
channel class CR.

(2) Assume that X = X1 (hence, X is compact).
If R > H(F (·, ·),X1,X ,Ω) then the system
(1) is observable in the communication chan-
nel class CR.

The proof will be given in the full version of the
paper.

Definition 4. The system (1) is said to be robustly
stable if for any ε > 0 there exists an integer k ≥ 1
such that

‖x(t)‖∞ < ε ∀t ≥ k (8)

for any solution x(·) of the system (1).

Proposition 1. Consider the system (1) and as-
sume that Ω is compact, F (·, ·) is continuous
and the system (1) is robustly stable. Then,
H(F (·, ·),X1,X ,Ω) = 0.

The proof will be given in the full version of the
paper.

Definition 5. Let x(·) be a solution of (1). The
system (1) is said to be locally reachable along
the trajectory x(·) if there exists a constant δ > 0
and an integer N ≥ 1 such that for any k ≥ 1 and
any a, b ∈ X satisfying

‖x(k) − a‖ ≤ δ‖x(k)‖;

‖x(k + N) − b‖ ≤ δ‖x(k + N)‖

there exists a solution x̃(·) of (1) with

x̃(k) = a, x̃(k + N) = b.

Definition 6. A solution x(·) of (1) is said to be
separated from the origin, if there exist a constant
δ0 > 0 such that

‖x(t)‖ ≥ δ0 ∀t ≥ 1.

We will use the following assumptions.

Assumption 1. The system (1) is locally reachable
along a trajectory separated from the origin.

Assumption 2. The system (1) is locally reachable
along a trajectory x(·) such that ‖x(t)‖∞ → ∞ as
t → ∞.

Theorem 2. Consider the system (1). The follow-
ing two statements hold.

(1) If Assumption 1 is satisfied, then H(F (·, ·),X1,X ,Ω)
equals infinity, hence, according to Theorem
1, the system (1) is not observable in the
communication channel class CR with any R.



(2) If Assumption 2 is satisfied, then for any
coder-decoder pair of the form (3), (4) with
any T,R

sup
t,x(·)

‖x(t) − x̂(t)‖∞ = ∞,

where the supremum is taken over all times
t and all solutions x(·) of the system (1).

The proof will be given in the full version of the
paper.

4. THE CASE OF LINEAR SYSTEMS

In this section, we first consider a linear system
without uncertainty:

x(t + 1) = Ax(t), x(1) ∈ X1 (9)

where t = 1, 2, 3, . . . , x(t) ∈ Rn is the state,
X1 ⊂ Rn is a given compact set, and A is a given
square matrix.

We will suppose that the following assumption
holds.

Assumption 3. The origin is an interior point of
the set X1: there exists a constant δ > 0 such that

‖a‖∞ < δ ⇒ a ∈ X1.

Furthermore, let S(A) = {λ1, λ2, . . . , λn} be the
set of eigenvalues of the matrix A. Introduce the
following value:

H(A) :=
∑

λi∈S(A)

lg2(max{1, |λi|}). (10)

Theorem 3. Consider the system (9) and suppose
that Assumption 3 holds. Then, the topological
entropy of the system (9) is equal to H(A) where
H(A) is defined by (10).

The proof will be given in the full version of the
paper.

The following corollary immediately follows from
Theorem 3.

Corollary 1. Consider the system (9) and suppose
that Assumption 3 holds. Then, the topological
entropy of the system (9) is equal to 0 if and only
if |λ| ≤ 1 for any eigenvalue λ of the matrix A.

Remark 2. Theorem 3 together with Theorem 1
give an “almost” necessary and sufficient condi-
tion for observability of the system (9) in the
communication channel class CR. Moreover, com-
bining Theorem 3 with the results of (Matveev
and Savkin, 2004b; Matveev and Savkin, 2004a),
we obtain “almost” necessary and sufficient condi-
tions for observability and stabilizability of linear

systems via a noisy discrete channel in terms of in-
equalities between the classical Shannon’s channel
capacity and the topological entropy of the open-
loop system.

Remark 3. Notice that, in fact, results similar to
Theorem 3, but stated in different terms, were
derived in (Nair and Evans, 2003; Nair et al.,
2004; Matveev and Savkin, 2004d). Also, Theorem
3 reminds the well-known result on topological
entropy of algebraic automorphisms of torus; see
e.g. (Adler and Weiss, 1967).

Now consider a linear uncertain discrete-time dy-
namical system of the form:

x(t + 1) = [A + Bω(t)] x(t), x(1) ∈ X1 (11)

where t = 1, 2, 3, . . . , x(t) ∈ Rn is the state,
ω(t) ∈ Ω is the uncertainty matrix, X1 ⊂ Rn

is a given compact set, Ω ⊂ Rr×n is a given
set, and A,B are given matrices of corresponding
dimensions.

We suppose that the following assumptions hold.

Assumption 4. The matrix A has at least one
eigenvalue λ outside of the unit circle: |λ| > 1.

Assumption 5. The pair (A,B) is reachable (see
e.g. (Astrom and Wittenmark, 1997), p.94).

Assumption 6. The origin is an interior point of
the set Ω: there exists a δ > 0 such that

‖ω‖∞ < δ ⇒ ω ∈ Ω.

Here ‖ · ‖∞ is the induced matrix norm (5).

Now we are in a position to present the following
corollary of Theorem 2.

Proposition 2. Consider the system (11). If As-
sumptions 3–6 hold, then for any coder-decoder
pair of the form (3), (4) with any T,R

sup
t,x(·)

‖x(t) − x̂(t)‖∞ = ∞,

where the supremum is taken over all times t and
all solutions x(·) of the system (11).

Remark 4. Proposition 2 shows that any state
estimator with bit rate constraints for a linear
unstable system is not robust. For example, all
estimators from (Tatikonda, 2000; Jain et al.,
2002) will produce infinite error under any small
parametric perturbation of the matrix A.

5. OPTIMAL CONTROL VIA
COMMUNICATION CHANNELS

In this section, we consider a linear discrete-time
controlled system without uncertainty of the form:



Fig. 2. Optimal control via digital communication
channel

x(t + 1) = Ax(t) + Bu(t), x(1) ∈ X1 (12)

where t = 1, 2, 3, . . . , x(t) ∈ Rn is the state,
u(t) ∈ Rm is the control input, X1 ⊂ Rn is a
given compact set, and A,B are given matrices of
corresponding dimensions.

We consider the problem of optimal control of the
linear system (12) via a digital communication
channel with a bit-rate constraint. Our controller
consists of two components. The first component
is developed at the measurement location by tak-
ing the measured state x(·) and coding to the
codeword h(jT +1). This component will be called
”coder”. Then the codeword h(jT +1) is transmit-
ted via a limited capacity communication channel
to the second component which is called ”decoder-
controller”. The second component developed at a
remote location takes the codeword h(jT +1) and
produces the sequence of control inputs u(jT +
1), . . . , u((j +1)T −1), u((j +1)T ). This situation
is illustrated in Figure 2.

Our digital communication channel carries one
discrete-valued symbol h(jT + 1) at time jT + 1,
selected from a coding alphabet H of size l. Here
T ≥ 1 is a given integer period, and j = 0, 1, 2, . . . .

This restricted number l of codewords h(jT + 1)
is determined by the transmission data rate of
the channel. Let R ≥ 0 be a given constant.
We consider the class ĈR of such channels with
any period T satisfying the transmission data rate
constraint (2).

The coder and the decoder-controller are of the
following form:

Coder:

h(jT + 1) = Fj

(

x(·)|jT+1
1

)

; (13)

Decoder-Controller:











u(jT + 1)
...
u((j + 1)T − 1)
u((j + 1)T )











= Uj (h1, hT+1, ..., hjT+1) .

(14)

We will consider the following quadratic cost
function associated with the linear system (12):

J [x(·), u(·)] :=

+∞
∑

t=1

[x(t)′C ′Cx(t) + u(t)′Gu(t)]

(15)

where C and G = G′ are given matrices of
corresponding dimensions.

We will need the following assumptions that
are standard for linear quadratic optimal control
problems.

Assumption 7. The pair (A,B) is stabilizable (see
e.g. (Goodwin et al., 2001)).

Assumption 8. The pair (A,C) has no unobserv-
able nodes on the unit circle (see e.g. (Goodwin
et al., 2001)).

Assumption 9. The matrix G is positive definite.

In this section, we consider the following optimal
control problem:

J [x(·), u(·)] → min . (16)

If we do not have any limited capacity communi-
cation channel and the whole state x(·) is available
to the controller, then the problem (12), (15), (16)
is the standard linear quadratic optimal control
problem and its solution is well-known (see e.g.
(Goodwin et al., 2001)). Under Assumptions 7–9,
for any initial condition x(1), the optimal control
is given by

u(t) = Kx(t) (17)

where

K = −(G + B′PB)−1B′PA (18)

and the square matrix P is a solution of the
Discrete Time Algebraic Riccati equation

A
(

P − PB(G + B′PB)−1B′P
)

A + C ′C − P = 0
(19)

such that the matrix A+BK is stable (has all its
eigenvalues inside the unit circle). Furthermore,
the optimal value of the cost function is given by

Jopt[x(1)] = x(1)′Px(1). (20)

Definition 7. The optimal control problem (12),
(15), (16) is said to be solvable in the communica-
tion channel class ĈR if for any ε > 0 there exists a
period T ≥ 1 and a coder-decoder-controller pair
(13), (14) with a coding alphabet of size l satis-
fying the constraint (2) such that the following
conditions hold.

(1) The closed-loop system (12), (13), (14) is
stable in the following sense: for any ε0 > 0
there exists an integer k ≥ 1 such that

‖x(t)‖∞ < ε0 ∀t ≥ k (21)

for any solution [x(·), u(·)] of the closed-loop
system with initial condition x(1) ∈ X1.



(2) For any solution [x(·), u(·)] of the closed-loop
system with initial condition x(1) ∈ X1,

J [x(·), u(·)] ≤ Jopt[x(1)] + ε (22)

where Jopt[x(1)] is given by (20).

Now we are in a position to present the main result
of this section.

Theorem 4. Consider the system (12) and the cost
function (15). Let R ≥ 0 be a given constant and
H(A) be the value (10). Suppose that Assump-
tions 3, 7–9 are satisfied. Then the following two
statements hold.

(1) If R < H(A) then the optimal control prob-
lem (12), (15), (16) is not solvable in the
communication channel class ĈR.

(2) If R > H(A) then the optimal control prob-
lem (12), (15), (16) is solvable in the commu-
nication channel class ĈR.

The proof will be given in the full version of the
paper.
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