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Abstract: A general flatness based control design and parametrization procedure
for single input time varying systems modelled by bond graphs is presented. The
methodology is introduced in an algebraic framework provided by differential rings
and modules theory. The method is applied to a flatness based control design of a
separately excited DC motor. Copyright(©2005 IFAC

1. INTRODUCTION

The bulk of existing control theory is devoted to
time invariant (stationary) systems. The reason is
that time invariant models are the simplest. Nev-
ertheless, it is interesting to consider time vary-
ing models in many application problems. Time
varying models also results from linearization of
nonlinear models around trajectories.

Many references devoted to linear time varying
systems are available in the open literature. But,
most of them presents general theoretical results
in a purely abstract mathematical levels. It is
worth to develop methods in accord with the usual
tools used in engineering applications, particularly
graphical tools. For instance, petri nets for dis-
crete systems, signal flow graphs, digraphs and
bond graphs for continuous systems. These mod-
elling languages may be powerful for modelling
but need an adequate theoretical background to
take advantage of all the information contained
in these graphical representations. Some results
are already available in (Pliam and Lee, 1995)
for signal flow graphs, (Reinschke, 1988) for di-
graphs, (Dauphin-Tanguy et al., 1999) for linear
time invariant bond graphs, (Junco, 1993) and

(Achir et al., 2004) for nonlinear time invariant
bond graphs.

This contribution deals with time varying bond
graphs. More precisely; modelling, flat output
identification and differential parametrization.
The presented results are introduced in the alge-
braic framework provided by differential rings and
modules theory which constitute a very suitable
framework for studying structural properties of
time varying linear systems (Fliess, 1990; Bourlés
and Fliess, 1984). The main results consist in the
extension to time varying bond graphs of many
graphical tools available for time invariant ones.
Particularly, Mason loop rule which is no longer
valid for time varying linear bond graphs due the
property of non commutativity get a nice exten-
sion in terms of Riegle’s gain rule.

The paper is organized as follows: section 2 is
devoted to some background of differential rings
and modules. Section 3 deals with bond graph
modelling of time varying linear systems. Flat
output of single input bond graphs and flatness
parametrization are both presented in sections
4 and 5 respectively. The paper ends with an
application of the presented results to a separately
excited DC motor model.



2. THEORETICAL BACKGROUND
2.1 Modules and linear time varying systems

An (ordinary) differential ring k is a commutative
ring equipped with a derivation % : k — k, sat-
isfying the common properties of a differentiation
operator (Fliess, 1989). An (ordinary) differential
field is an (ordinary) differential ring which is a
field.

An example of differential rings is the ring
of differential operators k[d] equipped with the
derivation operator § = % with coefficients in
k., (Malgrange, 1963). The elements of k[] are
polynomials with indeterminate ¢ of the form

Zfimte a;6%, where a; € k.

Although this ring is in general non commutative,
the multiplication in k[4] is defined by the Leibniz
rule(1).

da=ad+a a€k (1)

This operation is commutative if and only if k is
a ring of constants.

Definition 1. A differential module Q over a dif-
ferential ring k[d] is endowed with the common
properties of usual modules (Bourlés and Fliess,
1984).

Definition 2. A left k[6]-module © is said to be
free if and only if it has a basis :i.e., there exists
m elements z = (z1,...,2m) of  that are k[d]-
linearly independent and every element w € € is
k[6]-linear combination of z.

The following properties of modules over principal
ideals are well known, (Fliess et al., 1995).

e An element w of  is said to be torsion, if
and only if there exists a polynomial 7 € k[d],
m #£ 0, such that 7.w = 0.

e A finitely generated k[6]-module 2 can be
written as a direct sum, equation (2).

Q=Tad (2)

T is a torsion submodule and ® = Q/T is a
free submodule.

e The rank of ©, denoted by rank(f2), is equal
to the rank of the free submodule ¢ which is
equal to the cardinality of any basis of ®.

Definition 8. A k-linear system € is a k[d]-
module. A linear dynamics is k-linear system {2
with an input u such that the quotient module
Q/[u] is torsion, (Fliess et al., 1995).

Finally, this formalism is more general than the
classical Kalman state variable representation.
For a time varying system given by the Kalman
form (3), with z € ", v € R and y € RP

& = A(t)z + B(t)u
azen: )

it is easy to see it that (3) is equivalent to (4) in
a module framework representation.

(0 5) () 2)

R(5,t)

The entries of the matrix R(d,t) belong to a non
commutative ring k[6] and (z' u' y*) € Q.

The structural properties of (4) are then trans-
lated to a module framework, see (Fliess, 1989).
For example, controllability corresponds to the
freeness of the module 2.

2.2 Flatness

Roughly speaking, flatness consists on the possi-
bility to parameterize every system variable (state
variables, input variables and output variables) as
function of fictive outputs and their derivatives.
More precisely, consider the nonlinear model (5),
where z € R",u € R™,z € RP, and f is a smooth
vector field of appropriate dimension and A is an
analytic function.

z = f(z,u)
{ z = h(z,u) ()

The system (5) is said to be flat if and only if:
Jye Ry = )\(x,u,d,u(z), ...,u(r))
such that:

x = (p(y’ y.’ y(2)’ ""y(k))
u = ¢(y7 y.7 y(2)7 "'7y(k+1)
z = w(yayay@)a 7y(k))

This differential parametrization contains all the
input-state and state-output information of the
given system which is useful for stabilization and
trajectory tracking control design.

3. BOND GRAPH MODELLING OF LINEAR
TIME VARYING SYSTEMS

A time varying bond graph model is composed
of basic elements, associated with ports, I and C
(both storage fields), R (dissipative field), M Se
and MSf (sources). Elements 0,1,TF (trans-
formers) and GY (gyrators) compose the junc-
tion structure, which exchanges energy between
the different parts of the dynamic system and
is constrained to satisfy power conservation. The
constitutive laws of these elements are presented
hereafter in an algebraic framework.



3.1 R element

For a time varying linear R element, according to
causality, two cases can be considered. If the flow
f is given to the R element, then e = R(t)f.

If the effort e is given to the R element, then
VR(t) #0,f = R~ Y(t)e = (1/R(t))e.

There is no preferential causality for the R ele-
ment when R(t) # 0, Vt.

= R:R(t)
f

Fig. 1. Time varying dissipative linear element in
resistance causality.

3.2 C and I elements

It is better to assign an integral causality to dy-
namical elements in order to perform integration
instead of derivation. In this case one has the
following situation:

ec €r
—— C:C(t) ——= T:I(¥)
fe fi

Fig. 2. Time varying storage elements in integral
causality.

With the assumption of linearity, their constitu-
tive relations in integral causality assignment are
of the form

1 1
mes e, f1=m5 ey (6)

and the associated states are gqo = C(t)ec and
pr=1(t)fr.
Multiplying both sides by ¢ gives

fc = 5C(t)60, €y = 5I(t)f] (7)

Using the multiplication rule given by equation 1
yields

e€c

fo= Ct)§ ec+ C(t) ec
—— —

C element R element

(8)

er= I(t)s fr+ I(t) fr
—— —~

I element R element

Equation (8) represents the constitutive relations
in derivative causality assignment.

3.8 TF and GY elements

When assigning causality to an TF element, two
situations occur, figure 3. Similarly, two configu-
rations are available for the GY, figure 4.

er m(t) e er m(t) e

[N~}

> TF— —ATF——H
h 2 fi f2

{ e1 = m(t)es { es = 1/m(t)e;
f2=m(t) fr fi=1/m(t) f2

Fig. 3. Time varying transformer

& ) e e ™) e

ik ho ok
{ e1 =r(t)f2 { fi=1/r(t)es
= fa=1/r(t)es

Fig. 4. Time varying gyrator

These enumerated elements are connected by 0
and 1 junctions and are constrained to obey to
causality affectation procedure. Rearranging the
relations obtained by applying the constitutive
laws of the bond graph elements and the junctions
laws leads generally to a state variable represen-
tation of the form

dox = A(t)z(t) + B(t)u(t) 9)

where x is the state vector associated with the
bond graph variables p and ¢ and u is the input
vector associated with the input sources. A(¢),
B(t) are matrices of appropriate dimensions with
time varying entries coefficients.

8.4 Exzample

Consider a separately excited DC motor (SEDCM)
depicted as in figure 5.

Tem w

Ree() @/f -
J

Fig. 5. Dynamic equivalent circuit of SEDCM

Assume that the electromechanical energy conver-
sion is without losses; equation (10) holds.

e =knw

{ Tem = ki (10)
Considering a linear excitation windings charac-
teristic, the excitation fluxis ®(t) = L.i.(t). If the
excitation circuit is fed by a sinusoidal voltage of
pulsation w, then i.(¢) can be assumed sinusoidal



and the excitation flux is simplified to ®(¢) =
Do (1 + asinwt), (Rotella et al., 2002). By using
the standard bond graph formalism (Karnopp et
al., 1990) and the above hypothesis, the corre-
sponding time varying bond graph is depicted as
in figure 6.

I:Lg I:J
[ ko ® (1)
MSe : v, A1 GY 1t Df:w
iq w
R:R, R:b

Fig. 6. Bond graph model of the SEDCM

4. FLATNESS OF LINEAR TIME VARYING
BOND GRAPHS

Consider the change of coordinates given by
2(t) = P Y (t)z(t) or x(t) = P(t)z(t) (11)

Applying this change of coordinates to equation
(9) leads to a new state variable representation of
the form

§2(t) = A(t)z(t) + B(t)u(t) (12)

where A(t) = P~(t)[A(t) — 0]P(t) and B(t) =

P1(1)B(t)

The obtained form (12) becomes a controller form
if one chooses the matrices A(t) and B(t) as

000 .. —ap(t) 1
o [1o00. —au() i 0
A=|010. —at) |,B=]0
000 .. —an_1(t) 0

It remains to calculate the corresponding change
of coordinates matrix P(¢). Let it be

P(t) = [pi(t) pa(t) ps(t) .. palt)]

Therefore P(t)B = B = pi(t) = B
and P(t)A(t) = [A(t) — 0] P(t)
p2(t) = [A(t) = 9] B(t)
= {:
pn(t) =[A(t) = a]" ' B(1)
Consequently

P(t) = [B(t), (A(t) =0)B(t), .., (A(t) = )" ' B(¢)]

Remark 1. The matrix P(t) has to be of full rank,
which corresponds to controllability of (9) or the
freeness of the module €2 represented by

[A(t) — 8]a(t) + B(t)u(t) = 0 (13)

The flat output is then clearly proportional to the
last variable z,(t) of the obtained canonical form
(12), with A(¢) € R(¢).

y(t) = At)zn(t) = (0,..., A(t))2(t) (14)

In the original coordinates, the flat output is a
linear combination of the state variables of the
bond graph model described by

y(t) = Oty = S eila(t) (1)
i=1
As a consequence of equations (11), (14) and (15),
C(t)P(t) = (0,..., A(t)). Therefore, the row vector
C(t) satisfy the set of algebraic equations (16).

C(t)[A(t) = 8" 'B(t) =0 16

LCloa im0
Vi=1.,n-1

The entries of the column vectors [A(t)—s]' 1 B(t)

are obtained directly from the time varying bond
graph model by means of formula (17).

{[A(t) — 8] B(t) ZGluxJ )t (17)

Where Gi(u,z;)(t) = Hzl L(Gi(t) — 79) denotes
the gain of the k** causal path of length [ relating
the input variable u to the state variable x;.

e G(t) is the constant part of the elementary
causal path gain at the element i along the
k" causal path.

e v = 1 if the elementary causal path contains
a causal loop of length one (formed by a
dynamical element and an R element) and
v = 0 otherwise.

e H denotes the set of all the causal paths of
length k connecting the input variable u to
the state variable x;.

Remark 2. e Due to the non commutative as-
pect, the gain of a causal path has to be cal-
culated backward, i.e: from the output (sink)
variable to the input (source) variable.

e The freeness of {2 means that every element
w € € is torsion, i.e:
A) +6] 4 _
which is equivalent to the condition given in
equation (16) for w = C'(t)x(¢).

e An algorithm can be obtained for multi input
bond graphs in a similar way.

5. DIFFERENTIAL PARAMETRIZATION

Definition 4. A ring bond graph over a ring k[6~}]
and a k[6~!]-module © means a bond graph de-
scribed by a set of equations of the form (18).



n m
€ = Zai,jey‘ + Zbi,kUIm i=1,...,n (18)
j=1 k=1

aij, bix are in k[67'] and e;, e; and wy are in
Q which denote here the effort or flow variables
associated with the dynamical elements in integral
causality and the effort or flow variables associ-
ated with the input sources. Note that the ring
k[671] is not commutative if k is not a field a
constants.

Indeed, equation (9) can be written as
Sx(t) = [A(t)6 10z (t) + B(t)u(t) (19)

with & = R(¢). According to definition 4, Mason
loop rule can not be used because it is based on
Crammer rule which holds only in the commuta-
tive case. An extension to this rule to the non com-
mutative case is presented hereafter. It is based
on Riegle’s gain formula which is originally intro-
duced in the framework of non-commutative sets
of algebraic equations (Pliam and Lee, 1995). This
rule is also applied on variational bond graphs in
(Achir et al., 2004).

Definition 5. For a ring bond graph over a non
commutative ring or field, the gain expression is
given by (20).

T=> Gu (20)

keH

where G is called the causal path product of the
kth causal path from an input (source) element to
an output (sink) element, and given by (21), where
the product is taken in order over the n elements
in the k' causal path. A¥ is the i*" bond gain
(operator) along the k' causal path, and ka) is
the self-gain of the element immediately following
the bond Agk) with the remaining bonds along the
k" path removed.

1

G = [ - sb)1al (21)

i=n

Definition 6. The self gain of a ring bond graph
dynamic element is equal to the sum of all the
gains of the causal loops that cross the considered
element.

Remark 3. The self-gain and bond gain is func-
tion of ¢ and § or 6! depending if it is calculated
on the direct or inverse time varying bond graph
model.

The input output relation obtained using equation
(20) is given by the gain expression (22).

y="T(t5  u (22)

If the systems is flat, equation (22) is always
invertible and enables us to get the input out-
put differential parametrization given by equation
(23).

u="T7"(t 08y (23)

6. APPLICATION TO SEDCM

Consider again the time varying bond graph
model of section 2. The state vector is z =

(PL.,ps) = (21, 72).

6.1 Flat output of the SEDCM

A particular expression of equation (15) is given
by (24).

y=c1(t)z1 + ca(t) o (24)
It further verifies the conditions of equation (16),
whose coeflicients are determined by analyzing the
causal paths of different lengths.

{ Cl(t)Gl(’Ua,Il) + Cg(t)Gl(’l}a,Ig) = O
cl(t)Gg(va,xl) + CQ(t)GQ(Ua,xg) = )\(t)

e (Causal paths of length 1
G1(vg,x2) = 0 because it does not exist any
causal path of length 1 connecting the bond
graph element (I : J) to the input source.
This implies that ¢;(¢) =0

(25)

G1(va, 1) =1
e Causal paths of length 2
Since ¢1(t) = 0 it remains to calculate

G2(vg, x2) which is equal to km@(t)%a. It is
sufficient to choose A(t) = ky®(t)7- to get
Yy = 22.

6.2 Differential parametrization of the SEDCM
First, consider the sub-bond graph of figure (7-a).

By writing the junction equation, one obtains the
relation (26).

_ 1 Ra o 11
fi= La5 1+ Laé |7 tes (26)
I:L, 1 :\La I:J
T *P En®(0) e = 65 |||
el e PmE\ey =eaflt
L= e —— GY —— - Lt
‘l:la fl ‘l:la fl f2 w }[;
R:R, R:R, R:b
a b

Fig. 7. Sub-bond graph associated with the vari-
ational bond graph model of the SEDCM



Now, consider the element I : J of figure (7-b).
Its self gain can be calculated by summing the
gain of the two causal loops I : J = R : b and
I:J=QGY :k,®(t)=1: La.

The calculation of the first loop gain is straight-
forward since all the operators are constant and
is equal to 57 = —%6*1.

For the second loop gain, start with any split
variable (source and sink variable), let it be eq
and e, and calculate the transfer relation.

1 R

€y = k‘m‘I)(t)fl = km<I>(t).L—6_1[1 + faé_l]_lel
_ 1y Ry §
—Icm<I>(t).L1a6 [1+ Laé |7 Em®(2) f2 1

— g o ¢—17-1 B = A
= km@(t).Laé 1+ Laa ™ e ® (1) ( J& )eh

Therefore, the self gain of the element [ : J is
equal to

k R k
= S+ @) 1+ (—— o (t)5 !
S = Sit (08 1 0 (= Hr (s )
Now, it is possible to carry out the calculations
for the whole bond graph of figure 6.
_ 1y -1 [t a
w = J5 (1-52) km<I>(t).La5 (1+ I

Inverting and considering y = Jw one gets

R 571)71'0(1

ve = (1— %6‘1)(%¢(t)5_1)_1(1 — 8,)dy

Replacing S and simplifying gives

Ra . km 1 b, knm
Vg = [(5 + fa)(faé(t)) (6 + j) + 7‘1)(75) Yy
Using the multiplication rule, given by equation
(1) and simplifying gives

Lq R, ®(t) b
Ua:kmd)(t) +(fa—@+3)y
R.b  ®(t)b k2

(L7~ 3 T Tt

The state output parametrization is calculated

similarly by considering the variable x, as an

input variable. From the bond graph of figure 6,
it follows

w= l(5_1(1 — 51) Yk ®(1) i:z:

7 1 m . La 1

Inverting and replacing S

1 = (?Zcb(t)) - (6 + %)y

Therefore

L,®(t),. b

. 4+ 5v)
Finally, all the system variables x; and u are
expressed in terms of the flat output y = x2 and
its derivatives.

T =

CONCLUDING REMARKS

The presented results open new issues for analysis
of structural properties of time varying linear sys-
tems taking into account the non commutativity
aspect. The use of bond graphs (graphical con-
cepts) simplifies the flat output identification and
parametrization and reduce calculus because it
takes advantage of the scarcity of state equations
matrices of the bond graph. Further, an extension
to multi-input will be considered.
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