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Abstract:
In this paper an algorithm that provides an equivalent, but of reduced order, representation
for multivariate polynomial matrices is given. It combinesideas from computational
symbolic algebra and from established techniques in graph representation and polyno-
mial/matrix algebraic manipulations. The algorithm is applied to the problem of finding
minimal linear fractional transformation models.Copyrightc©2005 IFAC
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1. INTRODUCTION

Matrix manipulation is one of the basic cornerstones
of many fields in engineering and mathematics. For
example, in the field of control the basis of state-space
theory is the representation of a system as a two-
by-two block matrix and its subsequent use for syn-
thesis and analysis (Skogestad, S. and Postlethwaite,
I., 1996). Indeed, modern robust control theory is built
on the concept of linear fractional transformations
(LFT), which allows the representation of an uncer-
tain system in terms of nominal and uncertain parts
given by matrices (Balas, G.J.et al., 1998). Similarly,
polynomial representations and manipulations are also
ubiquitous in many areas of mathematics - note, for
example, that most computer algebra systems such as
Mathematica(Wolfram, S., 1991) and Maple (Heck,
A., 1993) rely on polynomial and rational representa-
tions.

A typical objective (for example, in signal processing
and control synthesis) when operating on matrices and
polynomials, especially when these are multivariate,
is to obtain an equivalent representation of reduced
order (in terms of number of parameters and their
repetitions). Ideally, the order should be minimal, but
minimal representations are in general very difficult
to obtain except for some simple cases. In the case of
LFT modelling, it is well-known that the problem of
finding a minimal order representation is equivalent to
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a multidimensional realization (Cockburn, J.C., 2000)
which remains an open problem. Indeed, most of
the available LFT algorithms search for a minimal
representation by exploiting the structure in the LFT
models and performing algebraic factorizations on the
multivariate matrices: structured-tree decomposition
(Cockburn, J.C. and Morton, B.G., 1997), numerical
matrix approaches (Belcastro, C.M. and Chang, B.C.,
1998), Horner factorizations (Varga, A. and Looye,
G., 1999) and symbolic linearizations (Varga, A.et
al., 1998) amongst others.

In this paper an algorithm is proposed that builds on
previous symbolic techniques to achieve a lower order
representation for multivariate polynomial matrices.
The main difference with previous algorithms is the
use of an information management scheme which
uses a set of specialized metrics to evaluate the best
(in terms of achievable order reduction) column/row
direction and variable ordering for the decomposition
and factorization stages. It is especially useful for LFT
modelling, and hence, the application of the algorithm
to this problem is described in detail.

2. THEORETICAL BACKGROUND

In this section the main mathematical tools used in the
proposed algorithm are introduced. The basic struc-
ture of the proposed algorithm is a combination of
the structured-tree decomposition (Cockburn, J.C. and
Morton, B.G., 1997) and the Horner factorization
(Varga, A. and Looye, G., 1999) approaches. Addi-



tional tree-height reduction techniques from symbolic
algebra (Heck, A., 1993; Armita, P. and De Micheli,
G., 2001) and an extension of the metrics given in
(Cockburn, J.C. and Morton, B.G., 1997) are used
to improve the performance of the algorithm and to
decide on the ‘optimal’ ordering of the variables and
direction (along rows or columns) for the decompo-
sition and factorization stages. Throughout the paper,
‘optimal’ will always mean best achievable reduction
on the total number of parameters (and their repeti-
tions) at a given step.

2.1 Metrics

The main metrics used in the logic of the algorithm
are the “presence” degreeσ, the factor orderf ac,
the reduction orderred, and the “possible” reduction
orderredpos.

The “presence” degree,σ(δi), is defined as the number
of times, including powers, a variableδi appears in an
expression (monomial, polynomial or matrix). It can
be viewed as a polynomial, or matrix, extension of the
relative degree of a monomial. The factor order of a
variable, f ac(δi), is the maximum power to which it
can be factored out from an expression.

The reduction order for a variable,red(δi), is the
largest reduction on the “presence” degree of an ex-
pression achievable through factorization of that vari-
able. Assuming there aren monomials in the expres-
sion,red(δi) is given by(n−1) f ac(δi). The last met-
ric, redpos(δi), is equal to the reduction order in the
case all then monomials are factorizable (i.e. each
monomial contains the parameters with a minimal or-
der equal tof ac(δi)). If there arem non-factorizable
monomials in the expression, the “possible” reduction
degree is given by:(n−m−1) f ac(δi).

2.2 Tree Decomposition & Horner Factorization

The structured-tree decomposition is an iterative ap-
proach that decomposes an initial matrixA0 into sim-
pler (i.e. of reduced “presence” degree) matrices by
means of two basic operations, affine factorizations
(Li ,Ri) and sum decompositions(Ai):

A0 = L1A1R1 +(A2+A3) (1)

The name comes from its graph representation na-
ture as each reduced-order matrix is in turn sum-
decomposed or affine-factorized until it can not be
decomposed further, forming a tree where the nodes
are one of the two basic operations and the leaves the
matrices as they are reduced. A third operation, called
weighted-sum decomposition, is in fact an attempt
to use information similar to the above metrics (i.e.
maximal factor order) when no sum decompositions
or affine factorizations exist. This approach has been
recently coded and made publicly available for LFT
modelling in the splendid linear fractional representa-
tion (LFR) toolbox from ONERA (Magni, J.F., 2004).

The Horner factorization approach is based on the
Horner form simplification for polynomials. For the
evaluation of a polynomial of degreek, it requires
only k multiplications andk additions which is much
less expensive than the number of multiplications for
the expanded form (Wolfram, S., 1991). It is also
numerically more efficient and accurate. The general
univariate case is given by:

P (x) = an +x·(an−1 + . . .x·(a1 +x·ao) . . . )) (2)

For the multivariate case, an ordering of the variables
must be given. This ordering is not unique and will
affect the nesting and the achievable reduction in the
“presence” degree.

The Horner factorization is a polynomial extension of
the function ‘factor’ which can be considered a tree-
height reduction technique as, shown in the following
example:

Example 1.Compare the graph representation of the
expanded polynomialP = δ1δ2δ3 + δ3δ2

2 with its
Horner formHorner(P ) = δ3(δ2(δ2 + δ1)), see Fig-
ure 1, the reduction in tree branches and nodes is
obvious.
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Fig. 1. Graph representation ofP andHorner(P ).

Note that the structured-tree decomposition approach
does not incorporate Horner factorizations for poly-
nomial expressions and thus will involve more op-
erations (sums and products). Also, the use of the
maximal factor order as a decision logic might pre-
vent an optimal reduction of the “presence” degree.
On the other hand, current Horner factorization algo-
rithms follow either a pure lexicographical order or an
exhaustive approach (i.e. try all combinations of the
parameters) for the ordering of the variables. For large
number of symbolic parameters and for the matrix
case, where the optimal nesting of a polynomial might
not result in optimal order reduction for the matrix,
these approaches are too computationally expensive
and do not typically result in a minimal realization,
see following example:

Example 2.GivenM =
[

δ1 +δ1δ3
3 δ3

3δ4 δ1 +δ1δ2
δ2 δ2δ4 +δ5 δ5

]

,

Using the standard (independent) polynomial Horner
factorization on the(1,1) and (1,3) coefficients

yields:M =
[

δ1(1+δ3
3) δ3

3δ4 δ1(1+δ2)
δ2 δ2δ4 +δ5 δ5

]

.

Using the structured-tree approach, a weighted-sum
decomposition (no affine or direct sum can be per-
formed) yields:

M =
[

δ1(1+δ3
3) 0 δ1(1+δ2)

0 δ5 δ5

]

+
[

0 δ3
3δ4 0

δ2 δ2δ4 0

]

The left-most matrix can now be affine factorized
yielding a “presence” degree ofσ = 6. Similarly, an
affine factorization can be applied to the right matrix
to yield σ = 5, which yields a total “presence” degree
of 11 (the implementation of the structured-tree in the
ONERA LFR toolbox yields aσ degree of 12).
If the Horner factorization is performed matrix-wise
and using the specified metrics, the ordered list for
the multivariate Horner is[δ3,δ1,δ2] which results in:

M =
[

δ1 +δ1δ3
3 δ3

3δ4 δ1(1+δ2)
δ2 δ2δ4 +δ5 δ5

]

.

This can be sum decomposed now as:

M =
[

δ1 0 δ1(1+δ2)
0 δ5 δ5

]

+
[

δ1δ3
3 δ3

3δ4 0
δ2 δ2δ4 0

]

Further affine factorizations yield a totalσ of 9, which
shows that multivariate Horner factorizations must be
performed at the matrix-level (rather than at coeffi-
cient level).



2.3 Symbolic Algebraic Techniques

These techniques facilitate matrix manipulation and
improve algorithmic performance when applied to
symbolic expressions (Armita, P. and De Micheli,
G., 2001). This has long been recognized and some
algorithms already implement several or all of these
techniques as they have also become available and
optimized on all computer algebra systems. The two
techniques incorporated in the algorithm proposed in
this paper are expansion and substitution.

The procedure called “expand” distributes all prod-
ucts and positive powers over sums. Like terms are
also collected and simplified, which can often result
in immediate gains, e.g.expand{δ1(1+ δ2)+ δ1(1+
δ1)} = δ1(2 + δ1 + δ2). In the proposed algorithm,
expansion is used after an iteration is completed, i.e.
all possible factorizations and decompositions have
been performed for the present matrix form. Its pur-
pose is to reset the polynomial factorizations to check
whether a new reduced-order matrix can be found.

Another important symbolic tool is “substitution”,
which replaces a sub-expression by a new symbolic
variable. In its most developed form, it can be used to
parallelize factorizations and reduce the complexity of
an expression. In the proposed algorithm, it is used to
reduce the complexity and speed up the calculation of
the required metrics for the affine factorization stage.

Example 3.Given P = [δ1δ2 + δ1δ2
4 + 1 δ1], it can

be simplified (in terms of complexity of presentation)
as P = [δ1(δ2 + δ2

4) + 1 δ1] = [δ1δsub+ 1 δ1] so
that now, the required metrics have to be calculated
for only two variables:δ1 andδsub = (δ2 + δ2

4). Note
as well, that any sum decomposition or affine factor-
ization can be identified and performed faster.

3. HORNER-TREE DECOMPOSITION
ALGORITHM

The proposed algorithm is calledHorner-Tree Decom-
position to emphasize its connection to the previous
approaches. It generalizes them as it follows the lay-
out of the tree decomposition approach but using the
structure of the Horner factorization which has now
been extended for multivariate polynomial matrices.
This extension hinges on the additional symbolic tree-
height reduction techniques described before and spe-
cially, on the use of a logic routine to gather and
analyze the matrix decomposition at each stage.

The algorithm is divided into three main routines:
information management, affine factorization and sum
decomposition. The iterative combination of the last
two routines yields a nested structured (i.e. Horner
factorization) for multivariate polynomial matrices:

M = MB1 +L1

(

MB2 +L2(. . .(LnM̄AnRn) . . .)R2

)

R1

(3)
The matricesLii ,M̄Aii ,Rii are obtained from the affine
factorization ofMAii which is obtained together with
MBii from the sum decomposition of̄MAii (except for
the initial iterationii = 1 whereMB1 contains only
constant numeric and constant symbolic parameters
and MA1 the rest of the symbolic coefficients). The
matrices denoted as ‘A’ are called primary while those
with ‘B’ are known as secondary.

3.1 Information Management

This routine condenses the logic of the algorithm and
allows for a complete automated procedure for the de-
composition. It is referred to as the information man-
agement routine, since its main objectives are to gather
the proper information at each step of the algorithm, to
analyze this information, to take a decision regarding
direction and variable ordering, and to prepare the
matrix for the next step.

The information gathering pertains mainly to calcu-
lating the metrics presented in Section 2.1 for all the
symbolic parameters specified that are found within
the matrix. For matrices with polynomial coefficients,
the information manager also identifies their position
and number of monomials, and prepares the matrix for
the step to follow: affine factorization or sum decom-
position. For the case of affine factorization, it finds
the optimal ‘Horner ordering’ and performs a ‘poly-
nomial substitution’. For the sum decomposition, it
forms a ‘decomposition list’ ordering the parameters.

The ‘Horner ordering’ of the parameters is performed
based on the total (sum along rows or columns) “pos-
sible” reduction order of the parameter. This ordering
might not be optimal for a particular polynomial co-
efficient but results in optimal matrix order reduction,
see example 2. It is remarked again, that ‘optimal’ is
defined based on the best achievable reduction in the
σ degree for the specific matrix.

The ‘polynomial substitution’ performs a substitu-
tion of the polynomials and sub-polynomials, after
the Horner factorization step, by dummy variables.
The sub-polynomials are the polynomial remainders
(or quotients) arising from the Horner factorization.
These substitutions allow for simpler manipulation
during the affine factorization subroutine as the poly-
nomial matrix becomes a monomial matrix. It also
performs substitution of ‘irreducible’ polynomial ex-
pressions which are those polynomials whose factor-
ization from the matrix might imply a reduction in the
σ degree, or alternatively can simplify the complexity
of the expression, but that on themselves can not be
factorized further, e.g.P = δ1(δ1 +δ2) ≡ δ1δunred but
P2 = (δ2

1 + δ1δ2) 6= δunred. After the affine factor-
ization, the information manager back-substitutes the
sub-polynomials and expands the matrix to prepare it
for the sum decomposition step.

The ‘decomposition list’ contains information for the
sum decomposition routine to attempt to optimize the
reduction in the totalσ degree for subsequent affine
factorizations. Each row in the decomposition list is
formed by the parameter number, its position (which
row or column), the “possible” reduction order (the list
is ordered in decreasingredpos), and cells containing
the indexes for the factorizable and non-factorizable
coefficients along the specified row/column. This split
of the matrix coefficients indicates the sum decompo-
sition routine which coefficients should be assigned to
the primary matrixMAii (factorizable coefficients) or
to the secondary matrixMBii (the non-factorizable).
Note, that once the non-factorizable coefficients are
distributed toMBii the “possible” reduction order of
M̄Aii becomes the reduction order forMAii .

After the affine factorization and the sum decompo-
sition have been performed, the information manager
evaluates if the primary matrixMAii can be further
decomposed or if the first of the non-decomposed
MB j j≤ii secondary matrices should be decomposed.



The priority is to decompose fully the primary matrix
first, and subsequently to start with the secondary ma-
trices (there might be more than one, as each time the
primary matrix is passed through the decomposition
scheme it will generate a secondary matrix). Note that
as the secondary matrices are selected for the decom-
position they become ‘primary’ and as such generate
secondary matrices, see Figure 2.

affine fact

ii = 1

ii = 2

zz = 1 zz = 2 zz = 3

fully decomposed
decomposition path

secondary matrix

ii = 3

ii = 4

ii = 5

ii = 6

primary matrix 

affine fact

affine fact

affine fact

affine fact

affine fact

Fig. 2. Graph representation Horner-Tree algorithm.

3.2 Affine Factorization

In the affine factorization step, it is important to iden-
tify for each parameter the direction along which to
perform its first factorization (i.e. left≡ rows or right
≡ columns). In order to provide an optimal decision
for a given parameter, the information management
routine compares the total reduction and total “possi-
ble” reduction degrees along one direction with those
along the other direction. There are seven possible
cases:

Cases 1-3: Factorize along rows :
(1)redrow > redcol + redposcol

(2)redrow > redcol & redposrow = redposcol

(3)redrow = redcol 6= 0 & redposrow > redposcol
Cases 4-6: Factorize along columns :

(4)redcol > redrow+ redposrow

(5)redrow < redcol & redposrow = redposcol

(6)redrow = redcol 6= 0 & redposrow < redposcol

The seventh case occurs when none of the previous
cases is satisfied. In this case it will be very diffi-
cult and computationally expensive to ascertain along
which direction to factorize. Hence, a preview of the
immediate effect the factorization (along each direc-
tion) has on the decomposition is performed. The
comparison is based on the two ”future” matrices
found by factorizing the parameter along each direc-
tion: M fL andM fR. For each of these “future” matri-
ces, the maximum total reduction order (the sum of
theσ’s either along the rows or along the columns) is
added to the total reduction order of the corresponding
“actual” factorized matrix,ML or MR, and the obtained
value compared to the same quantity for the other ma-
trix. In case both achieve the same combined reduction
order, an additional comparison is made based on the
“possible” reduction orders of the “future” matrices
and if this last comparison yields the same result, the
default is to decompose along the rows (this is a design
decision and the algorithm could obviously be allowed
to proceed using the ‘pre-viewing’ capability deeper).

This approach doubles the number of calculations (as
affine factorizations are performed in both directions
and then only one selected) but it maximizes the total
order reduction for the present and subsequent itera-
tion.

Example 4.For the matrix,M =
[

δ2
1 δ1 δ1

δ3
1 δ2

1 δ2

]

,

the reduction and “possible” reduction along the rows

are:red(δ1)rows =
[

2
0

]

; redpos(δ1)rows =
[

0
2

]

;

and along the columns:
red(δ1)cols = [2 1 0]; redpos(δ1)cols = [0 0 0];
The decision table formed by the total sum along rows
and columns for each type of degree: total reduction
∑ red and total “possible” reduction∑ redpos, is:

δ1 rows cols
∑ red 2 3
∑ redpos 2 0

The above satisfies case(7), hence affine factoriza-
tions are performed along both directions:

ML = L M fL =

[

δ1 0
0 1

][

δ1 1 1
δ3

1 δ2
1 δ2

]

MR = M fR R=

[

1 1 δ1
δ1 δ1 δ2

]

[

δ2
1 0 0

0 δ1 0
0 0 1

]

The reduction orders of the “actual” matricesML
andMR are respectively 2 and 3. The corresponding
decision tables for the “future” matricesM fL andM fR
are:

M fL(δ1) rows cols
∑ red 0 1
∑ redpos 2 0

M fR(δ1) rows cols
∑ red 0 0
∑ redpos 1 0

The sum of the “actual” and “future” reduction or-
ders for the left and right factorizations are 3 (=2+1)
and 3 (=3+0) respectively. As the “future possible”
reduction orders are 2 and 1 respectively, this indicates
that there is a possibility to use sum decomposition
on M fL and achieve a further reduction in the total
σ when using the left factorization of the parameter
first (indeed, this is the case as a furtherred(δ1) = 2
is obtained after the sum decomposition and an addi-
tional affine factorization -in the other direction only
a furtherred(δ1) = 1 is achieved). Hence, this is the
direction first chosen for that parameter.

If, after the affine factorization in one direction, it is
possible to factorize along the other, i.e. the reduction
order is non-zero, its factorization is performed before
analyzing the direction for the next parameter.

This routine is applicable to both monomial and poly-
nomial matrices, as the ‘polynomial substitution’ step
is performed before the factorization routine is called.

3.3 Sum Decomposition

The basis of the sum decomposition is to decompose
the primary matrixM̄Aii from the affine factorization
into two matrices,MAii andMBii :

M̄Aii = MAii +MBii (4)

The sum decomposition is performed following the
decomposition list obtained from the information
manager. For the first row in the list, the sum de-
composition assigns the factorizable coefficients for
that parameter (and specified row or column) toMAii



and the rest of the coefficients along that defined
row/column toMBii . Subsequently, it moves through
the list from top to bottom evaluating if there is
any conflict, i.e. new factorizable coefficients already
placed in MBii or non-factorizable coefficients in
MAii . It there is no conflict it distributes the new co-
efficients correspondingly and moves to the next row
in the decomposition list. Otherwise, the “possible”
reduction order for the parameter / position being eval-
uated is re-calculated after removing the conflicting
coefficients. If the newredpos is still better or equal
than that for the next row in the decomposition list,
the sum decomposition is performed with the updated
coefficients, else the list is re-ordered to account for
the new row and the routine proceeds to the next row
in the list.

4. LFT MODELLING EXTENSION

A linear fractional transformation (LFT) is a represen-
tation of an uncertain system using two matrix oper-
atorsM = [M11 M12;M21 M22] and∆, and a feedback
interconnection, see Figure 3:

FU(M,∆) = M22+M21∆(I −M11∆)−1M21 (5)

u

∆

M
y

z w

Fig. 3. Linear fractional transformationLFT(M,∆).

The coefficient matrixM represents the nominal,
known, part of the system. The uncertainty associated
with the system∆ is norm-bounded, typically by 1,
but otherwise unrestricted in form (structured / un-
structured) or type (nonlinear / time-varying / con-
stant). It is important to note thatunstructured uncer-
tainty at component level becomes structured uncer-
tainty at system level.

The order of the LFT is said to be the number of un-
certain parameters, including repetitions, that occur in
∆ (e.g.∆ = [δ1I2 0 ; 0 δ2] => LFT order of 3). This
is equivalent to the total matrix “presence” degree, i.e.
the sum of the totalσ for all the parameters. The order
of an LFT is an important consideration for the con-
trol synthesis and analysis methods currently avail-
able in robust control. Indeed, inµ-analysis, which
provides the main tool for performing robust stabil-
ity and performance analysis, the size and type of
the uncertainty matrix are key factors in determining
the quality of the analysis results (Skogestad, S. and
Postlethwaite, I., 1996). In particular, uncertainty ma-
trices that contain many repeated parameters are well
known to cause serious problems for the algorithms
used to compute bounds onµ (Balas, G.J.et al., 1998).
Since many realistic robustness analysis problems can
easily result in very high order LFTs, it is vital to have
efficient (and automated) tools which can compute
minimal, or at least close to minimal, representations
of these systems.

A very important property of LFT systems is that their
interconnection results in another LFT. The extension

of the algorithm to LFT modelling is direct using
this property and, in particular, the symbolic “object-
oriented” realization of LFTs as proposed in (Magni,
J.F., 2004). The “object-oriented” realization takes the
point of view that for software such as MATLAB,
LFTs are feedback interconnections of matrices and
as such are subject to standard matrix operations:
addition and multiplication of matrices are equivalent
to parallel and series connection of LFTs (see the
formulae given in (Lambrechts, P.et al., 1993; Magni,
J.F., 2004)).

More important for the application of the proposed
algorithm, is the fact that the order of the uncertainty
matrix for the resulting LFT is equal to the sum of
the orders of the individual uncertainty matrices. Fur-
thermore, using the results from (Magni, J.F., 2004),
it is noted that the order of an LFT derived from a
symbolic expression (where the symbolic variables
are considered uncertain parameters) is equal to the
total “presence” degree of the expression.

Hence, each of the individual matrices resulting from
the proposed algorithm can be transformed into an
LFT, with a diagonal uncertainty matrix of order equal
to the respective total matrix “presence” degree. The
resulting LFTs can be manipulated, following the de-
fined multiplication and addition structure of the de-
composition, to obtain a final LFT whose uncertainty
matrix∆ is a diagonal matrix of order equal to the sum
of the total “presence” degrees.

The applicability of this algorithm to dynamical sys-
tems is straight-forward recalling that an LFT is ba-
sically a generalization of the notion of state-space
where the dynamic system is written as a feedback
interconnection of a constant matrix and a diagonal
element containing the integrator terms ‘1/s’ and de-
lays (Balas, G.J.et al., 1998). This is valid as well for
exact nonlinear modelling (Marcos, A.et al., 2005)
when the non-linearities are considered as parameters
to be ‘pulled out’ into the∆ matrix.

5. RESULTS

Monte-Carlo tests of the software implementation are
performed to evaluate the algorithm’s capability and
efficiency. In order to provide a baseline comparison,
the command ‘symtreed’ provided in ONERA’s LFR
toolbox (Magni, J.F., 2004), which implements the
structured-tree decomposition proposed in (Cockburn,
J.C. and Morton, B.G., 1997), is also used.

The Monte-Carlo test is performed using 500 random
polynomial matrices (200 3×3 matrices, 200 5×7 and
100 9×5). For each matrix dimension, half of the
matrices are populated with 3 different symbolic para-
meters and the other half with 9 parameters. The ran-
dom polynomial matrices are obtained by adding three
independent random monomial matrices (thus, only
polynomials of up to three monomials can be found
in the matrix coefficients). Each random monomial
matrix is obtained by creating a sparse random matrix
with the chosen matrix dimensionsn×mand a speci-
fied density, one matrix with density 60 and the other
two with density 0.3 (so that not all the coefficients
are polynomials). This density combination yields ap-
proximately n·m·densityuniformly distributed non-
zero entries for each random monomial matrices. In
order to fill each non-zero coefficient,k passes (where
k is equal to 3 times the number of parameters, hence
9 or 27 passes) are made multiplying each time the



coefficients byδpow
i whereδi is a randomly selected

symbolic parameter from the defined list andpow is
a random binary selection for the parameter’s power
(either 0 or 1, which means that each independent
monomial can have a total degree of up to 9 or 27).

Table 1 shows the percentage of total runs for which
one algorithm resulted in a smaller “presence” degree
σ than the other. The number in parentheses indicates,
respectively for each column in the table, the average
total “presence” degree for the random polynomial
matrix, and for the decomposed matrices using the
Horner-tree and the structured-tree algorithms.

Table 1. Polynomial case: efficiency (%
total runsσA > σB).

dimension Horner-tree Symtreed
3×3 (113) 82 % (62) 8.5 % (67)
5×7 (437) 99.5 % (215) 0 % (243)
9×5 (552) 100 % (266) 0 % (303)

The first important conclusion obtained looking at the
average total “presence” degree is that the minimal-
decomposition search step should be incorporated
mainstream to the LFT modelling process (notice that
almost 50 percent reduction is accomplished by both
algorithms). This reduction in the number of para-
meters is not associated with a loss of modelling fi-
delity since the reduction is accomplished by matrix
algebraic manipulations. Also, the current availability
of software for LFT modelling and order-reduction
(i.e. reference (Magni, J.F., 2004) and that stemming
from this research) which simplifies its use to a simple
MATLAB command supports this assertion.

Comparing the efficiency of the algorithms, it is ob-
served that for relatively small matrices, both algo-
rithms achieve the same reduction order 10 percent of
the time (i.e. for 3×3 matrices the proposed Horner-
tree algorithm resulted in better reduction 82 percent
of the runs and the structured-tree algorithm in only
8.5 percent). As the complexity increases, i.e. larger
σ and dimension for the random matrix, the Horner-
tree algorithm improves the reduction order for almost
every run.

Table 2 shows the quality of the improvement for each
algorithm. The first number in each row is the aver-
age percentage improvement in the total “presence”
degree between both algorithms, i.e.
pct= 100∑[abs(σ(Htree)−σ(symtree))

σ(symtree) ]/#runs. The number
in parentheses in the table indicates the average num-
ber of parameters by which one algorithm improved
over the other.

Table 2. Polynomial case: performance (%
averageσ improvement).

dimension Horner-tree Symtreed
3x3 9.43 % (6) 4.72 % (2)
5x7 11.43 % (28) 0
9x5 11.81 % (36) 0

No detailed comparison on the computational time re-
quired is performed as the goal of our study is to obtain
a smaller “presence” degree in the final representation.
Nevertheless, it is noted that the implementation of
the structured-tree decomposition is faster than the
present implementation of the proposed algorithm (for
9×5 random matrices withσ of 400, typically one
minute versus five minutes although for larger num-
ber of parameters the present implementation can be
around 10 times slower). For the purposes of this re-
search, the performance of the proposed algorithm is

satisfactory, since for LFT modeling a reduction in the
number of parameters is significantly more important
than the computational time required. Future imple-
mentations of the code will reduce the current solution
time.

6. CONCLUSIONS

In this paper an algorithm for the decomposition of
multivariate polynomial matrices has been proposed.
The resulting representation is equivalent but of re-
duced order, if order reduction is possible, to the orig-
inal matrix. The algorithm is applicable to a wide
range of fields, but particularly to linear fractional
transformation modelling, one of the cornerstones in
modern robust control theory. Monte-Carlo tests of
the proposed algorithm applied to LFT modelling
showed significant improved performance when com-
pared with standard approaches.
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