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Abstract: As a prerequisite for precise trajectory tracking of a two-wheeled mobile
robot, accurate control of the velocity and the curvature along a predefined
trajectory is vital. After offline training, a neural network is used for nonlinear
predictive control. To make the system more robust against modeling inaccuracies
and other disturbance influences, the control error is integrated and used to
adjust the control variables calculated by the predictor. Copyright © 2005 IFAC
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1. INTRODUCTION

Extensive research has been done on the subject of
trajectory tracking of two-wheeled mobile robots.
Most authors concentrate on the non-holonomic
problem that arises when side slip and tangential
slip of the wheels are neglected.

(Yang and Kim, 1998) use sliding mode control
to stabilize the nonholonomic system. (Kim and
Tsiotras, 2002) give an overview over different
controller structures, most of which are discon-
tinuous, i. e. sliding mode controllers.

The concept of neural network predictive control
has been applied to a number of different prob-
lems, but not to the problem of trajectory tracking
of mobile robots.

(Tan and Van Cauwenberghe, 1996) use a neural
network to control several benchmark problems,
but only for single-input-single-output-systems
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(SISO) and only one-step-ahead prediction. (Gil et
al., 1999) use a recurrent Elman-network with an
on-line learning algorithm for nonlinear systems.
(Kambhampati et al., 2000) concentrate on stabil-
ity analysis of a one-step-ahead predictor applied
to SISO-systems. (Haley et al., 1999) apply neural
network predictive control using a fast Newton-
Raphson optimization algorithm and a cost func-
tion that explicitly accounts for control variable
bounds.

This paper investigates the possibility of applying
neural network predictive control to mobile robot
trajectory tracking. The approach presented can
be considered as the inner control loop of a cas-
cading control scheme.

The general principle for neural network predic-
tive control is taken from (Norgaard et al., 1999),
modified and adapted for multiple-input-multiple-
output-systems (MIMO).



2. THE PLANT: AN AUTONOMOUS
TWO-WHEELED MOBILE ROBOT

The robot, Fig. 1, has two wheels with rubber
tires and two felt shoes, one at the front and one
at the rear to stabilize it around the pitch axis.
The two wheels are supported by ball bearings
and powered by two individual DC-motors. A mi-
crocontroller produces two pulse-width modulated
(PWM) constant voltage signals, which are am-
plified by a dual full bridge driver. The amplified
signals drive the two DC-motors.
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Fig. 1. Autonomous mini-robot Tinyphoon,
http://www.tinyphoon.com

Nonlinearities originate from variable switching
times and dead zones in the amplifier circuit,
friction characteristics of bearings and gearboxes,
wheel slip dynamics and the kinematics of a three-
degree-of-freedom object moving in a plane.

So the robot can be considered as a nonlinear
MIMO-system with two inputs (the PWM-duty
cycles) and two respectively three output variables
(see section 4.1).

3. NEURAL NETWORK PREDICTIVE
CONTROL ALGORITHM

3.1 Cost function

Neural network predictive control is based on
the iterative minimization of a quadratic cost-
function containing predicted future control errors
and future control increments, here denoted for a
system with n outputs and m control variables.
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where t denotes the integer sampling instants,
i€ [1;hp] and j € [1; hyl.

e The cost function V(¢) has to be evaluated
and minimized during each sampling inter-
val.

e Future reference values w;(t+i+1) up to the
prediction horizon h, must be known.

e Future control variable values ug(t + j) are
optimized up to the control horizon h,, con-
trol variable values beyond the control hori-
zon are assumed to be constant.

e The weight matrices L € R™»*" and
R ¢ R™*™h determine to what extent
the future control variable increments and
the future control errors are considered.

The cost function (1) does not require a specific
process model. In this paper the application of
parallel first order external recurrent feedforward
networks as process model is presented, Fig. 2.
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Fig. 2. Parallel networks as process model for a
MIMO-system

The general form of such a model is

@l(t + 1) = fl(yl(t)7 s vyn(t)v
up(t), ..., um(t)) (4)

where [ € [1;n]. Each f;, R™™™ — IR is a static
nonlinear map realised by a single layer percep-
tron network. The networks are trained using a
Levenberg-Marquardt-Algorithm, with the mean
squared error (MSE) as performance criterion.
From y;(t) and the intended future control inputs
ug(t), k € [1;m], estimates of the future outputs
91(t + 1 +4) can be calculated recursively,
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For the initial cycle of the iteration the control
variable sequence is chosen to be constant and
equal to u(t).

3.2 Optimization

The optimization is done using a Gauss-Newton
algorithm.

After the calculation of an initial estimate of the
future outputs the error é(t + 1 + i) can be
calculated. Next, it is expanded in a first order
Taylor series expansion,
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Its argument dug(t + j) is a sequence of (small)
control variable variations.

For the evaluation of (6) the matrices Dy, €
R =1XM are defined,
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The recursive calculation of the derivatives is
carried out as follows:

e i = j, direct calculation,
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e ¢ > j, chain rule,
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where the second term is taken from the
previous step.
e | < j, no influence possible,
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The derivatives in (8) and the first term in (9) are

calculated from the structure of the single-layer
perceptron network, Fig. 3.
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Fig. 3. Structure and nomenclature of an external
recurrent single layer feedforward perceptron
network for dynamic identification

N/ is the derivative of the activation function of
the s-th neuron with respect to its input os and
p; is the number of neurons of the I-th network.
The derivatives with respect to (¢t + i) are cal-
culated in the same way.

Now the Taylor series expansion of the control er-
ror (6) and the modified control input are inserted
into (1). The expression for the control increment
reads
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This can be rewritten into
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up = [ug(t) up(t + 1) Coug(t+ hp)]T, T, €
RP>hetl and Ty € RM>hu,
The cost function (1) now reads
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where D € R™"»~DXmhu i assembled from the
matrices —Dy, and T; € R™w*™s+l) ang
Ty € R™w>*™hu gre block diagonal matrices con-
taining the sub-matrices T'; and T'5 respectively
in their main diagonals.

The expression (16) is expanded and differentiated
with respect to du. To minimize (16), the deriva-
tive is set equal to zero and the resulting equation
is solved for du,
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The control variable variations du are now added
to the original control variable sequence u. To
stabilize the iteration, a stepsize u < 1 is chosen.

Upew = U + poU. (18)

With this new control variable sequence uyey, the
next cycle of the iteration is carried out. Usually
it is sufficient to run through the iteration only a
few times.

Remark I Since the optimization is performed
during every sampling interval, only the first con-
trol variable values are ever actually applied to
the system.

Remark II The design parameters are the weight
matrices, the number of iterations, the prediction
and the control horizon and the stepsize.

4. APPLICATION OF THE ALGORITHM
FOR THE GIVEN PROBLEM

4.1 Effective output variables

For trajectory tracking, the translational velocity
and the curvature along the path, both as func-
tions of time, are decisive. As a measure for the
curvature the acceleration perpendicular to the in-
stantaneous tangent to the path is chosen, because
it is bounded as opposed to both the radius and
the curvature. The radius becomes infinite for a
straight line, the curvature for a sharp turn on the
spot. The boundedness of the processed signals is
vital for numerical reasons.

From the three output variables normal velocity
vy, tangential velocity vy and yaw-rate w two effec-
tive output variables, the velocity along the actual
path v and the cross-acceleration a are calculated
analytically. Fig. 4 illustrates the relationships.

v = /v +v2 sign(vy), (19)

where it is assumed that the side slip angle «,

a= atan(v—n), (20)
Ut

Fig. 4. Kinematics of a two-wheeled mobile robot
under consideration of side slip and tangen-
tial wheel slip

is bounded in the interval [-7;7%]. The cross-
acceleration is calculated by

a = —(0 —vpw)sina + (0 + vyw) cosa. (21)

To have a simple first order network structure
without algebraic loops (as generated by inter-
dependencies of the outputs at the same sampling
instant), the chosen network outputs are the three
velocities vy, vy and w. The optimization, however,
has to be done with respect to v and a as output
variables. This means, that additional derivatives
are needed.

The derivatives of v and a with respect to the
inputs are calculated via the chain rule, e. g.
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The second part of each term is calculated as
described in section 3. The derivatives of the effec-
tive outputs v and a with respect to the network
outputs are calculated by partially differentiating
(19) and (21).

In the expressions for a and its derivatives, v, and
Uy are approximated by the backwards difference
quotient,
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where Tg is the sampling time.
The derivatives of ¥, and vy with respect to the
control variables can then be written as
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where ¢ > j. When (24) is evaluated for i = j
the second term vanishes. In practice, however,
it can be seen, that the partial derivatives of v,
and 0; are only meaningful if both terms of the
approximation (23) are already influenced by the
control variable in question, i. e. their derivatives
are Non-zero.

4.2 Integration of the control error

In addition to the predictive algorithm the control
error is integrated and used to further adjust
the control variables. This accounts for inevitable
modeling inaccuracies and disturbance influences,
so as to eliminate any stationary control error.
The additional control law reads

Uapplied = Upred. + (25)
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where v, and a, denote the reference values.
The gain values k; and ko are additional design
parameters and can be adjusted to obtain the
desired level of accuracy on the one hand and
damping on the other.

+

4.8 Control scheme

The tangential and the normal acceleration v,
and 0y are measured by two-axis acceleration
sensors, the angular velocity w is measured by a
gyro sensor. The accelerations are integrated at
a sampling rate of 1kHz, the control algorithm
works with a sampling rate of 50Hz.

A block diagram of the control scheme is depicted
in Fig. 5.

The time shift operator ¢! symbolises the fact,

that a calculated control variable can only be
applied at the next sampling instant due to non-
zero calculation time.

5. SIMULATION
5.1 Simulation Setup

The simulations are carried out using MATLAB-
SIMULINK V7.0 with a physical model of the robot
accounting for all beforementioned nonlinear ef-
fects.

Two different trajectories are calculated for test-
ing purposes. One is a clothoid with constant
velocity after an initial acceleration, the other one
is an S-shaped curve with a sinusoidal velocity
profile. The duration of both is 5s. The units in
all diagrams are SI-compliant, i. e. [m] and [s].
The PWM input signals are given in the interval
[-1;1].

Fig. 6. Reference, control and output variables for
tracking of the clothoid
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Fig. 7. Reference (dashed) and actual trajec-
tory (solid), frame taken from an animation,
clothoid

5.2 Results

First, the two trajectories are applied to the sys-
tem without any disturbance influences or model
perturbations. The results are depicted in Figs. 6
and 7.

Then the robustness against disturbances acting
on lateral and tangential slip dynamics is investi-
gated. This setup corresponds to changing ground
conditions. In Fig. 8 the lateral slip dynamics are
disturbed by a Gaussian white noise signal with a
sampling time of 0.4s altering the lateral force by
a mean value of 2.5% and a standard deviation of
8.0%.

In Fig. 9 the tangential slip dynamics are dis-
turbed by a Gaussian white noise signal with a
sampling time of 0.5s altering the tangential forces
by a standard deviation of approximately 2%.

6. CONCLUSIONS

A number of conclusions can be drawn:

e The effect of the side-slip can be seen in
Fig. 7. Even though the side-slip angle
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Fig. 5. Combined predictive and integral control scheme
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Fig. 8. Reference, control and output variables for
tracking of the S-curve, disturbance acting on
lateral slip dynamics

Fig. 9. Reference, control and output variables for
tracking of the clothoid, disturbance acting
on tangential slip dynamics

reaches values around 30°, the effective cur-
vature and velocity can be maintained.

e The behaviour of the predictive algorithm
beyond the input-domain on which the net-
works were trained is unpredictable. This has
to be accounted for during training. Every
possible situation during operation has to be
included in the training data.

e The algorithm demands considerable calcu-
lation time, depending mainly on the control

horizon h, and the number of iteration steps
performed.

e Due to the system’s remaining sensitivity
against plant changes or modeling inaccura-
cies, modeling has to be done very accurately,
and the operating conditions cannot vary ar-
bitrarily.
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